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Isolated domains in Langmuir monolayers exhibit shape instabilities leading to branched structures as a 
consequence of the competing effects of line tension and dipolar interactions. A theory for interfacial pattern 
formation in the presence of these forces, developed to study shape instabilities of magnetic fluids, is 
reformulated to treat electric dipolar systems and specialized to the case of “ultrathin” domains, for which 
the aspect ratio 2Rlh >> 1, where R is the domain radius and h its thickness or a microscopic cutoff. Two 
phenomena studied in recent experiments are considered on the basis of this model: the spectrum of thermal 
fluctuations of the domain boundary and the dynamics of shape relaxation near the branching instability. 
The experimental spectrum of thermal fluctuations for monolayers of dimyristoylphosphatidylcholine and 
cholesterol (Seul, M. Physica A 1990, 168, 198) deviates in a small but measurable way from that expected 
in the presence of line tension alone and is described quantitatively by the theory. This analysis yields estimates 
for the line tension and dipole moment density which are in accord with previous determinations by other 
methods. The relaxation of branched shapes to a circular ground state is found, as in experiment (Seul, M. 
J .  Phys. Chem. 1993, 97, 2941), to deviate in a characteristic way from the “curve-shortening” law which 
governs the motion in the absence of dipolar interactions. A heuristic argument explaining this phenomenon, 
in which the notion of a scale-dependent surface tension is introduced, is formulated on the basis of a “localized 
induction approximation”. This approximation, familiar from the study of vortex motion in inviscid 
hydrodynamics, is applied here to the Biot-Savart integrals which represent the dipolar pressure at the boundary 
of the domain. A relationship between the energetics of fingering instabilities and domain fission is proposed 
on the basis of analytical results obtained in the ultrathin limit. Details of a numerical method for the study 
of this shape evolution are provided, with particular attention paid to a consistent treatment of cutoff effects. 

I. Introduction 

Recent experimental of pattern formation in 
Langmuir monolayers have focused on dynamical aspects of 
domain shape evolution. These include investigations of the 
thermal fluctuations of domain boundaries, analogous to capil- 
lary waves at a fluid-air interface, as well as the relaxation of 
large-amplitude shape distortions brought on by fingering 
instabilities. These instabilities, in turn, have been suggested 
to arise from the competition between line tension and long- 
range dipolar interactions between the amphiphile~.’-’~ 

It has been sugge~ted’~.’~ that the energetic competition 
between surface tension and dipolar forces in amphiphilic 
monolayers should be essentially equivalent to that of domains 
of magnetizable fluids15 trapped between closely spaced plates 
(the geometry of Hele-Shaw flow). Experiments on the 

have revealed that when a magnetic field is applied 
normal to the plates, orienting the microscopic magnetic 
moments in suspension, the domain undergoes fingering insta- 
bilities exactly like those of the amphiphilic domains. 

Here we apply a recent approachI4 to the energetics and 
dynamics of pattern formation in magnetic fluids to compute 
the spectrum of thermal fluctuations for circular domains and 
the dynamics of shape relaxation in Langmuir monolayers. An 
important distinction between the magnetic and amphiphilic 
systems concerns the relationship of two characteristic lengths 
in the system: the radius R of the circular domain and its 
thickness h (the spacing between plates in the Hele-Shaw 
problem or a microscopic cutoff in the case of the monolayers). 
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It is convenient to define an aspect ratio 

p = 2Rlh 

the range of which is 10 5 p I 100 for ferrofluid domains. For 
the typical phospholipid domain whose radius is 50 p and 
with a molecular cutoff of h 1 - 10 8, the relevant range of 
aspect ratios is lo5 5 p 5 lo6. We refer to this as the “ultrathin 
limit”. 

Specializing to the ultrathin limit, we first derive in section 
II the limiting form of the dipolar energy of a domain of arbitrary 
shape and use equipartition considerations to obtain a closed- 
form expression for the amplitudes of thermally excited modes 
of circular domains and the related linear stability analysis. The 
range of validity of the results for p - ~0 is discussed, and some 
further analytical approximations useful in that limit, discussed 
briefly in the context of the hydrodynamics of Hele-Shaw flow 
of dipolar fluids,lg are presented. The fluctuation predictions 
are compared with recent experimental results4 in section 111, 
where we obtain estimates of the line tension y and discontinuity 
in dipole moment per unit area p between the coexisting phases 
for a particular monolayer composition. These estimates 
complement earlier measurements of these parameters by 
different We may then compute the dimensionless 
Bond number, 

NB = 2p21y 

the energetic control parameter characterizing the relative 
importance of dipolar and surface energies. The available data 
is not sufficient to provide a stringent test of the theory, but 
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make it possible to locate approximately the experimental system 
in a stability diagram in the P-NB plane. 

Quite naturally, the problem of small-amplitude fluctuations 
about a simple shape is closely connected with the linear stability 
analysis, and the theoretical results discussed here should be 
viewed as complementary to several recent stability ana lyse^'^^^^ 
which differ in subtleties regarding the implementation of the 
cutoff. 

The results on the thermal fluctuations provide a test of the 
proposed energy functional for dipolar domains, but do not 
address directly the dynamics of their boundaries. For this, we 
turn in section IV to a study of the relaxation toward a circular 
shape of a branched domain. This is done within the context 
of the simplest dissipative dynamics, which is a gradient flow 
in the space of  configuration^.'^ Measurements of shape 
relaxation5 have shown deviations from the behavior predicted 
in the presence of line tension alone and were attributed to 
dipolar forces. We show that the form of these deviations is 
consistent with the dissipative dynamics of dipolar systems when 
the domain is near the branching instability. In turn, these data 
provide justification for the heuristic notion of a scale-dependent 
effective surface tension in dipolar systems. This concept is 
developed further here using the localized induction approxima- 
tion on the Biot-Savart integrals representing the dipolar 
pressure at the domain boundary. This approximation is well- 
known in the study of vortex motion in fluid mechanics.21s22 
Along with recent experimental studies of shape i n s t a b i l i t i e ~ ~ ~ , ~ ~  
these results begin to allow for a precise comparison between 
theory and experiment. Suggestions are made for a particular 
series of experiments to test quantitatively the predictions of 
these models. In section V we comment on the relationship 
between the balance of forces embodied in the linear stability 
analysis and simple energetic considerations involving the 
fissioning of domains, establishing a simple intuitive picture of 
the origin of branching instabilities. 

Some further avenues of investigation are suggested in the 
concluding section VI. Appendices A and B collect a number 
of details regarding the computation of thermal fluctuations and 
of the numerical method used to study the shape evolution, with 
particular attention to a consistent treatment of the cutoff 
contributions to the energy and dynamics. 

11. Energetics and Thermal Fluctuations in the Ultrathin 
Limit 

Consider a thin dipolar domain of height h, whose base lies 
in the x-y plane and whose boundary is described by the 
contour G. The total energy G is the sum of contributions from 
line tension and electrostatic interactions. 

If the length of Gis L and the surface tension between the phases 
interior and exterior to the domain is u, then clearly gY = yL, 
where the line tension y = oh. In the simplest model for the 
dipolar energy of such a domain, the dipole moment per unit 
area is taken to be uniform both within and external to the 
domain. Let p be the discontinuity of the dipole density across 
the boundary G. As shown e l~ewhere , ’~J~  gP is the sum of a 
term proportional to the area A of the domain and a contribution 
in the form of the self-induction of the boundary, 

2 2 n  8JrI = LA h - ffdsfds’ i(s).i(s’)@(R/h) 

Here, r(s) is the location of a point on Gat  arc length s, i 
adas is the unit tangent vector there, and R = Ir(s) - r(s’)l. 
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The function 

arises from integrations over the thickness of the domain and 
may be thought of as producing a “smooth” cutoff to the 
otherwise divergent behavior of the energy for s near s’ in eq 
2.2. Of interest in later sections is the exact dipolar energy for 
circular  domain^'^.^^ 

(1 - k 2 ) W 1 I  (2.4) 

with K and E being complete elliptic integrals and k2 = p2/(1 + p2). For large p we obtain the limiting behavior 

We may now turn to the computation of the energy of a 
circular domain perturbed by small amplitude radial distortions 
and determine their mean amplitudes. With q being the polar 
angle and C,.(q) a unit vector in the radial direction, we describe 
the radius of the domain as 

Writing f(q) = c,fn cos(nq), the energy may be written up to 
quadratic order as 

1 -  

(2.7) 

and our goal is to compute 9,. Experiments on thermal 
fluctuations reveal that the area of the domain is essentially 
constant over the duration of the e~periment .~ The details of 
the calculation of 9, under this constraint are given in Appendix 
A. We obtain 

where 

1 n 1  

h B ( l  - 4 n 2 ) Z L  (2.9) 
4 ,=22j - 1 

a central result for what follows. 
As long as all amplitudes S2, are positive, the circle is locally 

stable to small perturbations. With increasing p2 some 9, will 
become negative; the first to do so will be Q2 at the critical 
value 

2 
ln(8R/h) - 11/6 

NB*(2) = (2.10) 

A comparison between the predictions of eq 2.10 and the exact 
expression26 for the instability of the n = 2 mode, shown in 
Figure 1, reveals that it is highly accurate even for p - 10. The 
inset to Figure 1 shows Q, for p = lo5 and various values of 
NB near N B * ( ~ )  = 0.1807, illustrating the rapid appearance of 
a broad band of unstable modes with increasing dipolar strength. 
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Figure 1. Stability diagram for dipolar domains in the ultrathin limit. 
Solid line is exact stability boundary for the n = 2 mode,26 while dashed 
line is the large-p approximation in eq 2.10. Inset shows mode 
amplitudes Q, for various dipolar Bond numbers, for p = lo5, in the 
ultrathin limit of eq 2.9. 

In the limit of large aspect ratios the cutoff h enters into the 
shape instabilities and dynamics only in a rather indirect way, 
for instance determining an effective line tension as in eq 2.9. 
It is only when the length scale of the pattern approaches the 
cutoff that significant effects occur. In particular, the most 
unstable wavelength of a circular domain and the equilibrium 
width of a stripe both acquire a nontrivial dependence on the 
cutoff. Such behavior is unlikely to be observed in Langmuir 
monolayers, where the cutoff is molecular. This regime can 
be accessed in the study of macroscopic domains of magnetic 
fluids, as will be reported el~ewhere.~' 

Equation 2.9 may be used to define the exact limiting form 
(as p -. =) of the critical Bond number NB*(~)  at which the 
nth mode becomes energetically favored. This is not, in general, 
the Bond number at which the mode n is the most unstable 
(except for the case n = 2 in eq 2.10), but it is closely related. 
In the ultrathin limit it has the simple form 

(2.1 1) 2 
ln(8R/h) - g(n) 

NB*(n) = 

where 

These results for the critical Bond number may be reexpressed 
in terms of the critical radius R(") for the instability of the nth 
mode, at a given value of NB. From eq 2.11 one finds 

The function g(n) is shown in Figure 2. One may verify in 
detail that these limiting forms are completely consistent with 
the known exact results for the first few modes, for arbitrary 

The form of the relation 2.13 is identical to that derived by 
McConnel128 within an approximation involving a sharp cutoff. 
It implies the very simple relation for the first two modes 

p.26 

a result arrived at independently by C e b e r ~ , ~ ~  in agreement with 

t 4 0 1 ' 1 ' 1 1 1  1 

n 
1 2  5 10 20 50 100 

Figure 2. The quantity g(n) entering the linear stability analysis (eq 
2.12) and approximations g'(n) and g"(n) (eqs 5.5 and 5.9) derived 
from the energetics of fission. 

the results of Lee and McConnell obtained using a sharp-cutoff 
approximation, and consistent with e ~ p e r i m e n t . ~ ~  

Provided NB < NB*(~) ,  so all Pn > 0, we may appeal to 
equipartition to obtain the thermal average of the squared 
amplitude as 

(2.15) 

If p = 0 we obtain (cn2) 0~ ll(n2 - l),  a result noted by Seul 
and S a m m ~ n . ~  It should be emphasized that the result 2.15, 
based on eq 2.7, will eventually break down close enough to 
the branching instability, when Q, - 0, the mode amplitudes 
grow large, and thus terms beyond quadratic order in the energy 
functional become important. A detailed computation of those 
has not yet been undertaken, but would be of interest in 
determining whether the branching instability is a subcritical 
or supercritical transition. We now turn to a direct comparison 
of eqs 2.9 and 2.15 with experimental measurements. 

111. Thermal Fluctuations: Comparison with 
Experiment 

In comparing with experiment, we use the data of Seul? 
obtained for dimyristoylphosphatidylcholine (DMPC) mono- 
layers with 30% cholesterol and 1% fluorescent dye. The three 
data sets of the equilibrium mean-square mode amplitudes (cn2) 
for three domain radii ( R  = 67.3,61.7, and 62.2 p) are shown 
in Figure 3. We see that the typical amplitudes of fluctuations 
in the low-order modes are on the order of 1-2 p and fall off 
rapidly with order. 

We now wish to extract from these data estimates for the 
Bond number NB = 2p2/y. As is apparent from the form of eq 
2.9 for the quantities Q,, we must specify the microscopic length 
scale h. Since we have no a priori knowledge of an appr2priate 
value, we have explored a range of molecular scales 1 A 5 h 
5 10 A, finding the value of NB for each that gives a good fit 
to the data. It transpires that the values obtained for y and p 
do not depend sensitively on the assumed value of h. 

A convenient replotting of the data is shown in Figure 4 for 
the three data sets: the fluctuation amplitudes C, (cn2) 
normalized by C2, plotted versus n2 - 1. We see from eqs 2.8 
and 2.9 that C21Cn = depends only on the Bond number 
and aspect ratio, and not separately on p or y.  Were there only 
line tension acting on the boundary, then such a plot would be 
exactly linear, with slope 1/3 and zero intercept, as indicated 
by the dashed line in the figure. Instead we see a small amount 
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Figure 5. Estimates of the line tension for the three data sets of Figure 
3, following eq 3.1 with h = 10 A. Horizontal lines are at mean values 
as quoted in Table 2. 

TABLE 2: Estimates of the Bare Line Tension y for 
Different Values of the Cutoff, in Units of lo-* erg/cm 

0.05 2 
0 2 4 8 8 

n 
Figure 3. Amplitudes of thermal fluctuations of domains of three radii 
in a monolayer of DMPC and cholesterol (30%) (from ref 4). 

1 " " l " " l " ~ ' I " ' ' -  
40 - - 

R (m) h = l A  h = 5 A  h = 1 0 A  

67.3 1.26 1.12 1.06 
61.7 1.42 1.26 1.19 
62.2 1.25 1.12 1.06 

the fit in Figure 4 and those for the other two domains, as well 
as showing the mean values of y around which each of those 
data sets cluster. Table 2 summarizes those fits. 

Finally, given NB and y we obtain estimates for the dipole 
moment density p. Choosing h = 10 A as a representative value 
we conclude that 

a u 
u \ 

y = (1.1 f 0.1) x I O - ~  erg/cm (3.2) 
0 10 20 30 40 50 

n2- 1 
Figure 4. Data of Figure 3 replotted in dimensionless form. Deviation 
from dashed-straight-line behavior (lowest dashed curve) indicates the 
presence of dipolar forces. Solid line is a fit to eq 2.15 with h = 1 A, 
and NB = 0.137, appropriate to the domain with R = 67.3 pn. Dot- 
dashed lines indicate sensitivity of the theoretical curve to changes in 
NB of f0 .005  from the fitted value. 

TABLE 1: 
Different Values of the Cutoff 

Estimates of the Dipolar Bond Number NB for 

and 

p = 0.30 f 0.02 D/100 A2 (3.3) 

The value for the line tension is roughly consistent with that 
obtained by Benvegnu and McConnel12 for pressures near the 
critical point of the DMPC-cholesterol mixture. The dipole 
density is considerably lower than their estimate p 0.7 D/100 
A2, obtained at very low surface pressure. The present data 
were obtained much closer to the critical point, so the density 
difference between the coexisting phases would be much 
smaller. A quantitative verification of this point awaits further 
experimental study. 

It is of interest to note from eq 2.9 that one may define an 
effective line tension 7 in the presence of dipolar forces, 

67.3 0.137 0.154 0.163 
61.7 0.137 0.154 0.163 
62.2 0.134 0.150 0.158 

of curvature, a manifestation of the competition between terms 
scaling as a* and as n2 ln(n). All three data sets cluster close 
together when plotted as in Figure 4. 

For each of the three domain radii, and each of three 
representative values of the cutoff h (1, 5, and 10 A), we have 
obtained by nonlinear least squares fitting the best-fit value of 
the Bond number, as summarized in Table 1. The solid line in 
Figure 4 illustrates the quality of such fits and the sensitivity 
of the fit to very small changes in the Bond number. 

With a fitted value of NB for each choice of cutoff we may 
estimate the bare line tension by the relation 

(3.4) eh 

whose vanishing defines approximately the onset of the branch- 
ing instability. Using the parameters extracted with h = 10 A, 
we find the extremely low value 

p = (0.01 - 0.04) x lo-* erg/cm (3.5) 

This proximity of the experimental systems to the boundary of 
shape instabilities is illustrated in Figure 6,  which plots the fitted 
Bond numbers obtained over a very broad range of aspect ratios 
(reflecting different choices of h) for the data on domain 2.  We 
see that a variation of 2 orders of magnitude in p is associated 
only with a 50% change in the estimate of NB.  Moreover, for 
all values of h the data are seen to lie quite close to the stability Figure 5 serves the dual purpose of illustrating the residuals of 
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Figure 6. Locating experiments on the stability diagram. Dashed lines 
represent a spread of f0.005 of the fitted values of NB on a domain of 
radius 61.7 p, using values of the cutoff h ranging over several 
decades. Solid lines indicate the locus of instabilities for modes n = 
2-7. 

boundary, a proximity in qualitative accord with the experi- 
mental observations. 

Clearly, a more stringent experimental test of the validity of 
the predictions 2.8 and 2.9 for the spectrum of thermal 
fluctuations requires data covering a range of conditions closely 
approaching the branching instability. The small curvature seen 
in Figure 4 is predicted to become more and more pronounced 
as NB - NB*(2). This suggests a natural set of experiments in 
which the spectrum of fluctuations is monitored as the shape 
transition is approached, by increasing either the temperature 
or the applied pressure.2 

IV. Shape Relaxation in the Ultrathin Limit 

In this section we turn to the dynamics of the relaxation of 
branched domains to the circular ground state, with particular 
interest in the role of the long-range dipolar forces. Perhaps 
the simplest model for the dynamics of shape relaxation is one 
which ascribes all dissipation to the boundary of the domain 
and balances the viscous force there to the generalized pres- 
sure.14 When expressed in terms of the normal component of 
the velocity artat of the boundary r(s), this “dissipative 
dynamics” equation of motion takes the form 

where is a friction coefficient. The constraint of area 
conservation is achieved by introducing a Lagrange multiplier 
II in a Legendre transformed energy 

8 = 8p + CYy - ITA (4.2) 

The variational principle 4.1 then yields an equation of motion 
of the form 

rr=  U A +  ~i (4.3) 

where 

u= q<u, + up + n) (4.4) 

with U, = -YK, Up is given in eq A7, and the tangential velocity 
W is discussed below. Conservation of area implies that the 
mean normal velocity vanishes, fds U = 0, yielding a nonlocal 

expression for the Lagrange multiplier, 

where the mean of any quantity is defined as (-) (l/L)fds-. 
The typical scales of these pressures can be seen from the exact 
results for circles, for which the simplified relations 

hold. This yields 

(4.6) 

Under the dynamics 4.1 the boundary length L varies with 
time as30 

aL = fds K ( U ~  + U p  + IT) 
at 

where the second equality follows from the relation fds K = 
2n for simple closed curves. Using the explicit forms of U,  
and Up, eq 4.8 may be written as 

h2 112 

iCS/){(l+-$) - I} (4.9) 

The validity of the linear relation between aL/at and (27~)~tL - 
fds K’, which holds for motion by line tension alone, has been 
tested by Seu14 in the relaxation of a branched shape to a circle. 
Deviations from linear behavior have been observed and were 
attributed to the presence of dipolar interactions. 

To determine if those deviations are consistent with the 
predictions of eq 4.9 for finite NB, and to study the approach to 
equilibrium from noncircular shapes, we have performed 
numerical studies on the relaxation of a branched dipolar domain 
for values of the Bond number near the critical value NB*(~) .  
The numerical methods are summarized in Appendix B. For 
these simulations, we find it convenient to choose units of time 
and length such that we may set y = 17 = 1. The parameters 
of interest are then NB,  the domain area A,  and cutoff h. To 
characterize the circular state to which a branched structure of 
area A may flow, we define an “equivalent radius” Ro as Ro = 
(A/n)L’2 and specify the cutoff in terms of the equivalent aspect 
ratio p = 2Rdh. 

Figure 7a shows the shape relaxation obtained for aspect ratio 
p = lo5, Ro = 1.0, and NB = 0.175, just slightly below the 
critical value N B * ( ~ )  = 0.1807. The images displayed are at 
times t = 0, 3, 6, .... The dynamics generating this evolution 
is by construction a gradient flow, and so we may follow the 
downward flow of energy in time. Shown below in Figure 7b 
and its inset are the total energy 8, + gp and the dipolar 
contribution alone. Note from this figure and the scale of the 
perimeter that both d$ and CY,, are very large in magnitude in 
comparison with their sum. 
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Figure 7. Shape relaxation (a) below the critical Bond number for 
the 2-fold shape instability. Simulations are forp = lo5, NB = 0.175, 
RO = 1 .O, and with N = 256 Fourier modes; (b) time evolution of total 
energy and dipolar contribution alone (inset). Dashed line in inset 
shows value for a circle. 

By increasing NB to 0.182, now slightly greater than &*(2), 
the same initial condition as in Figure 7a now relaxes (Figure 
8a) to an elongated structure much like that seen in recent 
experiments?3 The associated total and dipolar energies (Figure 
8b and inset) are each much lower than those of the equivalent 
circle. The dipolar contribution is actually rather close to that 
of two isolated domains each with half the area of the original 
(cf. section V below). 

The plot in Figure 9 shows for the shape relaxation in Figure 
7a the rate of change of the perimeter with time as a function 
of the line tension contributions in eq 4.9. We see clear 
deviations from the straight-line behavior that would hold in 
the absence of dipolar interactions, and a form qualitatively like 
that seen in e~periment.~ At the early stages of shape evolution 
there is a reasonably linear relation observed. As the middle 
branch of the shape disappears, the plot shows marked curvature. 
One may say that there is a large effective tension in the early 
stages of the relaxation, when the dominant motion is at the 
tips of the fingers, and a smaller tension when the interface is 
less highly curved. 

This notion of a scale-dependent line tension is of course at 
the heart of the linear stability analysis, eqs 2.9 and 3.4. Within 
the context of the perimeter evolution law (eq 4.9) we may see 
this explicitly by means of a so-called localized induction 
approximation (LIA) known from the study of Biot-Savart 
interactions in the hydrodynamics of vortices and vortex patches 
in ideal fluids.21,22 In this approximation, we first examine the 
properties of the Biot-Savart integrand in eq 4.9 for s’ near s 
and use the Frenet-Serret equations, 

(4.10) 

to expand the vector r(s’) as 

1 r(s’) - r(s) (4.11) 2 

and conclude that for nearby points on the curve the cross 

(s’ - s)i(s) - -(s’ - ~>~~(s ) f i ( s )  + ... 

-0.6 

H -8 I- 1-I 
-0.7 

a 
T 
w” 

-0.6 h a w 
-10 

-12 

-0.9 
0 10 20 30 40 50 

t 
Figure 8. As in Figure 7, but with NB = 0.182 > NB*(~) .  Additional 
dashed line in the inset to part b indicates the dipolar energy of the n 
= 2 fissioned configuration. 
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Figure 9. Curve-shortening in the presence of dipolar forces, for the 
shape evolution in Figure 7. The time derivative of the perimeter is 
plotted as a function of the first two terms in eq 4.9 to illustrate 
deviations from the behavior associated with line tension alone. The 
instantaneous shape is shown at various points in the relaxation. 

product has the form 

1 
2 (r(s’) - r(s)) x i(s’) = -(SI - s)’K(s) + ... (4.12) 

The second step in the LIA is to introduce a cutoff A(s) >> 
h to the s’ integral in eq 4.9 and perfom the integral explicitly 
within the approximation 4.12. As discussed in Appendix B, 
the result is 

2~(s )h ’J (A(s ) /h )  (4.13) 

where for N h  >> 1, 
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(4.14) 1 1  J(x) - + - ln(2x) 4 2  

It follows that the curve-shortening equation in the presence of 
dipolar forces within the localized induction approximation is 

L g = f d s ~ ( s ) ( F - ~ ( s ) ) [ y - p 2 1 n (  2A(s)e1l2 )] (4.15) 

11 at 

Viewed this way, the velocity of curve-shortening may be 
thought of as a sum of contributions from segments of the 
interface. Since the natural scale of the cutoff A(s) would be 
l / IK(s ) l ,  those regions with high curvature and hence small A 
will produce a higher effective line tension in eq 4.15 and vice 
versa. The early stages of shape evolution are then associated 
with higher effective tension. 

The close correspondence between the Biot-Savart integral 
and the local curvature can be seen quite clearly in Figure 10, 
in which we have plotted as a function of arc length both the 
local curvature and the Biot-Savart force Up, obtained from 
eq A7 by direct numerical computation, for the branched shape 
shown in the inset. A similar comparison may be made with 
the two contributions to the Lagrange multiplier, which flow 
to the fixed points given in eq 4.7. 

V. Fingering Instabilities and Domain Fission 

In the previous sections we have considered fluctuations about 
and relaxation toward a circular domain. Here we discuss an 
intriguing connection between the branching instabilities and 
the energetics of domain fission, a connection made apparent 
by the considerable calculational simplifications found in the 
ultrathin limit. We suggest viewing the branching process as a 
topology transition frustrated by barriers to fission. To do this, 
we compare at fixed Bond number the energies of a single 
circular domain of radius R1 and of a set of smaller domains 
whose total volume is that of the first. The interactions between 
these smaller domains are neglected, as if they were infinitely 
far apart. 

We obtain two main results from this analysis. First, the 
critical Bond number at which fissioning becomes energetically 
favored has the same logarithmic dependence on the domain 
radius as was found in the analysis for fingering instabilities, 
eq 2.11. This suggests that the essential physics of the 
instabilities may be understood in terms of the form of the self- 
energy of dipolar domains. Our second result generalizes to 
arbitrary n the earlier work of Keller, Korb, and McConnel18 
on fissioning and the n = 2 (elliptical) instability, who concluded 
that as a function of the Bond number, the energy of the 
noninteracting fissioned pair drops below that of the original 
circle before the circle becomes linearly unstable to elliptical 
distortions. In generalizing that analysis to arbitrary n, we 
consider two distinct fissioning processes: (i) fission into n 
equivalent domains and (ii) fission into n equivalent domains 
tilting the perimeter of the original circle plus one remaining 
central domain. 

Equivalent Fission. If A1 = nR12 is the area of the single 
domain, then the radius R, of the smaller circles must satisfy 
A I  = nnRn2, so 

(5.1) 1 /2 R, = R,/n 

In the ultrathin limit, the leading term in the dipolar energy of 
a domain of radius R, beyond that strictly proportional to the 
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Figure 10. Two contributions to the normal velocity of the interface 
for a branched shape (inset). The curvature (solid line) is compared 
to the dipolar contribution (dashed line) given by eq A7. 

volume, is given by eq 2.5, 

(5.2) 

while the line tension contribution is clearly gY(R) = 2nRy. It 
follows that the difference in energy A&’(n) between the n 
noninteracting domains and the single domain is 

AG’(n) = 2nR1{ [ y  - p2 1n(%)](n1’2 he1/2 - 1) + 

Just as the linear stability analysis yielded the critical Bond 
number NB*(n) at which the n-fold mode becomes energetically 
favorable relative to the unperturbed circle, so too in this 
calculation we obtain an estimate NB’(n) for the energy crossing 
As’(n) = 0, 

N,’(n) = (5.4) ln(8RJh) - g’(n) 

with 

(5 .5)  

The overall structure of eqs 5.4 and 5.5 is in close cor- 
respondence with the result (eqs 2.1 1 and 2.12) from the exact 
linear stability analysis. Figure 2 shows that g’(n) is quite close 
to g(n) for small n (particularly so for n = 2, as observed by 
Keller er d8), but the deviations grow large for large n. 
Asymptotically for n >> 1, we see that g(n) - ln(n), whereas 
g’(n) - ln(n”*). We can trace the erroneous n1l2 dependence 
to the assumption of equivalent fission, which views instability 
as a bulk phenomenon rather than a surface phenomenon. 

Inequivalent Fission. In this case we determine the radii 
of the smaller domains by the tiling condition: n2R, = 2nR1. 
The area A‘ = ZR‘~ of the one inequivalent domain is determined 
from the requirement of area conservation, A = nA, + A’. This 
yields 

R, = nRl/n and R‘ = Rl(l  - d/n)1/2 (5.6) 

Clearly, this type of fission is logically consistent only if A’ > 
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s U 

Figure 11. Early stage of fingering instability seen in experiments on 
a 2.5 cm ferrofluid domain in an applied magnetic field of 110 G (ref 
27). Note the close approach to inequivalent fissioning. 

0, or n > 10 (so n2/n < 1). Repeating the calculation in eq 
5.3, we find the energy difference 

AL”’(n) = 2nR1 y - p In - [(l - dh~)”~ -t I[ (:eY 
(5.7) 

A second estimate of the critical Bond number NB”(n), again 
from the energy crossing condition, yields 

with 

The function g”(n) indeed has the same asymptotic behavior 
g”(n) - ln(n) as the exact g(n),  differing only by an additive 
constant, as shown in the linear-logarithmic plot of Figure 2.  
In comparing the exact result with the two approximations 
above, we see that, for each n, g(n) > g”(n) > g’(n), implying 
that the exact NB*(~)  is larger than those estimated from either 
fission analysis. When viewed as a function of increasing Bond 
number, the noninteracting fissioned state thus lies lower in 
energy than the circle before the circle becomes linearly unstable 
to fingering. Since this energetic comparison neglected the 
repulsive interactions between the fissioned domains, this 
suggests that there is a barrier to domain fission. Viewing the 
fission process as a caricature of fingering, it is plausible to 
conclude that the fingering instability is also first order. This 
conclusion is consistent with that of de Koker and M~Connell,*~ 
who found a barrier to domain fission for the n = 2 mode by 
studying a one-parameter family of shapes which interpolated 
between a circle and a figure-eight. 

Experiments on the shape transformations of magnetic fluid 
domains in Hele-Shaw flow reveal that the picture of finger 
instabilities as related to fissioning events is reasonable. Figure 
11 shows a snapshot from the early stages of this instability in 
a recent experimental a fraction of a second after the 
application of a field well beyond the critical value. We see 
the domain boundary forming a well-defined set of circular 
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extensions connected to a central region by narrow necks. Upon 
subsequent evolution those necks elongate rather than break, 
suggesting that in this purely deterministic flow the barriers to 
fission can not be overcome. 

VI. Conclusions 

This paper has been concerned with the study of simple 
models for the thermal fluctuations and relaxation dynamics of 
amphiphilic monolayers. The experimental data on small- 
amplitude fluctuations about circular shapes are fully consistent 
with the predictions of a model in which the dipole density is 
presumed uniform and competes with a bare line tension. 
Dynamical studies of the relaxation toward circular shapes are 
qualitatively consistent with the simplest local model of interface 
dissipation in the presence of these competing forces. Of course, 
the observed behavior may equally well be due to a hydrody- 
namic effect not captured within that model, and recent work 
in that direction may shed light on this issue.31 

Clearly, it is desirable that there be a more complete study 
of shape fluctuations and relaxation in the neighborhood of the 
branching instability to provide a more stringent test of the 
theoretical results. In this regard, studies on widely different 
domain sizes would be particularly useful. The nature of these 
fluctuations in stripe-like domains is also of interest in light of 
observations of “buckling instabilities” in amphiphilic mono- 
layers3* 

On a more general level, domains in amphiphilic monolayers 
may also serve as a useful model system for understanding 
thermally excited hopping of extended objects between local 
energetic minima. Such large-amplitude fluctuations have been 
seen in Langmuir monolayers33 and present an intriguing 
generalization of the “Kramers” problem (escape of a particle 
from a potential well) to a system with many degrees of 
freedom. As discussed in section V, these shape transitions 
appear to be of f i s t  order, and the relevant barriers may indeed 
be comparable to thermal energy. 
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Appendix A: Spectrum of Thermal Fluctuations 

Here we collect details of the calculation of the quantities 
Q, in eqs 2.8 and 2.9. Following Deutch and Low,l3 we 
introduce a dimensionless small parameter E to order the 
perturbation series, 

and similarly for the associated Fourier components cL1) and 
gf’. 
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First, expand the area up to quadratic order 

Area conservation to order E clearly requires that 5‘’) have zero 
mean, so @ = 0, while at second order we obtain the 
constraint 

Next, we observe that in the expansion of the line energy the 
perimeter has the form 

L = Jdp(rp*rq)’” 

Substituting eq A3 into eq A4, and setting E 

contribution to the excess energy is 
1, the line tension 

To determine the expansion of the dipole energy, we consider 
first arbitrary values of the cutoff h and observe the simplifica- 
tion obtained by expanding the functional derivative of the 
energy about a circular shape. That derivative was computed 
in earlier ~ o r k . ’ ~ . ’ ~  If we define 

then 

Linearizing eq A7, using earlier results,I4 and transforming to 
Fourier space, we obtain the coefficients Q, in eq 2.7. 

where 

sin2(nw) 

A(w> 
p L l 2 d w  -} (A9) 

A(w) = [l + p2 ~ i n ~ ( w ) ] ” ~ ,  and k is defined below eq 2.4. 

Analytical progress in the limit p >> 1 is facilitated by Thiele’s 
results34 on integrals of the type appearing in eq A9, yielding 
eq 2.9. 

Appendix B: Details of the Numerical Method 

Cutoff Contributions. In this section we describe the 
numerical method used to study shape relaxation, paying 
particular attention to the treatment of the cutoff h which enters 
the energy and Biot-Savart force integrals 2.2 and A7.35 Any 
discretization of the boundary used in the equation of motion 
(eq 4.1) has a resolution limited by the grid spacing As. If we 
wish to make contact with the exact analytical results for the 
energy and dipolar pressure for simple geometric shapes, it is 
desirable to include in the computation the contributions arising 
from integrations up to the grid size. In specializing to the 
ultrathin limit, we shall thus assume that not only is p >> 1 but 
also that the curvature K of any shape of interest satisfies 

hK << 1 (B1) 

It is then possible to introduce a cutoff A, for instance the grid 
spacing, at an intermediate scale satisfying h << A << 1 / ~ .  Then 
the scalar product in eq 2.2, 

(B2) 
1 
2 i(s).i(s’) 1 - -(s - s’)2K2 + ... 

is well-approximated by unity for 1s - s’I 5 A. For larger 
separations, @ conforms to its asymptotic behavior @.(E) 1/26 
and we may write 

- 
IS -S ’~  >A 

The double integral has the standard form of the self-induction 
of a current-carrying wire, and the cutoff contribution is 

Z(Nh) = LA& aqslh) 

1 2  1 1 
2 2  2 

= -x - -x( 1 + x ~ ) ” ~  + x sinh-’( l lx )  + - sinh-’(x) 
034) 

The cutoff procedure described in section IV (eqs 4.11 and 
4.12) may be used on the Biot-Savart integral to obtain the 
decomposition 

where, analogously to eq B4, the cutoff contribution is 

J(x)  = j p ( ( 1  + x 2 y 2  - x }  

1 1  
= -x( 1 + x2)’I2 - zx2 + 5 ln[x + (1 + x2)’I2] 1 

2 (B6) 

In numerical computations we are particularly interested in 
the case N h  >> 1, where the approximations 

3 1  1 1  
4 2  4 2  Z(x) = - + - ln(2.x) and J(x )  - + - ln(2x) (B7) 

hold. These approximations are highly accurate even for N h  
= 1. 
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Figure 12. Tangent angle (solid line) associated with a branched 
domain, and uniform winding solution for a circle (dashed line). 

Tangent Angle Dynamics. To study the boundary evolution 
we have employed some basic results from the differential 
geometry of curve motion discussed in earlier work,14 with some 
important modifications. A particularly convenient method to 
obtain the boundary evolution is to work with the tangent angle 
6(s), related to the curvature by K ( S )  = a6/as. If the equation 
of motion for the boundary is in the form of eq 4.3, 6 evolves 
as30 

As described below, it is convenient to use a spectral method 
to solve the resulting partial differential equation for 6. 
However, the function 8 itself is not appropriate for this method, 
for it acquires a net angle 2 n  for each traversal of the boundary 
and is therefore not periodic in s. Figure 12 shows the function 
8 for the branched initial condition of Figure 7a. The dashed 
line represents the "winding" 6 = 2mIL of 6 that describes a 
closed circular domain. It is natural then to define the 
2nperiodic function q with zero mean, 

8(a,t) = 2 n a  + q(a , t )  039) 

adopting the relative arc length gauge a = s/L. From eq B8 
we see that I) evolves as 

The choice of W consistent with the relative arc length gauge 
has been given p r e v i o ~ s l y , ' ~ ~ ~ ~  

W(a) = L ( a h l d a '  KU - h a d a '  KU) (B 11) 

Pseudospectral Method. Next we observe that the contribu- 
tion to eq B10 arising from the curvature of the interface 
contains the highest derivative with respect to a in the 
evolution equation, and appears linearly in the form 

* = &r!! + nonlinear terms + nonlocal terms (B 12) 
at L~ aa2 

This property allows us to employ an algorithm, motivated by 
recent work on vortex methods in  hydrodynamic^,^^ that 
overcomes many of the "stiffness" problems associated with 
diffusive PDEs and allows for efficient integration of the 

equation of motion. Consider first the general partial differential 
equation for a scalar quantity q(x,t), a function of a single spatial 
dimension and time: 

where p i s  a linear operator and N is nonlinear. Were it the 
case that N = 0, then the dynamics are exactly solvable in 
Fourier space. With ij(k,t) being the spatial Fourier transform 
of q(x,t), the equation of motion in momentum space for N = 
0 is 

a$(k,t) 
-- - w(k) $ ( I C , ~ ) ,  w(k) = y ( i k )  (B 14) 

at 

Then, for the purely linear case, if we know ij(k,t), we obtain 
its value at a later time t + At exactly as 

$(k,t+At) = ew(k)A'$(k,t) (I313 

The exponentiation of the growth rate w(k) in eq B15 plays a 
useful role in guaranteeing stability for a diffusive linear operator 
(w(k) = -yk2) .  The usual stability  consideration^^^ would 
require a time step At such that for large values of momentum 
(near the Brillouin zone edge kmax = nla, with a being the lattice 
spacing in real space) the quantity k2At be less than unity. This 
requires an extremely small time step, rendering the calculation 
prohibitively slow. Here, even if kiaxAt > 1, the calculation is 
stable due to the incorporation of the exact dynamics of the 
linear operator, namely, the exponential damping at high 
momentum. 

To incorporate the exact information of eq B15 into dynamics 
with a nonlinearity, we assume that the highest order spatial 
derivative appears in the linear operator (as is the case in the I) 
dynamics) and treat the nonlinear terms pseudospectrally, 
defining N(k,t) = m N ( q ( x , t ) ) ] ,  with q(x,t) being obtained from 
ij(k,t) by inverse fast Fourier transformation. The equation of 
motion (eq B13) then becomes 

aa(kJ> 
at 

-- w(k) @(k,t) = &,t) 

Now define 

and multiply eq B16 by the exponential factor, yielding 

This equation may be solved by any of a number of methods. 
In the simplest Euler method, we have 

Q(k,t+At) - Q(k,t) 
= e-W(k)'~(Q(k,t)eW(k'r) (B 19) At 

which yields 

$(k,t+At) = ew'k'Ar[ij(k,t) + Atfi(k,t)] (B20) 

The exponential factor thus .provides damping of the high- 
frequency modes, lending stability to the method. 

The time evolution of the function q corresponding to the 
boundary evolution in Figure 7a is shown in Figure 13. We 
see in the early stages the relaxation of short-wavelength modes, 
leaving only the n = 2 mode to decay in the late stages, 
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Figure 13. Evolution of the tangent angle function corresponding 
to the shape evolution in Figure 7. 

corresponding to the relaxation of an elliptical shape to a circle. 
The considerable simplification in the shape evolution obtained 
by employing the y j  representation is readily apparent in 
comparing the simple mode relaxation in Figure 13 with the 
rather complex shape evolution to which it corresponds. 
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