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Cooled oil emulsion droplets in aqueous surfactant solution have been observed to flatten into a remarkable
host of polygonal shapes with straight edges and sharp corners, but different driving mechanisms—(i) a partial
phase transition of the liquid bulk oil into a plastic rotator phase near the droplet interface and (ii) buckling of the
interfacially frozen surfactant monolayer enabled by a drastic lowering of surface tension—have been proposed.
Here, combining experiment and theory, we analyze the initial stages of the evolution of these “shape-shifting”
droplets, during which a polyhedral droplet flattens into a polygonal platelet under cooling and gravity. Using
reflected-light microscopy, we reveal how icosahedral droplets evolve through an intermediate octahedral stage
to flatten into hexagonal platelets. This behavior is reproduced by a theoretical model of the phase transition
mechanism, but the buckling mechanism can only reproduce the flattening if the deformations are driven by
buoyancy. This requires surface tension to decrease by several orders of magnitude during cooling and yields
bending modulus estimates orders of magnitude below experimental values. The analysis thus shows that the
phase transition mechanism underlies the observed “shape-shifting” phenomena.

DOLI: 10.1103/PhysRevResearch.1.023017

I. INTRODUCTION

The culmination of the geometric preoccupations of An-
cient Greece was doubtless the classification of the five pla-
tonic solids [1]. It is topology, however, that dictates that one
of their number, the icosahedron, should abound in nature,
among the shapes of virus capsids and other biological struc-
tures [2]: Euler’s formula implies the formation of at least 12
topological defects in a hexagonal lattice on the surface of
a spherical vesicle. By virtue of their elastic properties [3],
these defects repel each other [4] to arrange at the vertices of
a platonic icosahedron.

These same topological considerations play their part in the
phenomenon of “shape-shifting” droplets reported by Denkov
et al. [5]: Micron-sized oil droplets in aqueous surfactant
solution flatten, upon slow cooling, into a plethora of polyg-
onal shapes with straight edges and sharp vertices [Fig. 1(a)].
Although first revealed briefly over a decade ago [6,7], these
phenomena generated a veritable flurry of largely experimen-
tal papers [5,8-21] only more recently. These studies revealed
that the shape-shifting phenomena occur for a humongous
range of surfactants and pure organic phases or mixtures
thereof [9,11], and showed how to harness these phenom-
ena for efficient, controlled self-emulsification [10,12]. More
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recent studies demonstrated their manufacturing potential by
synthesizing small polymeric particles [13,19]; scaled-up ver-
sions of these bottom-up approaches may enable massively
parallel control over internally determined particle shape and
particle uniformity that are currently only available in top-
down approaches such as lithography techniques [13,19].
Understanding the mechanisms driving these striking yet
simple phenomena is therefore not only a beautiful research
problem at the interface of chemistry, physics, and applied
mathematics: it is a compulsory step for further studies of
these manufacturing applications, without which their devel-
opment is limited to trial-and-error approaches. Yet, in spite
of the large number of experimental studies, these mech-
anisms remain debated. There is agreement that the initial
deformations of the droplets are caused by freezing of the
surfactant adsorption layer [5,8,16—18] and the ensuing topo-
logical frustration of the hexagonal packing of the surfactant
molecules therein, with the formation of 12 defects arranged
at the vertices of a regular icosahedron [16—18]. Two driving
mechanisms for the subsequent deformations have, however,
been proposed: (i) a partial phase transition of the bulk oil
phase [5,8,9,12], and (ii) elastic buckling of the frozen sur-
factant layer [16-18]. According to the first mechanism, as
the droplets are cooled and the surfactant layer freezes, the
formation of a plastic rotator phase [22,23] becomes energet-
ically favorable next to the droplet surface [Fig. 1(b)]. In this
rotator phase, the oil molecules have long-range translational
order. The rotator phase then arranges into a scaffold of plastic
rods at the surface of the droplet supporting the faceted droplet
structure [Fig. 1(c)]. We have shown in earlier theoretical
work [15] that the rotator-phase mechanism can account for
the sequence of polygonal shapes seen in experiments, the
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FIG. 1. Shape-shifting droplets. (a) Main stages of the droplet
shape evolution, following Refs. [5,9]: The initially spherical
droplets become icosahedral due to the interplay of topology and
elasticity. Subsequently, the droplets flatten into hexagonal platelets
which then evolve into triangles or quadrilaterals. (b) Energy dia-
gram: In a range of temperatures close to the melting temperature Ty,,,
the formation of a rotator phase is energetically favored. (¢) Mech-
anisms for the shape shifting of droplets, illustrated in the cross
section of a flattened droplet: According to mechanism (i) (left),
deformations are driven by a partial phase transition of the bulk liquid
into a plastic rotator phase (RP) near the drop surface. According
to mechanism (ii) (right), deformations are driven by buckling of
the frozen surfactant adsorption layer (SL). See text for a further
description of the mechanisms. The figure panels have been redrawn
and modified from Ref. [15].

statistics of shape outcomes, and the observation that some
droplets puncture before freezing [5]. According to the second
mechanism, cooling the droplets reduces their surface tension
to ultralow values, enabling elastic deformations to dominate
over surface energy and hence causing the buckled droplet
surface to deform [Fig. 1(c)]. The two mechanisms thus differ
only in the respective origins of the contributions of the edges
of the polyhedral droplets to their energy: the formation of a
rotator phase at the edges by a phase transition of the bulk oil
and surface elasticity of the buckled edges of the polyhedral
droplet.

The early three-dimensional polyhedral stages of the
droplet evolution, from an initial icosahedron down to a flat-
tened hexagon [Fig. 1(a)], still need to be explored, however.
They are the subject of this paper: Here, we analyze the
flattening of an icosahedral droplet into a hexagonal platelet in
detail, comparing experimental observations to predictions of
mathematical models describing either mechanism to decide
which mechanism underlies the observed phenomena.

In Sec. II of this paper, we thus reveal, using reflected-
light microscopy, how an icosahedral droplet flattens via an
intermediate octahedral stage. We extend the model of the
rotator-phase mechanism of Ref. [15] to three-dimensional
polyhedral droplets, and we introduce a model of the elastic
buckling mechanism in Sec. III. Additional physics arises in
the extended rotator-phase model through a microscopic law,
absent from the earlier analysis in Ref. [15], encoding the
local effect of the dihedral angles of the polyhedral droplets
on the phase transition. Through a linear stability analysis and
numerical calculations in Sec. IV, we show that the rotator-
phase mechanism can reproduce the observed flattening

dynamics if and only if such a microscopic law is included
in the model. By contrast, the results in Sec. IV show that the
elastic buckling mechanism can only reproduce the observed
deformations if the process is driven by the interplay of elas-
ticity and buoyancy. This requires surface tension to decrease
by at least four orders of magnitude, yet the resulting estimate
of the bending modulus of the droplets obtained in Sec. IV
is three orders of magnitude below its experimental values.
The analysis therefore suggests that it is the formation of a
rotator phase rather than elastic buckling at ultralow surface
tension that drives the shape-shifting processes observed so
far [5,8,9,11,18,19].

II. EXPERIMENTAL FLATTENING DYNAMICS

The flattening of the shape-shifting droplets under cooling
and the stages of the droplet evolution intermediate between
the initial spherical stage and the later flattened stages were
observed using reflected-light microscopy to determine the
three-dimensional shapes of the droplets at different stages of
their evolution (Fig. 2). The experimental setup is described
in Appendix A.

The droplets are initially spherical. Two well-defined types
of images can be observed, depending on the position of the
focal plane of the microscope: First, if the microscopy focus
is on the top of the drop, just below the level of the upper
wall of the glass capillary containing the emulsion, circular
diffraction fringes (Newton rings) are seen [Fig. 2(a)]. These
fringes emerge from the interference of the light reflected
from the two surfaces of the aqueous film, formed between the
wall of the glass capillary and the surface of the spherical oil
droplet [Fig. 2(a)]. Second, if the microscope is focused on the
equatorial plane of the droplet instead, a bright circle around
the particle periphery is observed, due to light refraction and
reflection at the drop surface [Fig. 3(a)].

Deformation of the droplets begins with the appearance of
12 vertices on the drop surface [Figs. 2(b) and 3(b)]. With
the focal plane at the droplet equator, all 12 vertices can be
observed simultaneously as three black dots (representing the
three upper vertices next to the glass capillary), three white
dots (representing the three vertices at the bottom of the
droplet), and six bright spots at the drop periphery [Fig. 3(b)].
The latter correspond to three vertices just above and three
vertices just below the equatorial plane of the droplet, which
explains why they have a slightly different appearance in the
microscopy images in Fig. 3(b). As a result, the spherical
droplet distorts and it soon acquires an icosahedral shape;
we note that this ideal shape transformation is, however, only
observed in some of the systems under appropriate conditions
such as slow cooling [5,9]. At the same time, the shape of the
aqueous film between the glass capillary and the oil droplet
becomes triangular, with rounded corners [Fig. 2(b)]. Upon
further cooling, the drop continues to deform so that this
aqueous film appears as an equilateral triangular shape with
sharp corners [Fig. 2(c)].

As cooling continues, this triangular film increases its
area significantly. At the same time, the cross section of the
droplet equator also increases in size. Since the volume of the
droplet is conserved, the droplet flattens in the perpendicular
direction. Although the droplet resembles a hexagonal prism
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FIG. 2. Droplet shape evolution observed in reflected light. Top row: Microscopy images obtained upon cooling of a hexadecane emulsion
droplet immersed in 1.5 wt.% Tween 60 surfactant solution; scale bars: 10 um. Bottom row: Sketch of side view of droplet deformations.
Dotted circles and ellipses show the part of the drop observed in reflected-light experiments. (a) Before the drops start to deform, the aqueous
film formed between the top of the drop and the wall of the glass capillary appears as circular Newton rings in reflected light. (b) The emulsion
film deforms into a triangular shape when the drop begins to deform. Black arrows show three of the 12 vertices formed on the drop surface at
this stage. (c) Upon further cooling, the triangular film expands until its corners engulf the three vertices at the periphery of the droplet that are
situated above the equatorial plane of the icosahedral droplet. The three vertices forming the bottom surface of the drop appear as bright spots.
(d) As the flattening process continues, pairs of vertices of the icosahedron come closer to each other: The droplet becomes octahedral. (e) As
the droplet flattening completes, six pairs of vertices merge and the drop becomes a hexagonal platelet.

in transmitted light at this stage, the images in reflected light
reveal that the three-dimensional drop shape is better repre-
sented as a distorted flattened icosahedron [Fig. 2(d)]. The
flattening of the icosahedral droplet drives pairs of vertices
closer to each other, so that the droplet assumes the shape of a
flattened octahedron. Eventually, pairs of vertices can merge
to form true hexagonal platelets [Fig. 2(e)], but the details of
this final step depend on the system (Appendix A).

To understand these complex droplet shape deformations,
we derive theoretical models corresponding to the two pro-
posed mechanisms [5,8,9,16—18] in the next section.

FIG. 3. Initial stages of the droplet shape deformations observed
in reflected light with a focus on the equatorial plane of the droplet.
(a) Before the droplet starts to deform, the droplet equator appears
as a homogeneous bright circle. (b) As the drop begins to deform, 12
vertices are observed: Dark dots and bright spots (marked with black
and white arrows) represent, respectively, the vertices at the top and
bottom surfaces of the droplet. The remaining six vertices are located
at the drop periphery, just above and below the equatorial plane of the
droplet. Scale bars: 10 um.

III. MODEL

On purely combinatorial grounds, the appearance of octa-
hedral droplets as the vertices of the initial icosahedron merge
during the flattening process is not surprising: Indeed, the
octahedron is one of only two polyhedra with six vertices that
can be obtained by edge contraction from an icosahedron,
and the only one that does not require additional symmetry
breaking (Appendix B). Static, entropic considerations of this
ilk cannot, however, capture the dynamics of the problem:
As in our previous theoretical description of the dynamics of
flattened polygonal droplets [15], to describe the deformations
of a polyhedron, we must specify (i) a (nondimensional)
energy &, and (ii) a kinetic law that relates energy gradients
to deformations of the polyhedron.

In this paper, we model the polyhedral droplets as convex
polyhedra of fixed volume V, with flat faces. Throughout the
paper, we shall use & and . to denote, respectively, the set of
edges and faces of such a polyhedral droplet.

A. Droplet energy

In this section, we show that the two mechanisms that
have been proposed to explain the shape-shifting phenom-
ena [5,8,9,16-18] can be described by nondimensional ener-
gies of the form

E=Y IfI£CY_llel*F(s(e)), e))

feF ecé

wherein || f]| is the nondimensionalized area of face f, |||
is the nondimensionalized length of edge e, and the dimen-
sionless function F depends only on the dihedral angle 5(e)
at edge e. The sign of the second term, the parameter C, the
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value of the exponent a, and the functional form of F depend
on the details of the mechanism, as discussed below.

Throughout the paper, we shall use subscripts 1 to refer to
the rotator-phase mechanism, and subscripts 2 to refer to the
elastic buckling mechanism.

1. Rotator-phase mechanism

For the rotator-phase mechanism, as in our previous
work [15], conservation of droplet volume implies V =V, 4V,
where V;, V| are the respective volumes of the rotator and
liquid phases [24]. The energy E; of the droplet, with con-
tributions from surface tension and from the rotator phase, is
therefore

Ei=yS+uVi+uVi=yS—(u—ulVe + 1V, ()

wherein y is the surface tension, S is the surface area, and
WUr, W are the respective chemical potentials (per unit volume)
of the rotator and liquid phases.

The rotator phase is assumed to form preferentially near the
edges of the polyhedron, and we denote by V;(e) the volume
of rotator phase that forms near edge e. We approximate
Vi(e) = A(e)l(e), where £(e) denotes the length of edge e, and
A(e) is the cross-sectional area of the rotator phase (Fig. 4).
This is where additional physics comes in compared to the
two-dimensional, polygonal case: For a polyhedral droplet,
A(e) depends in general on the dihedral angle §(e) at edge
e (Fig. 4), and we write A(e) = A F(§(e)), where A, is a char-
acteristic cross-sectional area of the rotator phase and where
F is a dimensionless factor that we discuss further below.

We nondimensionalize Eq. (2) by scaling lengths with
the radius R ~ 10 um of the shape-shifting droplet [5]. On
discarding the constant contribution u,V to Eq. (2), the nondi-
mensional energy & = E;/yR? is thus

E=Y Ifl-a) llelFGe). 3)

feF ec&

which is of the form announced in Eq. (1). The model involves
a single dimensionless number, the tension

_AAp
=R

where A = u; — > 0 is the difference of the chemical
potentials of the liquid and rotator phases, as in our previous
work [15]. The parameter o thus compares the tendency

to form a rotator phase to the stabilizing effect of surface
tension. Since y and Au depend on temperature, so does «;

25 area A(e)
// /f (e)
| el

, “

o

) ™

FIG. 4. Definition of geometric quantities used in the derivation
of the rotator-phase model: Cross section of an edge e of a polyhedral
droplet (inset). The edge has length €(e) (inset) and dihedral angle
8(e). The cross-sectional area of the rotator phase (RP) that has
formed near ¢ is A(e).

Foml-63
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FIG. 5. Microscopic law. Plot of F(§) against dihedral angle 8,
showing different functional forms satisfying conditions (5). Only
the local behavior of F near § = §* ~ 138.2°, the dihedral angle
of a platonic icosahedron, affects the linear stability analysis in
Sec. IV A, but the global behavior enters the numerical calculations
in Sec. IV B, with droplet flattening only obtained for sufficiently
concave choices of F'.

previous estimates [15] suggest that O(0.1) < o < 0O(10) in
experiments.

The function F encodes the dependence of the formation
of the rotator phase on the dihedral angle §(e) at edge e. The
dihedral angles and hence the values of F are constant during
the polygonal stages of the shape evolution, which is why this
function did not arise in our previous work [15]. The detailed
functional form of F is set by the microscopic properties of
the rotator phase [9,23], but we expect F to be a decreasing
function of §(e), with

F(0) =2 F(8(e)) = F(m) =0, &)

as shown in Fig. 5. Hence no rotator phase is formed when the
two faces adjacent to edge e are parallel to each other, while
the tendency to form the rotator phase is maximal when the
two faces have folded on top of each other, in agreement with
the discussion in Refs. [9,23].

Deriving the functional form of F is a wholly separate
problem. This issue is rather akin, conceptually, to the analysis
of a Landau theory of some system: There, one does not
need to know how the coefficients of the truncated expansion
defining the Landau theory relate to microscopic properties of
the system to be able to study the phase transitions that arise in
this system. This analogy will become perhaps clearest in the
linear stability analysis of a platonic icosahedron in Sec. IV A,
where only the local behavior of F near its dihedral angle
8* &~ 138.2° matters (Fig. 5). More generally, however, the
numerical calculations in Sec. IV B will enable us to constrain
the functional form of F more globally, beyond the conditions
expressed by Eq. (5), even without further knowledge about
the microscopic details that set F'.

2. Elastic buckling mechanism

For the elastic buckling mechanism, the energy E, has
contributions from surface tension and from surface elasticity,

E,=yS+U, (6)

where, again, y is the surface tension and S is the surface
area. Here, we are interested in the regime where sharp elastic
ridges form along the edges of the polyhedron. In this regime,
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corresponding to large values of the dimensionless Foppl-von
Kéarmén number [25], the elastic energy of the ridges is much
larger than the contributions to U from defect elasticity [25].
These elastic ridges have been analyzed in Ref. [26], which
thus yields the dimensional scaling U ~ Eh8/3R'/3 [27], in
which E is the elastic modulus of the frozen surfactant ad-
sorption layer, A is its thickness, and R ~ 10 pum is again the
typical radius of a shape-shifting droplet. Scaling lengths with
R, the nondimensional energy & = E,/yR? of the system is
thus

&= IfIl+BY el =81, (D

feZF ee&

which is, again, of the form announced in Eq. (1). The
dependence of the second, elastic term in Eq. (7) on the
nondimensionalized length ||e|| of edge e and its dihedral
angle §(e) follows from the scalings in Ref. [26]. Again, the
energy depends on a single dimensionless coefficient,

ERSS
]/RS/3 ’

which thus expresses the relative magnitude of elasticity and
surface tension; 8 depends on temperature since y does.

In the above calculation, we have neglected the energetic
contributions from the defects, and, in particular, from defect-
defect interactions. As remarked above, the results of Ref. [25]
show that this approximation is justified at least initially, but
it must break down when defect pairs become close to each
other at later stages of the flattening. For this reason, this
model cannot be used to analyze the merging of vertices,
i.e., the formation of a truly polygonal droplet. Similarly,
the assumption inherent in the rotator-phase model, that the
energetic contributions from the rotator phase swamp those
associated with defect elasticity, must break down at these late
stages.

Upon including an additional nondimensionalized buoy-
ancy term B3, this energy becomes instead

£ =& +BobB, ©)

which introduces an additional dimensionless number: The
Bond number Bo = Ap gR?>/y measures the relative mag-
nitude of buoyancy and surface tension effects [29]. Here,
Ap =~ 250 kg/m? is the density difference between the water
and oil phases [30], and g &~ 9.81 m/s? is the acceleration due
to gravity.

There is no consensus on the value of y at the temperature
Ty at which the deformations are first observed [8,9,18], and
the proponents of the elastic buckling mechanism indeed
argue that the observed deformations are driven by ultralow
or even transiently negative values of y [16-18]. Never-
theless, using the estimate y &~ 5 mN/m above Ty that the
different experimental analyses [8,9,18] agree on, we estimate
Bo ~ 1074, and conclude that y must decrease by at least four
orders of magnitude during cooling for buoyancy effects to
play a role.

Comparing Egs. (3) and (7), we see that, as announced
earlier, the two mechanisms only differ in the functional
form of the contributions to the energy of the edges of the
polyhedron. To understand the effect of this difference, it is
useful to consider the platelet stages of the droplet evolution,

B~ ®)

which, for the rotator-phase mechanism, we have previously
described by modeling the droplets as polygons [15]. For
the rotator-phase mechanism, disproportionation of the side
lengths of a polygonal droplet of fixed area is energetically
favorable because of geometry: Among all polygons of a fixed
number of vertices and fixed area, the regular one has the least
perimeter [31]. By contrast, in the elastic buckling mecha-
nism, disproportionation of the side lengths of a polygonal
droplet follows from a convexity argument: Disproportion-
ation is energetically favorable because the second term in
Eq. (7) is a concave function of edge length [32].

B. Kinetic law

We relate energy gradients to deformations of the poly-
hedron by imposing a kinetic law. Standard surface-driven
kinetic laws [33] relate energy variations to the (scalar) normal
velocity of the surface (i.e., of the faces of the polyhedron). In
our case, however, the motion is driven by the edges of the
polyhedron rather than by its faces: In the first mechanism,
rotator phase forms at the edges only, while in the second
mechanism, the elastic energy is concentrated in the ridges
at the edges of the polyhedron. We therefore impose a (nondi-
mensional) edge-driven kinetic law,

Z/fn Sradl = —8€E, (10

ee&

wherein ry, is the (vector) normal displacement of a point r
on edge e of the polyhedron and dots denote differentiation
with respect to time. This is the three-dimensional analog of
the two-dimensional kinetic law that we have used previously
to describe the polygonal stages of the droplet evolution [15],
and it expresses the requirement that the normal velocity of
the edges (which is in this case, in three dimensions, a vec-
tor) be proportional to the energy gradient. Nevertheless, the
equations corresponding to the more standard surface-driven
kinetic law [33] can be derived by analogous reasoning, and
we have checked that choosing this surface-driven kinetic law
yields results in qualitative agreement with those presented
below for the edge-driven kinetic law (10).

Consider the edge e joining vertices a and b, and let
t denote the unit tangent parallel to it (Fig. 6). As the
polyhedron deforms from its initial shape, described by
some variables x, to a new shape described by x + dx,
the vertices a,b are mapped to a’,b’, respectively. A
Taylor expansion yields a’ =a+ A -8x + O(|6x|*) and
b =b+B-sx+ 0(|6x*), wherein A=V.a, B=V,b
are the respective gradients of a,b with respect to x.
Hence, assuming that the edges stretch uniformly, a point
r=a+ (b—a)s on e, where 0 <s <1, is mapped to
r=r+R-8x+0(éx>), with R=A+B-A)s, as
shown in Fig. 6. The O(|6x|?) corrections can be neglected in
what follows.

Let P = | —¢¢, where | the identity, denote projection onto
the plane normal to ¢ [34]. Then ér, =P -86r=P-R-éx, as
shown in Fig. 6, and so 7, = P - R - x. By direct computation
or Ref. [34], P2 = P, and so

1
/i’n . 81'“ dl = ||e||P,-j8xkfc4/ RikRjg dS, (11)
0

e
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FIG. 6. Derivation of the kinetic law: Definition of the normal
displacement. As the polyhedron deforms, the end points a,b of
an edge e with unit tangent £ move to a’,b’. A point r on e is
mapped to ¥’ = r 4 §r; its normal displacement ér,, is the projection,
represented by the matrix P, of §r onto the plane normal to £.

where we have changed variables using d¢ = |le|lds. On
letting S = A+ B,

1
1
/ RiyRjpds = E(SiijZ +AiAje + BiBj). (12)
0

The factor 1/6 in this equation can and will be scaled out by
rescaling time (and hence velocities). Thence

€ .
— o 0% = ) lellPy(SuSje + AwAje + BiBjo),
Fk ee&
(13)
which leads to the overdamped evolution equation
x=-M1.V.E, (14)

wherein M is the mobility matrix, defined by

M=> Jel(S8" -P-S+AT-P.-A+B" -P.B). (15
ee&

IV. RESULTS

A. Linear stability analysis

A necessary (albeit not sufficient) condition for droplet
flattening is that the initial regular icosahedron be unsta-
ble to small perturbations. For the linear stability analysis,
we describe the icosahedron by means of the coordinates

x = (x1,...,x12) of its vertices and introduce the Lagrangian
L=E—-AV, (16)
wherein
V=Y |- (e x xn)l (17)
(k,e,m)eF

is the volume of the icosahedron, and A is the Lagrange mul-
tiplier imposing volume conservation. Let x* denote the coor-
dinates of the platonic icosahedron; imposing V L(x*, A*) = 0
yields the corresponding value A* of the Lagrange multiplier.
The Hessian for this stability problemis H =P - (VV L) - P,
where the matrix P = | — vv describes the projection onto
the kernel of v = VV(x*, A*) [34,35]. We note in passing
that, since the mobility matrix is invertible and therefore an
isomorphism, it does not affect the stability analysis.

1. Rotator-phase mechanism

For each face (k, £, m) € .7, we define
Rpom = (X X X0 +Xp X X + Xy X Xi) (18)

to be its normal, with the sign selecting the outward normal.
We note that ngy, is not normalized to have unit length.
Equation (3) thus becomes

> -
) kim

(k,t,mye F

—a )
(k,t,m) e F
(k,¢,n) e F

m#n

&=

”xk _xl”F(akémn)s (19)

wherein 8y, is defined by

Riem - Rien

COS Spomn = (20)

172kt || 172k ||
On substituting Eq. (19) into Eq. (16) and differentiating,
we obtain an expression for the Hessian H} evaluated at the
fixed point corresponding to the platonic icosahedron; this
expression takes the form

H = 8" — a[F(6")A" + F'(8")B" + F'(6")C*], Q1)

where the matrices A*, B*, C*, S* are purely geometric, and
where 8" &~ 138.2° is the dihedral angle of the platonic
icosahedron. We set F'(§*) = 1 without loss of generality; in
particular, and as noted earlier, only the local behavior of F
near § = &* thus enters the linear stability analysis (Fig. 5).
We sketch the calculations leading to expressions for these
matrices in Appendix C.

Evaluating these expressions numerically [36] using MAT-
LAB (The MathWorks, Inc.), we find in particular that S* is
positive semidefinite, so the platonic icosahedron is stable
if @ =0, as expected. The matrices A*, B* are indefinite,
but C* is positive semidefinite. It follows that, for & > 0, a
regular icosahedron is unstable provided that F”(§*) is large
enough. More generally, the stability boundary for « > 0 can
be computed numerically by a bisection search; results are
shown in Fig. 7. Kinks in the curves defining the stability
boundary indicate different eigenvalues crossing zero at the
stability boundary. We conclude that a regular icosahedron is
unstable to small perturbations for appropriate choices of the
microscopic law F'. For a fixed choice of microscopic law,
only droplets that are small enough (i.e., have large enough
values of «) deform; larger droplets are stable (Fig. 7). The
rotator-phase mechanism can thus explain the deformations
away from the initial platonic icosahedron.

The eigenmodes of a hexagonal polygonal droplet, re-
vealed by a similar, yet rather more straightforward linear
stability analysis [15], explain the alternative outcomes of
quadrilaterals and triangles at later stages of the droplet evo-
lution [15], but the present, more intricate analysis is required
to explain how the droplets can flatten and thus reach the
hexagonal state in the first place.

The above analysis can be extended to any platonic solid.
In the particular case of a regular octahedron, the geometry
of the eigenmodes is much simpler, and we therefore discuss
these eigenmodes briefly in Appendix D.
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FIG. 7. Stability of the platonic icosahedron for the rotator-phase
mechanism. The stability boundary is shown in (F'(8*), F"(8*))
space for different values of @ > 0. Only the region with F'(§*) < 0
is expected to be physically relevant.

2. Elastic buckling mechanism

For the elastic buckling mechanism (with no buoyancy
term), the Hessian Hj at the platonic icosahedron is obtained
by a similar calculation, starting from Eq. (7). We find

H; = S* + gD*, (22)

where the matrices D*, S* are purely geometric. Upon numer-
ical evaluation [36], both are found to be positive semidefinite,
and hence H3 is positive semidefinite, too, for any g > 0,
since the sum of positive semidefinite matrices is positive
semidefinite. Accordingly, the regular icosahedron is stable
under the elastic buckling mechanism in the absence of buoy-
ancy. The regular icosahedron is not a stationary point of &5,
and so will deform if buoyancy is included.

The key conclusion from the stability analysis is therefore
that the elastic buckling mechanism can explain the deforma-
tions of the initial icosahedron if and only if buoyancy effects
become important, i.e., if and only if surface tension drops
to ultralow values during cooling. By contrast, the rotator-
phase mechanism does not require such a reduction in surface
tension to explain these deformations.

B. Droplet flattening

The linear stability analysis has revealed necessary con-
ditions for the initial regular icosahedron to deform under
either mechanism. Larger deformations, and, in particular,
flattening, of the polyhedral droplets must however be studied
numerically.

The experimental data suggest that the icosahedron flat-
tens symmetrically (Fig. 2), and hence that the four parallel
equilateral triangles that define a platonic icosahedron (Fig. 8)
remain equilateral during the flattening, although their relative
positions with respect to the flattening axis changes. (It is
only after the icosahedron has flattened that this symmetry
is broken as the polygonal droplets deform. In other words,
the component of the initial perturbations of the icosahedron
corresponding to these asymmetric deformations is so small
that it remains small during the entire flattening process.)

— A—z-H

FIG. 8. Simplified model of a symmetric icosahedron. Four par-
allel equilateral triangles that are symmetric with respect to the
midplane of the polyhedron define a symmetric icosahedron in terms
of their circumradii », R and vertical positions +h, +H. The inset
shows definitions of variables r, R, h, H, and orientations of the four
equilateral triangles.

This suggests using a simplified representation of a symmetric
icosahedron, defined by four parallel equilateral triangles
(Fig. 8), for the numerical calculations. Such an icosahedron is
defined in terms of four variables (Fig. 8, inset); one of these
can be eliminated using the volume conservation constraint
(Appendix E).

We solve Eq. (14) governing the deformations of the icosa-
hedron numerically using the stiff solver ode15s of MATLAB
(The MathWorks, Inc.).

1. Rotator-phase mechanism

We begin by considering the rotator-phase mechanism and
the limit o« = oo where the tendency to form rotator phase
swamps the stabilizing effect of surface tension. Our first
observation is that a (slightly perturbed platonic) symmetric
icosahedron may indeed flatten into an octahedron [Fig. 9(a)]
under the rotator-phase mechanism: As the icosahedron flat-
tens, the top and bottom equilateral triangles expand faster
than the middle ones, leading to six pairs of vertices merging
to yield a (nonplatonic) octahedron, in qualitative agreement
with the shape evolution seen in experiments. This evolution
depends on the choice of the microscopic law F(§) and the
initial perturbation. As far as the choice of F(§) is concerned,
flattening occurs, for example, for F (§) o« > — 83 [Fig. 9(a)],
but does not occur for the simplest (linear) law in agreement
with conditions (5), F(§) o # — § [Fig. 9(b)]. Flattening is
not observed either if the dependence on the dihedral angle is
not included. We have checked that the behavior in Fig. 9(a)
is representative of the behavior observed for sufficiently
concave choices of the microscopic law (Fig. 5). In this way,
the analysis constrains the global functional form of F(§)
beyond conditions (5). As far as the initial perturbations are
concerned, flattening similarly occurs for some, but not all,
perturbations of the regular icosahedron [Figs. 9(a) and 9(c)].

To explore the latter effect and the role of surface tension,
we consider relative perturbations, of fixed magnitude ¢, of
the parameters defining the symmetric icosahedron (Fig. 8,
inset). Taking the initial perturbations ér, R, §H of the three
parameters 7, R, H as the basis for these perturbations without
loss of generality, we map the shape outcomes for different
initial perturbations onto the surface of a sphere [Fig. 9(d)].
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FIG. 9. Flattening of a symmetric icosahedron under the rotator-phase mechanism. (a) Snapshots of a slightly perturbed platonic
icosahedron flattening into a (nonplatonic) octahedron, for @ = oo, and for the microscopic law F(§) o 3 — §3. (b) Role of the microscopic

law: For a different microscopic law, here F (§) x & —

8, but the same initial perturbation, the icosahedron does not flatten into an octahedron.

(c) Role of the initial perturbation: For the same microscopic law, but a different initial perturbation, the icosahedron does not flatten either.
(d) Three of the four parameters defining the symmetric icosahedron (Fig. 8, inset) can be chosen as a basis for perturbations away from the
regular icosahedron. Shape outcomes for such perturbations of fixed magnitude ¢ = 0.02 are then mapped onto the surface of a sphere. The
boundary between those initial relative perturbations leading to flattening into an octahedron and those that do not lead to flattening are shown

for F(8) o w* — &3 and different values of o.

A boundary divides those initial perturbations that lead to
flattening to those that do not, and we observe that this bound-
ary does not strongly depend on « [Fig. 9(d)]. Physically, the
initial perturbation is set by the buoyancy of the droplets, and
we therefore expect the physically relevant initial perturba-
tions of the droplets to be those with §H <0 and §r, SR >0,
for which the droplet indeed flattens into an octahedron
[Fig. 9(d)].

We conclude that, for an appropriate choice of microscopic
law, our model of the rotator-phase mechanism predicts flat-
tening in qualitative agreement with the experimental obser-
vations for physical initial perturbations of the icosahedron.

2. Elastic buckling mechanism

The stability analysis in the previous section has revealed
that the regular icosahedron is a stable fixed point if buoyancy
does not play a role, Bo=0. We therefore consider the
case Bo > 0, in which the regular icosahedron is, as noted
previously, no longer a fixed point of the energy. We begin by
analyzing the limit of low surface tension, in which 8, Bo > 1
and the dynamics depend on the single parameter B = Bo/S.
Numerically, we find that there is an intermediate range,
B_ < B < B, in which the platonic icosahedron flattens into
an octahedron [Fig. 10(a)]. We estimate B_~7 and B ~ 140.
If B < B_, the droplet settles into a steady state before reach-
ing an octahedral shape [Fig. 10(b)]. If B > B, the three
faces adjacent to the top face flatten into its plane [Fig. 10(c)].
Thus, the droplet evolves into a hexagonal prism as the top
triangle continues to expand. This is inconsistent with the
experimental observation that the top plane remains triangular
[Fig. 2(c)], and does not become hexagonal until the end of the
flattening.

Qualitatively similar results are obtained at nonzero surface
tension; because of its stabilizing effect, B_ increases with
increasing surface tension, i.e., B_ % 7. We conclude that the
elastic buckling mechanism predicts flattening in qualitative
agreement with the experimental observations if buoyancy
effects are neither too strong nor too weak.

To obtain more quantitative estimates, we notice the scal-
ing B~ Ap RU/3 JE K33, wherein, as before, E is the elastic
modulus of the frozen surfactant monolayer and £ is its thick-
ness, g ~ 9.81 m/s? is the acceleration due to gravity, R is the
droplet radius, and Ap & 250 kg/m? is the density difference
between the water and oil phases. Hence the bending modulus
of the frozen surfactant layer is [27]

1/351/3
K =El ~ M (23)
B
Usefully, this allows us to obtain an upper bound on K without
having to estimate the surface tension, which does not appear
in this expression: Denote by R_ the radius, corresponding to
B_, of the smallest droplet that can flatten; previous work [5]
has shown R_ <2 um. Taking h~ 2 nm [28] and using
B_ > 7, we obtain that K < 6x1072 ] is required for flat-
tening into an octahedron. By contrast, direct measurements
of the bending moduli of shape-shifting droplets in Ref. [16]
led to the lower bound K > 10° kgT 2 3x 10~'8 J, more than
three orders of magnitude above the present upper bound.

(a) (b) ©

FIG. 10. Flattening of a symmetric icosahedron under the elastic
buckling mechanism for different values of B = Bo/g. (a) Flattening
of a platonic icosahedron into a (nonplatonic) octahedron. (b) If B is
too small, the icosahedron settles into an unflattened steady state.

(c) If B is too large, the faces connected to the top face flatten into its
plane, inconsistent with experimental observations.
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V. CONCLUSION

In this paper, we have analyzed the flattening of shape-
shifting droplets experimentally and theoretically. Models of
the two candidate mechanisms have reproduced the evolution
of an icosahedral droplet into a flattened octahedral shape in
qualitative agreement with the experimental observations. The
elastic buckling mechanism, however, can only reproduce the
experimental observations if surface tension decreases by at
least four orders of magnitude during the cooling, so that
the flattening is driven by a competition between buoyancy
and elasticity. Moreover, the resulting estimate of the bending
modulus of the surfactant adsorption layer is three orders of
magnitude below the values measured in experiments. All
of this strongly indicates that the “shape-shifting” droplet
phenomena are driven by formation of a rotator phase rather
than elastic buckling of the frozen surfactant adsorption layer
at ultralow surface tension.

Such ultralow values of surface tension are not, however,
thermodynamically forbidden (although systems with neg-
ative surface tensions should be catastrophically unstable).
While this analysis shows that the shape-shifting deformations
observed thus far [5,8,9,11,18,19] are not consistent with the
elastic buckling mechanism, there may therefore be other
systems to be discovered in which the shape shifting is indeed
driven by the interplay of buoyancy and elasticity predicted
by this mechanism.

While the simple models used in this paper to represent
the droplets as true polyhedra could thus reproduce the ex-
perimental flattening dynamics qualitatively, it is important to
recognize that the faces of the actual droplets do not remain
flat, but deform due to elasticity and surface tension. These
simple models do not take into account either the dynamics
of elastic defects in the surface and interactions between
defects. Defect-defect repulsion has been studied by others,
for example in Refs. [4,37-39]. Nevertheless, repeating the
computations in this paper for deformable faceted elastic sur-
faces with defects presents a formidable numerical challenge.
Fully resolving the defect energetics would also make possible
a more detailed analysis of the very latest stages of the
flattening, when the defects become close to each other before
possibly merging, and, as discussed earlier, the models de-
rived here break down for defect-defect interactions can there-
fore no longer be ignored. Experimentally, this breakdown
of the model is heralded by the observation (Appendix A)
that the latest stages of the flattening depend on the details
of the system.

Some questions more specific to the rotator-phase mecha-
nism also remain open: Our analysis has revealed the impor-
tance of the dependence of the phase transition on the dihedral
angle, expressed by the microscopic law F, but how does
this dependence on the dihedral angle relate to the fundamen-
tal properties of the rotator phase and the phase transition?
Indeed, our present approach of choosing a functional form
ad hoc for lack of knowledge about the detailed physics in-
volved leaves a certain amount of arbitrariness in the analysis,
even though, as noted previously, this is mitigated by the fact
that the qualitative behavior of the model does not depend
strongly on these details. While deriving this microscopic
law from first principles would remove this arbitrariness, this

problem of understanding these microscopic principles is,
as pointed out earlier, wholly separate from the question of
possible behaviors of the model that we have answered in this
paper. We close by noting that the impact of the kinetics of
phase change on the droplet evolution also remains unclear.
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APPENDIX A: EXPERIMENTAL METHODS AND DETAILS

In this Appendix, we provide details on the experimental
methods (Fig. 11) and on the system dependence of the final
step of the droplet flattening.

1. Description of the experimental setup

Oil emulsion droplets were observed in glass capillaries
placed inside a thermostatic chamber [Fig. 11(a)] below the
objective of the microscope [Fig. 11(b)], as described pre-
viously [5,9]. Observations were performed with an upright
optical microscope in reflected white light. Due to the buoy-
ancy force, oil droplets float just below the upper wall of the
glass capillary [Fig. 11(b)]. The aqueous film formed between
this wall and the upper surface (closest to the capillary) of the
droplet was observed in reflected light.

2. System dependence of droplet flattening

As mentioned in the main text, the details of the final
step of the droplet flattening depend on the emulsion system:
For those systems in which no asperities (long cylindrical
protrusions from the platelet corners) are formed, i.e., in group
B systems according to the classification of Ref. [9], pairs

a b
@ () microscope
objective
thermostatic
chamber emulsion = 1
f *—upper drop
. surface
¥ glass <*— lower drop
| ’ capillary -
N\ Z y \ aqueous phase
capilllary [ thermostatic chamber ]

FIG. 11. Experimental setup for reflected-light microscopy of
droplet deformations. (a) Emulsions are examined in a glass capillary
placed inside a thermostatic chamber for microscopic observations
during cooling. (b) Side view: Due to buoyancy, oil droplets float
just below the top surface of the capillary, under the objective of the
microscope.
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FIG. 12. Merging of the vertices of a polyhedral drop with formation of asperities. This experiment was performed with a hexadecane
emulsion droplet, immersed in 1.5 wt.% Brij 58 surfactant solution. Merging of vertices causes the octahedral stage (b) to disproportionate (c),
leading to the formation of a tetragonal platelet with asperities (e). Scale bars: 10 pm.

of vertices eventually merge to form true hexagonal platelets
[Fig. 2(e)]. By contrast, in those systems in which asperities
do form, i.e., in groups A and C of Ref. [9], the merging of the
vertices also drives the transition from an octahedral droplet
into tetragonal or triangular plates (Fig. 12).

APPENDIX B: CLASSIFICATION OF A FAMILY
OF POLYHEDRA

In this Appendix, we classify polyhedra that can be ob-
tained by edge contraction from an icosahedron. Starting from
an icosahedron, we thus contract edges to reduce the number
of vertices of the polyhedron. Representing each polyhedron

icosahedron

triple tetrahedron %

by its undirected edge graph ¥ = (¥, &) of vertices ¥ and
edges &, we classify, numerically and up to isomorphism,
the 105 graphs of at least six vertices obtained by edge
contraction in this way. (Such a classification is of course a
hard problem in general, but the graphs are small enough for
classification by brute force to be straightforward.) Requiring
these graphs to correspond to true polyhedra, we require that
any edge be adjacent to exactly two faces, and that, for any
v eV, Y\v be connected. Geometrically, these conditions
ensure that there are no loose planes or segments, and that
the polyhedron is not the union of two smaller polyhedra
glued together at a vertex or along an edge. Physically, such
deformations would strongly cinch in the droplet surface, and

% octahedron

FIG. 13. Classification of polyhedra of a least six vertices obtained by edge contraction from an icosahedron. Edge graphs of the 44
polyhedra obtained are shown, with lines between polyhedra indicating possible edge contraction paths. Linewidths are proportional to the
probability that a random walk starting from the icosahedron passes through a particular transition. Small probabilities are represented by
dotted lines. The icosahedron, octahedron, and triple tetrahedron are labeled.
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are thus energetically unfavourable. Upon discarding graphs
not satisfying this conditions, we are left with 44 polyhedra.

The edge graphs of these 44 polyhedra are shown in
Fig. 13. In particular, we find that there are only two possible
polyhedra on six vertices: an octahedron and a triple tetrahe-
dron (that is, three tetrahedra glued together along their faces).
Interestingly, random edge contractions from the icosahedron
result in an octahedron with approximate probability 0.11
only, compared to 0.89 for the triple tetrahedron. Formation
of a triple tetrahedron requires additional symmetry breaking,
though. For this reason, and from this purely combinatorial
analysis, the octahedron is to be expected as an intermediate
step in the evolution of the icosahedron.

APPENDIX C: DETAILS OF THE LINEAR
STABILITY CALCULATION

In this Appendix, we sketch the derivation of expressions
for the different terms that appear in Eq. (21). Substituting
Eq. (19) into expression (16) for the Lagrangian, and differen-
tiating,

9L,

=s; —a(fra; + f1bi) — A'v;, (&)
8xi
Ly =S —a(fiAij + [iBij + f/Cij) = A*Vij, (C2)
8xi8xj J J * L) * J J

where f, = F(8*), f, = F'(8%), f/ = F"(6*), and where the
vectors s;, @;, b;, v; and matrices S;;, A;;, B;;, C;;, V;; can be
expressed as sums of simpler expressions, obtaining which
is a mere lengthy and unpleasant exercise in differentiating
vectors and their products. Solving for A* using Eq. (C1) and
one component of dL;/dx = 0 yields

2Vo=s"—ald fi + b 1)), (C3)

where s*, a*, b* are scalars. We check post facto that this
choice of A* indeed leads to all 36 components of d.L;/dx
vanishing. Hence Eq. (C2) becomes

2L, i . . .

0x;0x; - Sij _a(f*Aij+f*Bij + /i Cij)’ (C4)
wherein

Sij =Sij = Vi, A=A, —aVy,  (C5a)

Bj; =B bV, Cj; =Gy (C5b)

On assembling these matrices into four 36 x36 matrices made
of these 3x3 blocks and projecting these onto the kernel of
v = VV(x*, A*) using P = | — vv, we obtain Eq. (21).

APPENDIX D: EIGENMODES OF
A REGULAR OCTAHEDRON

In this Appendix, we discuss the linear stability analysis
of a regular octahedron. Expanding about the platonic octahe-
dron, Hf = S* — «[F (8")A* + F'(§*)B* + F"(§*)C*], as in
Eq. (21), where §* &~ 109.5° is now the dihedral angle of a
platonic octahedron, and where the purely geometric matrices
A*, B*, C*, S* are found numerically. What makes the case of
the regular octahedron simpler is the fact that A*, B*, C*, S*
commute pairwise, and hence can be diagonalized simultane-
ously [40].

(b)

(d

FIG. 14. Nontrivial eigenmodes of a regular octahedron. The
dimensions of the four eigenspaces are: (a) dim = 3, (b) dim = 3,
(c) dim = 2, (d) dim = 3.

Simultaneous diagonalizability means that stability bound-
aries can be computed analytically as the intersection of
planes, but here we shall merely point out that the simulta-
neous eigenmodes are geometrically “nice.” Indeed, of the
6x3 = 18 simultaneous eigenmodes [41], 7 are neutral
modes, corresponding to three rotations, three translations,
and a scaling mode (the latter is neutral since it is not volume-
preserving). The remaining 11 eigenmodes divide into four
eigenspaces for which bases aligned with the symmetry axes
and planes of the octahedron can be picked, as shown in
Fig. 14.

It is natural to wonder whether there is a deeper reason
for this simplification in the case of the octahedron. We do
not have an answer to this question, but note that eigenmodes
must respect the symmetries of the polyhedron. It is therefore
tempting to speculate that, in the case of the octahedron, the
existence of a common eigenbasis is caused by the fact that
there are simply not enough eigenmodes that are available
(i.e., allowed by the symmetries of the octahedron).

APPENDIX E: SYMMETRIC ICOSAHEDRON MODEL

In this Appendix, we derive the volume conservation con-
straint for the symmetric icosahedron model. Up to scaling,
we may take r* =1 for the regular icosahedron. Using an
explicit coordinate representation of the icosahedron, we then
obtain

R* =

5—1 5+1 3—4/5

V5 . H* = f_+ W= — ‘/_, (E1)
2 4 4

with coordinates r, R, H, h defined as in the inset of Fig. 8.

The volume conservation constraint thus takes the form

[(r +R?+7r?1H —RQ2r —Rh = 3(V5-1).  (E2)

We use this relation to eliminate 4. Next, using MATHEMATICA
(Wolfram, Inc.), we derive expressions for the coefficients of
the mobility matrix, from Eq. (15), and for the energy gradi-
ent. These expressions, albeit too large to reproduce here, are
easily evaluated numerically and given in the Supplemental
Material [36].
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