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Abstract

Experimental observations indicate that, at sufficiently high cell densities,
swimming bacteria exhibit coordinated motions on length scales (10 to
100 μm) that are large compared with the size of an individual cell but
too small to yield significant gravitational or inertial effects. We discuss sim-
ulations of hydrodynamically interacting self-propelled particles as well as
stability analyses and numerical solutions of averaged equations of motion
for low Reynolds number swimmers. It has been found that spontaneous
motions can arise in such systems from the coupling between the stresses
the bacteria induce in the fluid as they swim and the rotation of the bacteria
due to the resulting fluid velocity disturbances.
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1. INTRODUCTION

Recent experimental observations indicate that suspensions of swimming bacteria develop coor-
dinated motions on length scales (10 to 100 μm) large compared with the size of an individual
bacterium (about 3 μm) when their concentration is sufficiently high that cells interact through
their hydrodynamic disturbance fields. These observations have inspired numerical simulations of
self-propelled particles interacting through their Stokesian disturbance flows as well as continuum
analyses of these living fluids with swimming-induced stresses. Although the theories and simu-
lations may apply to a variety of swimming microorganisms or even engineered microswimmers,
we consider them primarily in the context of bacterial suspensions in which most of the existing
experimental measurements have been made. We aim to give the reader an appreciation for the
current state of knowledge; to suggest areas in which theory, simulation, and experimental work
could be better coordinated to gain a firmer understanding of collective motion; and to consider
possible new directions in the study of living fluids.

Although they are generally considered to be primitive forms of life, bacteria have rich dynamic
and social behaviors. Individual cells of many bacterial species swim through fluids with 1-s periods
of straight swimming punctuated by tumbling events of a much shorter 0.1-s duration. This
stochastic motion becomes biased in the presence of chemical attractant gradients, allowing the
cells to efficiently explore their environments and find nutrients (Berg 2003). Bacteria adapt to
their environment, excreting protective macromolecules to form biofilms under adverse conditions
and swarming to colonize solid surfaces (see the sidebar, What is the Role of Bacterial Motion
in Swarming?). It has recently been appreciated that, at high concentrations, bacteria excrete
chemicals that signal their neighbors to change their behavior, a phenomenon known as quorum
sensing (Nealson & Hastings 1979, Waters & Bassler 2005). It is intriguing to imagine that
bacteria may use hydrodynamics as well as biochemistry to coordinate some of their social behavior
although the relative significance of these factors in a natural setting remains an open question.

Swimming microorganisms have long been known to create convective patterns on length
scales that are much larger than those considered here. These bioconvective motions, driven
by changes in buoyancy imparted to the fluid by the presence of concentration gradients of the
microorganisms, were the subject of an earlier review by Pedley & Kessler (1992). Bioconvec-
tion occurs when cells have a mean swimming motion upward either because a gravitational

WHAT IS THE ROLE OF BACTERIAL MOTION IN SWARMING?

Nearly close-packed populations of bacteria in thin liquid films propagate across solid surfaces through a process
known as swarming. The proximity to the solid surface induces the bacterial cells to produce slime; the slime lowers
their friction on the surface, in addition to acting as a surfactant. The cells also develop more flagella and larger sizes
to enhance their swimming prowess. Steager et al. (2008) quantified the collective dynamics of swarming Serratia
marcescens bacteria and found bacterial velocities of approximately 10 μm s−1 that were correlated over lengths
of approximately 10 μm. Although motility is known to enhance the rate of film spreading, the mechanism for
this enhancement is not known. Simple estimates (Berg 1993, Zhang et al. 2010) indicate that the force per unit
length generated by bacterial motion is about 20 times smaller than surface tension, even assuming that forces can
be transmitted over the width of the swarm region. It has been postulated (Daniels et al. 2006) that Marangoni
flows, induced by surface-active biomolecules produced by the cells, might account for the film spreading. [Recent
experiments with both the wild-type strain and surfactin-deficient mutant strain of Bacillus subtilis appear to confirm
this hypothesis (Angelini et al. 2009).]
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Figure 1
(a) A bacterium cell is propelled by the rotation of its screw-like flagellar bundle. (b) Dipolar fluid velocity
field produced by a swimming bacterium. (c) Run-and-tumble motion. (d ) An extensional fluid motion
orients pushers such as bacteria in such a way that their force-dipole (red arrows) reinforces the flow, whereas
pullers such as algal cells retard the flow.

torque keeps them aligned for upward swimming or because they undergo chemo- or phototaxis.
Childress et al. (1975) were among the first to analyze the overturning instability due to the adverse
density gradient induced by heavy upward swimming cells. Later, Pedley & Kessler (1990) con-
sidered a mechanism of bioconvection associated with the coupling of cell orientation, swimming
velocity, and fluid shearing motion in a homogeneous suspension of bottom-heavy cells subject
to gyrotactic torques. The critical conditions for the onset of these instabilities are expressed in
terms of threshold Rayleigh numbers, and under typical conditions, the critical length scale is
of the order of millimeters to centimeters (Pedley & Kessler 1992, Sokolov et al. 2009). Thus
the collective motions on 10–100-μm length scales considered in this review are not affected by
gravity. A typical Reynolds number for collective bacterial motion (based on a length scale of
40 μm and a velocity of 40 μm s−1) is 1.6 × 10−3, so inertial effects are also negligible. These esti-
mates suggest that these flows are driven by an instantaneous balance of viscous stresses, pressure,
and the stresses induced by approximately neutrally buoyant swimming cells.

Individual Escherichia coli or Bacillus subtilis cells are spheroidal with lengths of approximately
2–3 μm and diameters of approximately 1 μm (see Figure 1). They swim using five to six flagella
that are rotated by molecular motors embedded in the cell membrane. The mechanical properties
of the flagella have an intrinsic handedness, so that the flagella assemble to form a rigid screw-
shaped bundle that turns and propels the cell in a nearly straight path when all the motors rotate
in a counterclockwise sense as seen from behind (Kim et al. 2004, Macnab 1977). If one of the
motors reverses direction, the bundle unravels and the cell rotates chaotically (i.e., tumbles). Once
the motors begin to turn in the same direction again, the bundle reassembles in a new orientation.
A typical run lasts for a time τ ≈ 1 s for E. coli and 0.5 s for B. subtilis, and runs are punctuated
by brief 0.1-s tumbles (Berg 2003, Wong et al. 1995). Individual cells swimming in a bulk fluid
have velocities of approximately 10–30 μm s−1 depending on the strain and the conditions under
which they were cultured.
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The various mechanisms by which microorganisms propel themselves at low Reynolds numbers
have been the subject of extensive investigations, and a recent review is given by Lauga & Powers
(2009). In most cases the propulsion relies on the anisotropy of the drag force experienced by
slender filaments. Slender bodies have a drag coefficient that is approximately twice as large for
motion perpendicular to than for motion parallel to their axes. As a result, the rotation of a
bacterium’s slender screw-like flagella bundle can produce a net hydrodynamic force parallel to
its axis of rotation. This force propels the cell and balances the drag force exerted on it at each
instant during the swimming motion. The combination of the cell and flagella bundle, viewed
as a unit, is thus force-free, and the longest-range hydrodynamic disturbance it produces results
from its force-dipole. A cell whose propulsive mechanism is located at its rear is called a pusher.
As illustrated in Figure 1, it exerts a force-dipole that pushes fluid outward in front and behind it
and pulls fluid in from the sides.

Because the forces due to cell swimming are distributed over both the cell body and the flagella
bundle, a characteristic length scale for the hydrodynamic force is the combined length L ≈ 12 μm
of the cell plus its flagella bundle. We may therefore expect hydrodynamic coupling between cells
to arise when nL3 = O(1), where n is the number of cells per unit volume. Consistent with
this expectation, collective motion has typically been observed when n = 108 to 1010 cells cm−3,
corresponding to nL3 ≈ 0.2–20. If the cell rotates due to a fluid velocity gradient or an imposed
torque while its flagella bundle remains assembled, the forces again extend over both cell and
bundle and the relevant length scale is L. Indeed, an estimate of the rotational mobility of E. coli
in a bulk fluid using the resistive force theory description of the coil (Lauga et al. 2006), and a
3 × 1 μm spheroidal head, is approximately equal to that of a rod with diameter 1 μm and length
11 μm (Batchelor 1970). We followed the procedure described by Wegener (1981), along with
Lighthill’s (1976) resistance coefficient for a helical flagellum, to calculate the mobility of the
composite object comprising the cell body and flagella. That the relevant hydrodynamic length
scale is the combined length of the cell body and the flagellar bundle, rather than the former alone,
implies that bacteria such as E. coli and B. subtilis are essentially athermal objects.

Although our emphasis here is on bacterial cells, we note that any neutrally buoyant microor-
ganism or artificial microswimmer will produce a net force-dipole that then characterizes its
interactions on length scales large compared with the cell. Spermatozoa, a pusher that propels by
means of a planar undulating flagellum in sufficiently viscous media, can often be concentrated
enough to produce collective motion. For example, human spermatozoa is approximately 40 μm
long, and normal human semen contains approximately 2 × 107 cells ml−1, yielding nL3 ≈ 1.3
(Brennen & Winet 1977, World Health Organization 1999). Because the sperm swimming speed
is often a determinant of fertility (Malo et al. 2006), collective motion among sperm cells might be
advantageous if it increases the effective cell swimming speed. Algal cells such as Chlamydomonas
reinhardtii are termed pullers and swim using two flagella that pull the cell from the front. Each
cell is approximately spherical with a diameter of 10 μm, and a pair of 10-μm-long flagella is re-
sponsible for propulsion, so that the combined size of the cell and flagella is approximately 20 μm.
The cell swims at an average speed of approximately 100 μm s−1. When swimming in the dark,
without phototactic bias, C. reinhardtii has been observed to swim along nearly straight paths for
approximately 10 s, followed by abrupt changes in direction (Polin et al. 2009). This is reminiscent
of the run-and-tumble motion of bacteria.

On length scales large enough to contain many bacteria, we may view the suspension as an effec-
tive continuum. This continuum is a new type of complex fluid, a living fluid whose microstructural
elements (the cells) can convert nutrients into mechanical energy to drive fluid flows. Whereas
a conventional fluid flows only when imposed gradients of velocity, temperature, pressure, etc.,
drive it out of equilibrium, this living fluid can develop spontaneous motion in the absence of
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imposed gradients using the energy supplied by the swimmers. Some researchers (e.g., Simha &
Ramaswamy 2002) have postulated the form of the equations of motion for a living fluid based
on general continuum principles, whereas others (e.g., Baskaran & Marchetti 2009, Subramanian
& Koch 2009) have derived the equations of motion based on ensemble averaging a detailed
microstructural model of hydrodynamically interacting cells. A common feature of these models
is the coupling between the fluid motion induced by swimming stresses and the rotation of the
swimmers. Continuum equations of motion for living fluids have been analyzed and shown to ex-
hibit novel instabilities not found in passive fluids. The instability threshold has been interpreted
as the onset of collective motion. Solutions of the full nonlinear equations of motion have begun
to reveal essential features of the predicted collective motion.

The instability of an isotropic suspension of active swimmers involves the coupling of swimmer
orientation, fluid flow, and swimming-induced stresses. When a suspension of micrometer-sized
swimmers is subject to a simple shear flow with velocity gradients small compared with the in-
verse of the time τ between tumbles, the orientation distribution is enhanced in the direction of
the extensional axis of the shear flow (Figure 1). In suspensions of pushers such as E. coli and
B. subtilis, the active stresses of the bacteria in this orientation act to reinforce the imposed exten-
sional motion. In doing so, they make a negative contribution to the viscosity, and Subramanian
& Koch (2009) have shown that, at a critical bacteria concentration, this negative active viscosity
cancels the viscosity of the suspending liquid. Above this concentration, the bacterial suspension
is unstable to fluid velocity disturbances. In a passive fluid, such spontaneous motion would violate
thermodynamic principles. However, in a living fluid, cells transform chemical energy into me-
chanical work driving molecular motors and producing fluid motion. The continuum equations
indicate that this motion can occur on length scales much larger than an individual cell length
L. On the other hand, the active stresses due to pullers such as the algal species C. reinhardtii act
to enhance the effective viscosity, in a manner similar to suspensions of passive particles, and an
isotropic suspension of such microorganisms is predicted to be stable.

In this article, we first review the experimental evidence for collective bacterial motion. Then
in Section 3 we discuss continuum theories for cells swimming in bulk fluids with hydrodynamic
interactions. Section 4 reviews simulations of a collection of hydrodynamically interacting self-
propelled particles. Section 5 emphasizes future directions.

2. EXPERIMENTAL OBSERVATIONS

Experimental evidence for collective dynamics in suspensions of swimming bacteria has been ob-
tained in the form of observations of the motion of cells and freely suspended colloidal particles,
measurement of the forces exerted on colloidal particles in optical traps, determination of the
enhanced diffusion of chemical tracers in the presence of bacteria, and inferences about the sus-
pension viscosity based on the rate of decay of imposed fluid motions and the drag on rotating
colloidal particles. These measurements have been conducted in thin liquid films on solid (agar)
surfaces, in thin freely suspended soap films, and in three-dimensional fluid domains enclosed in
microfluidic wells. Most of the observations are for the bacterial species E. coli and B. subtilis, which
are pushers (as described in Section 1) with a combined cell and flagella bundle length of L ≈
12 μm, a cell diameter of d ≈ 1 μm, typical swimming speeds of 10–30 μm s−1, and times between
successive tumbles of the order of 1 s.

The first observations of the collective motion of bacteria were obtained by Mendelson et al.
(1999) in a thin liquid film of B. subtilis swimming on an agar surface. They observed the motion
of cells and 1-μm-diameter colloidal particles. Rather than swimming in random uncorrelated
directions, the cell motions were correlated over spatial distances of approximately 10–100 μm.
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The authors identified and characterized coherent motions consisting of vortices and jets. The
motion of the cells and colloidal beads was strongly influenced by the hydration of the agar.

Whereas Mendelson et al. artificially induced cells to swim near an agar surface by enhancing
the hydration of the film, bacteria are naturally capable of moving across solid surfaces, within
thin liquid films, and the phenomenon is known as swarming (see the sidebar, What is the Role
of Bacterial Motion in Swarming?). Steager et al. (2008) observed the swarming velocities of
Serratia marcescens and characterized the variation of the swarming velocity and two-point velocity
correlation length with distance from the edge of the film. The length of the S. marcescens cells
(5–10 μm) and the high cell density made it impossible for Steager et al. to observe the velocity of
individual cells. Instead, the authors developed an image analysis algorithm for the determination
of the mean velocity of the cells in an observation window. The mechanism by which cells move in
a swarm differs from that in bulk fluid. The cells are confined by the solid surface below, and their
motion may also be inhibited by adsorbed macromolecules acting to immobilize the gas-liquid
interface (Zhang et al. 2010). In addition, the cell density is high enough that steric effects may
enforce local alignment. Observations of rafts of cells with intertwined flagella have led some to
postulate that cell motion is aided by transmission of stresses through direct flagellar contact at
least in the bacterial species Proteus mirabilis ( Jones et al. 2004).

Wu & Libchaber (2000) were the first to report collective motion in a suspension of swimming
bacteria (E. coli ) in the absence of a nearby solid boundary. The study was performed on a bacterial
suspension in a soap film with a thickness of approximately 10 μm. Soap films have been widely
used in studies of two-dimensional turbulence, and it is expected that Marangoni stresses in these
films may resist dilatational flows at the gas-liquid interface, while allowing surface shearing
flows. As a result, it is thought that flows on length scales large compared with the film thickness
are two dimensional and incompressible (Couder et al. 1989). We note that the relevant length
scales for bacterial suspension flows range from 1 to 100 μm, which bracket the film thickness.
Wu & Libchaber (2000) found 10-μm colloidal beads to execute a diffusive motion over long
time intervals with an effective hydrodynamic diffusivity that increased approximately linearly
with bacteria concentration for nL3 ≈ 10–90, reaching a value of approximately 100 μm2 s−1

at nL3 ≈ 90. This effective diffusivity was much larger than the particle’s Brownian diffusivity
(approximately 0.1 μm2 s−1). Although colloidal beads are commonly used as fluid tracers, the
beads in this study were comparable in size to L, so they would not act as point tracers. This was
indicated by the fact that the authors observed an approximate doubling of the diffusivity when
the bead size was reduced to 4.5 μm.

Sokolov et al. (2007) observed the velocities and orientations of B. subtilis cells in a soap-film
experiment. The film thickness was approximately 1 μm, so the induced fluid motion may have
been nearly two dimensional in this case. The authors developed a scheme to alter the bacterial
concentration without encountering issues related to variations in the suspension preparation.
They applied a current to a metallic ring within the film, thereby lowering the pH in its vicinity
and inducing the bacteria caught within the ring to swim inward and increase their concentration.
Examples of the bacterial velocity and orientation fields measured in one such experiment are
illustrated in Figure 2. Sokolov et al. (2007) observed that the root-mean-square velocity of the
bacteria increased in a smooth monotonic fashion with the number of bacteria per unit area, na,
growing from 15 μm s−1 to 50 μm s−1 over the concentration range na L2 = 3–9. On the other
hand, the correlation length for two-point measurements of the bacterial velocity grew abruptly
from approximately 5 to 20 μm at na L2 ≈ 4. Although the estimated values of na L2 are suggestive
of excluded volume effects, possibly leading to local nematic order, the cell orientation field in
Figure 2 shows no strong spatial correlations of orientation. The abrupt increase in the correlation
length may then indicate a threshold for instability of an isotropic suspension of bacteria.
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a ba b

c d
50 µm

Figure 2
Observations of collective bacteria motion by Sokolov et al. (2007). Bacteria images for na L2 = 1.7 (a) and
5.6 (b), vector bacterial velocity (c) and orientation (d ) fields for na L2 = 5.6. Figure reprinted with permission
from Sokolov et al. Phys. Rev. Lett. 98:158102 (2007). Copyright (2007) by the American Physical Society.

Sokolov et al. found that the correlation between the orientations of the bacterial cells and their
velocities increased as one increased the magnitude of the bacterium velocity. Theories (Saintillan
& Shelley 2008a,b; Subramanian & Koch 2009; Subramanian et al. 2010) of swimmer suspensions
assume the swimmers rotate in a manner similar to passive elongated particles. This assumption
leads to an instability arising from the coupling of velocity and orientation perturbations wherein
bacterial orientation density is enhanced at an angle of 45◦ to the direction of the flow. This angle
yields a relatively small value (0.2) for the correlation function defined by Sokolov et al. (2007)
and is thus consistent with their measurements in regions of low fluid velocity. In the presence of
high-amplitude shearing motions (which may lead to high bacterial velocities), elongated particles
align with the streamlines of the flow, and this is again consistent with authors’ observation of
high velocity-orientation correlations in such regions.

The first observations of collective bacterial motion in a three-dimensional fluid domain were
by Dombrowski et al. (2004). The primary emphasis of this study was on the bioconvection
resulting from the chemotaxis of aerobic B. subtilis toward the oxygen-rich region near the gas-
liquid interface of a sessile drop. However, the authors found vortical motions to persist even at
the interface of a pendant drop, implying that this observed coherent motion may have arisen
because of effects unrelated to buoyancy. Subsequent studies (Chen et al. 2007, Leptos et al. 2009,
Soni et al. 2003, Wu et al. 2006) have used cylindrical microfluidic wells ranging in depth from
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150 to 1,500 μm that are large enough to leave the bacterial motions unconfined and small enough
to exclude buoyancy effects.

Soni et al. (2003) measured the temporal correlation of the force acting on a 3-μm-diameter
bead held nearly fixed in an optical trap in suspensions of E. coli. For a small enough bead and
large aspect ratio (L/d ) of the bacterium plus flagella, this could be regarded as yielding a two-time
Eulerian fluid velocity correlation. However, the results may have been affected to an extent by
direct collisions between bacteria and beads. Although the suspension was contained in a three-
dimensional domain, the trap was located only 5 μm from a solid wall. The measured force
correlation time was found to increase from 0.18 to 0.51 and 1.3 s as the bacterial concentration
was increased from nL3 = 0.018 to 0.18 and 1.8.

Wu et al. (2006) measured the diffusivity of E. coli as a function of the bacterial concentration
in a three-dimensional fluid domain. The diffusivity increased from 50 μm2 s−1 in the dilute limit
to 100 μm2 s−1 for nL3 = 0.18, an increase that might be attributed to the onset of an instability.
A larger increase in the diffusivity from 450 μm2 s−1 to 1,150 μm2 s−1 was observed for a smooth
swimming mutant that did not tumble but underwent a gradual change of orientation due to
imperfections of the flagella bundle. This observation is consistent with the theoretical prediction
that the rate of decorrelation of bacterium orientation limits the magnitude of the destabilizing
active stresses (Subramanian & Koch 2009). Kim & Breuer (2004) observed that motile E. coli
enhanced the diffusivity of a chemical tracer, being transported in the cross-stream direction of a
microchannel flow, from the molecular value of 2 μm2 s−1 to a value of 8 μm2 s−1 at nL3 = 3.6. The
enhancement is less than that seen for colloidal beads by Wu & Libchaber (2000) or for bacteria
by Wu et al. (2006), and this may be related to the high shear rates (>1 s−1) associated with
the microchannel flow. Flow-alignment induced at shear rates higher than the inverse tumbling
time could limit the ability of a bacterium to interact with and enhance disturbance flows. This
may account for the relatively modest enhancement of diffusion observed. More recently, Leptos
et al. (2009) have observed the diffusivity of a 2-μm-diameter colloidal bead to increase from 0.23
μm2 s−1 to 1.8 μm2 s−1 in a suspension of C. reinhardtii with nL3 = 0.17. This effect is again
considerably weaker than that observed in quiescent suspensions of pushers and is consistent with
the theoretical prediction of an isotropic suspension of pullers being stable.

Chen et al. (2007) measured the correlations between the displacements of two colloidal beads
separated by a distance r and found a weak, but long-ranged correlation over distances r = 10–
100 μm and times of 1–10 s comparable with the scales over which bacteria velocities have been
found to remain correlated. The authors’ interpretation of their results was in terms of small-
amplitude hydrodynamic fluctuations of velocity and bacteria concentration in a stable suspension
and was based on a model developed by Lau & Lubensky (2009). This model contains a bacteria
velocity relative to the fluid that is proportional to the divergence of the bacterial stress leading in
turn to longer ranged fluctuations than would be expected for the equations described in Section
3. This relative velocity seems to result from the erroneous assumption that stresses associated
with the swimming motion are transmitted only through the fluid phase and not also through
particle stresslets induced by the fluid motion. It is possible that the long-ranged fluid motions
observed in these experiments are a manifestation of the hydrodynamic instability discussed in
Section 3.

Sokolov & Aranson (2009) measured the viscosity of a 200-μm-thick film of B. subtilis suspen-
sion, surrounded by gas on either side, using two methods. First, they extracted the viscosity from
the rate of decay of an imposed vortical motion. In this case, they waited until the velocity of the
vortex was 200–500 μm s−1 or smaller before analyzing the decay and extracting the viscosity.
The delay in the measurement was to ensure that only the slowest decaying mode of fluid motion
remained and, furthermore, that the velocity gradient was small enough for the suspension to

644 Koch · Subramanian

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
1.

43
:6

37
-6

59
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 o

n 
09

/0
2/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



FL43CH26-Koch ARI 15 November 2010 14:32

exhibit a Newtonian response. The suspension viscosity was observed to decrease dramatically
with increasing bacteria concentration, reaching a minimum value less than 20% of the pure fluid
viscosity at nL3 = 18, before increasing again. In the second experiment, the authors extracted
a viscosity from the lag between the orientation of a magnetic particle and a rotating magnetic
field, and observed a similar trend. The authors varied the swimming speed of the aerobic bacteria
by progressively exposing them to higher concentrations of N2. Faster swimming bacteria led
to larger reductions in viscosity, in qualitative agreement with the theoretical prediction that the
active stress is proportional to the bacteria’s swimming speed (Saintillan & Shelley 2008a,b; Simha
& Ramaswamy 2002; Subramanian & Koch 2009; Subramanian et al. 2010). It would be inter-
esting in this experiment to test for the possibility of a shear-rate-dependent viscosity by varying
the rotation rate of the magnetic field at a fixed bacterial concentration. Whereas suspensions
of passive Brownian rods shear thin, bacterial suspensions are expected to shear thicken as the
bacteria become more flow-aligned.

Although spontaneous motion can arise in bacterial suspensions even in the absence of chemical
gradients, it seems likely that gradients of chemical attractants that induce chemotactic motion of
the bacteria may lead to new mechanisms of instability. The experiment of Sokolov et al. (2009)
provides evidence in this regard. In the experiment, aerobic B. subtilis suspensions were contained
in liquid films with varying thicknesses. In films thinner than approximately 200 μm, the oxy-
gen concentration was relatively uniform across the film thickness, and the bacteria exhibited a
two-dimensional coherent motion in the plane of the film. For film thicknesses of approximately
400 μm or larger, oxygen was strongly depleted in the midsection of the film. Under these condi-
tions, three-dimensional convective patterns were observed, apparently triggered by the tendency
of the B. subtilis cells to swim toward the oxygen-rich region at the fluid-gas interface. The obser-
vations suggest that swimming stresses associated with this chemotactic motion can yield a new
type of hydrodynamic instability.

The experimental studies reviewed above provide a rich picture of the range of behavior that
constitutes spontaneous collective motion in bacterial suspensions. However, for the purpose of
testing theories and numerical simulations, it would be valuable to have a single comprehensive
study of a well characterized system. For example, would the minimum viscosity, the onset of long-
ranged bacterial velocity correlations, and the onset of long-ranged fluid velocity correlations occur
at the same bacterial concentration if these properties were all measured in the same experiment?
A quantitative comparison of different experiments with one another, and with theory, is made
difficult because the concentration of the bacteria is often not known very accurately. In addition,
the swimming speed of an individual bacterium is sensitive to the way the cells are cultured.
Providing measurements of the root-mean-square bacteria velocity and/or diffusivity in a dilute
suspension of bacteria cultured under the same conditions as a concentrated suspension, as done by
Wu et al. (2006), would provide vital information to the theoretician. Theories of active matter have
assumed cells to rotate in a manner similar to passive particles and have used simple arguments to
estimate the hydrodynamic stresses the cells induce. It would be valuable to test these assumptions
by observing cell orientation in an imposed flow, on the one hand, and the fluid velocity disturbance
produced by a single cell, on the other. Observations of fluid flow above bacterial carpets, consisting
of cells adsorbed to a solid surface, suggest that hydrodynamics can couple with the orientations
of flagella even when the cells do not rotate (Darnton et al. 2004, Kim & Breuer 2008). If such
a phenomenon persists even when the cells are freely suspended, it should be characterized and
incorporated into models.

As a primary purpose of cell motility is to allow cells to explore their chemical environments,
additional experiments exploring convective motion in chemoattractant gradients would be desir-
able. A simpler setting in which to search for chemogradient-induced instabilities would be one
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in which the attractant gradient is produced by flowing attractant and buffer solutions in channels
on opposite sides of a microfluidic well in a hydrogel (Cheng et al. 2007, Kalinin et al. 2009). For
chemoattractants that are not consumed by the cells, the chemical gradient is constant (at least in
the absence of convective motions) and can therefore be controlled by the experimenter.

At high concentrations, bacteria can produce chemical signals that affect their neighbors. Most
of the studies noted above have not attempted to determine if such chemical signaling might
coexist with hydrodynamic interactions. An exception in this regard is the study by Soni et al.
(2003), who noted the possible role played by chemical signaling; the introduction of a drug that
could influence cell signaling reduced the collective motion in their experiments. A more systematic
study, perhaps using genetic manipulation to turn on chemical signaling, would be valuable. In
systems in which bacteria do produce chemical attractants for neighboring bacteria, dense clusters
and rings of bacteria have been observed (Budrene & Berg 1991, 1995). Mathematical models
that include reaction, diffusion, and chemotaxis but exclude hydrodynamic flows predict that the
cell density develops singularities (Brenner et al. 1998). It seems likely that swimming-induced
convection could play a role in modifying these dense regions of self-attracting bacteria.

3. CONTINUUM THEORIES

The initial interest in modeling systems of interacting self-propelled particles, in the absence of
external fields, arose in the physics community. The primary motivation appears to have been
the collective dynamics observed in numerical simulations of a minimal swimmer model first pro-
posed by Vicsek et al. (1995). The model, similar to those typically used to simulate equilibrium
phase transitions (Chaikin & Lubensky 2000), involves an ad hoc specification of local swimmer
interactions—a swimmer attempts, on average, to align its velocity with that of its neighbors. The
resulting dynamics lead to a nonequilibrium order-disorder transition, above a critical concen-
tration, even in two dimensions. The order parameter being the average velocity, the emergence
of an ordered phase, a flock, implies collective swimming on length scales much larger than an
individual swimmer. The theories explaining the transition are broad in scope in their attempt to
encompass flocking phenomena across species (Grégoire & Chaté 2004, Toner & Tu 1995, Toner
et al. 2005). Hydrodynamic interactions between swimmers are neglected in these theories, so the
collective swimming predicted, in a manner reminiscent of equilibrium systems, is an emergent
phenomenon arising solely from primitive short-range aligning interactions between swimmers.

An isolated swimming bacterium executes a run-and-tumble motion in a quiescent fluid.
Whereas the bacterium orientation changes almost impulsively, and by a large amount, dur-
ing a tumble (the average change is approximately 68◦), it also changes continuously during a run.
The latter changes may arise from small-amplitude athermal shape fluctuations of the propelling
flagellar bundle, and the resulting stochastic motion is modeled as a rotary diffusion (Berg 1993).
Apart from such intrinsic orientation decorrelation mechanisms, a bacterium in a suspension may
reorient due to excluded volume constraints (at sufficiently high concentrations), hydrodynamic
interactions, and in response to inhomogeneous concentration fields of chemicals, either added
externally, or secreted by other bacteria. All such interactions must be incorporated in a com-
plete theoretical framework for a suspension of swimming bacteria. At low concentrations and in
the absence of chemoattractants, however, interactions between swimming bacteria are primarily
hydrodynamic in nature. For the small Reynolds numbers relevant to bacterial suspensions, the
velocity field due to an isolated bacterium exhibits a slow O(1/r2) decay characteristic of a force-
dipole (Kim & Karrila 1991); the resulting long-range hydrodynamic interactions in a suspension
of such bacteria should fundamentally alter any flocking tendency arising from local short-range
interactions. This was first recognized by Simha & Ramaswamy (2002), who proposed a set of
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continuum field equations governing the hydrodynamics of an orientationally ordered suspension
of inertialess swimmers. From a linear stability analysis, the authors showed that, unlike passive
systems, an initial state with either polar or nematic order in such a suspension is unstable to long-
wavelength orientation fluctuations. The assumption of orientational order without an external
field may have been motivated by an interest in the stability of the ordered phase predicted by
theories for flocking, although the short-range interactions in these theories (the driving force for
nematic order) play no role in the long-wavelength hydrodynamic instability. The existence of
such an instability has since been confirmed via simulations (Saintillan & Shelley 2007).

Tumbling and rotary diffusion are expected to drive the orientation distribution in a bacterial
suspension toward isotropy on scales larger than a single bacterium, at least for concentrations
small enough that excluded volume interactions do not lead to significant alignment. Thus it is
the stability of the isotropic state that is of relevance to a bacterial suspension. In contrast to the
nematic phase examined by Simha & Ramaswamy (2002), which remained unstable for suspensions
of both pullers and pushers, the isotropic state, first examined by Saintillan & Shelley (2008a,b),
was found to be linearly unstable only for a suspension of pushers. This is an important finding as it
makes a crucial distinction between the large-scale dynamics emerging from differing propulsion
mechanisms at the scale of an individual swimmer; the prediction has found support in the recent
simulations of Underhill et al. (2008). None of the above theoretical efforts, however, accounts for
the aforementioned orientation decorrelation mechanisms pertinent to a swimming bacterium.
For instance, both Simha & Ramaswamy (2002) and Saintillan & Shelley (2008a) assume spatial-
diffusion relaxation mechanisms, in which case the relaxation rates become asymptotically weak
relative to the rate of destabilization in the limit of long wavelengths. As a result, a suspension of
swimmers is predicted to remain unstable at any nonzero concentration. This prediction seems
to be at odds with the study of Wu et al. (2006), who found that an enhancement of translational
diffusion of bacteria above that associated with individual swimmers only occurs above a critical
bacterial concentration. Because tumbling and rotary diffusion lead to orientation decorrelation
even in a quiescent medium, the rates of relaxation evidently do not depend on the wavelength
of any imposed small-amplitude perturbation. This then leads to a finite threshold concentration
for instability.

Via a linear stability analysis in the long-wavelength limit, Subramanian & Koch (2009) derived
an expression for the critical concentration for instability in a bacterial suspension. In what follows,
we summarize the principal elements of this analysis, starting from the coarse-grained equations
that govern the motion of the bacterial suspension on sufficiently large length and time scales.
The relevant variables are the ensemble-averaged velocity (u(x, t)) and pressure fields ( p(x, t)), and
the probability density (�(x, p, t)) governing the position (x) and orientation (p) of a swimming
bacterium, which satisfy the following set of equations:

∇ · u = 0, (1)

−∇p + μ∇2u + ∇ · σ B = 0, (2)

∂�

∂t
+ (Up + u) · ∇x� + ∇p · ( ṗ�) − Dr∇2

p � + 1
τ

(
� − 1

4π

∫
�dp′

)
= 0. (3)

Equation 1 accounts for the medium incompressibility, and Equation 2 represents an instantaneous
balance of the viscous and bacterial stresses arising from the neglect of inertia. According to
Equation 3, �(x, p, t), in addition to being convected with the sum of the free swimming velocity
Up and the fluid velocity field u, also changes because of rotary diffusion, tumbling, and a rotation
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( ṗ) by the ensemble-averaged fluid velocity field. For a slender bacterium such as E. coli, the latter
is given by

ṗ = ω · p + (I − pp) · (e · p), (4)

where ω and e are respectively the local vorticity and rate of strain tensors associated with the fluid
velocity field (Kim & Karrila 1991).The characteristic time scales associated with the tumbling
and rotary diffusion processes are τ and D−1

r , respectively, and we have neglected any correlation
between the pre- and post-tumble orientations (see Berg 1993); ∇p here is the gradient operator
over the unit sphere. The equations for an active nematic suspension would be similar to those
presented above, but with an equation for the director field n(x, t) replacing that for the orientation
distribution �(x, p, t) (Simha & Ramaswamy 2002).

The bacterial stress in Equation 2 drives the instability and is given by

σ B = −C(nμUL2)
〈

pp − 1
3

I

〉
, (5)

where 〈·〉 denotes an orientational average weighted by the orientation distribution �(x, p, t).
The stress arises because of an orientational anisotropy of the intrinsic force-dipoles and was
originally proposed in this form by Simha & Ramaswamy (2002) based on symmetry arguments.
The constant C is given by

C =
∫ L

2

− L
2

s f i (s )ds, (6)

where s is a coordinate along the bacterium swimming axis, and f i(s)p is the axial force density
exerted by a swimming bacterium. The value of C is thus dependent on the details of the swimming
mechanism with C > 0 (< 0) for pushers (pullers). The suspension is unstable only for pushers,
i.e., C > 0.

Linearizing the above system of equations about an isotropic base state and considering sinu-
soidal spatial variations of the fluid velocity, pressure, and the bacterial orientation distribution,
a long-wavelength analysis indicates that perturbations to the quiescent state of independently
swimming bacteria grow above a threshold concentration, which is a function solely of parameters
characterizing the swimming motion of an isolated bacterium:

(nL3)crit = 1
C

[
5L
U τ

+ 30LDr

U

]
. (7)

For long wavelengths, the nonlocal nature of the bacterial stress due to the swimming motion is not
important, and the destabilization arises because of an essentially stationary distribution of bacteria
reorienting in response to the local extensional flow associated with the velocity perturbation. The
excess of bacterium orientations along the extensional axis then produces an active bacterial stress
that reinforces the fluid velocity perturbation (see Figure 1). The anisotropy of the orientation
distribution and bacterial stress is, at linear order, proportional to the product of the imposed
velocity gradient and a relaxation time associated with the twin mechanisms of rotary diffusion
and tumbling. The localized nature of the stress, and its linear dependence on the imposed flow,
allows an interpretation of the instability as resulting from a negative bacterial contribution to
the viscosity. The instability sets in when the negative viscosity associated with the bacteria’s
swimming-induced force-dipoles negates the stabilizing effect of the solvent viscosity. Quantifying
the above argument, the anisotropy is O(γ̇ τr ) · O(CnμUL2), where the shear rate γ̇ ∼ O(ku′)
and the relaxation time τr ∼ τ f (τDr ); k and u′ are the wave number and the amplitude of the
perturbation, respectively. Equating the divergence of this stress to that of the viscous stress, μk2u′,
yields the general form of the stability criterion. The detailed analysis shows that f (τ Dr ) = 1

1+6Dr τ
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(see Equation 7). Finally, it is worth noting that the imposed fluid velocity perturbation in the
analysis, causing a given bacterium to reorient, must be regarded as the cumulative contribution
of the slowly decaying anisotropy of dipolar velocity fields of other distant bacteria; the analysis
thus reveals the intrinsic instability of an isotropic bacterial suspension on account of long-range
hydrodynamic interactions.

The long-wavelength analysis of Subramanian & Koch (2009) for the general case has been
complemented by a calculation of the complete spectrum in the absence of rotary diffusion (see
Saintillan & Shelley 2008b, Subramanian et al. 2010). The structure of the eigenspectrum in the
limit τ → ∞ is shown in Figure 3; this limit corresponds to the absence of intrinsic decorrelation
mechanisms, and a swimmer orientation changes only in response to the ambient velocity gradient.
The unstable spectrum for any finite tumbling frequency may be obtained by displacing this
limiting spectrum along the real-growth-rate axis by an amount 1/τ . We note from Figure 3
that, in the small-wave-number limit, there is a pair of unstable stationary modes. The dominant
mode is triggered by the negative viscosity mechanism and determines the critical concentration
for instability, whereas the other is a much weaker mode crucially related to the nonlocal nature
of the bacterial stress. The two modes coalesce at km = 0.17C(nL2) and branch off the real axis for
larger wave numbers. The resulting pair of traveling waves with complex conjugate growth rates
continues only until a maximum wave number given by

k′
m = 0.57C(nL2). (8)

The existence of an upper bound to the range of unstable wave numbers implies that the finiteness
of the domain may act to stabilize the system, a fact relevant to simulations of active swimmer
suspensions (see Section 4).

Subramanian et al. (2010) have also determined the modified spectrum in the presence of an
imposed chemoattractant gradient for length and time scales on which the bacterial suspension and
the imposed gradient remain homogeneous. The nature of the spectrum is altered in a nontrivial
manner. The unstable modes are now traveling waves for any finite wave number, and there
appears to no longer be an upper bound on the range of unstable wave numbers. On longer time
scales, the balance between the chemotactic and diffusive fluxes in a finite domain leads to an
inhomogeneous concentration distribution that is expected to modify the stability characteristics
on larger length scales.

The above analysis predicts an instability of isotropic suspensions of pushers but indicates that
isotropic suspensions of pullers are always stable. Baskaran & Marchetti (2009) have suggested
a mechanism by which anisotropic translational diffusion of pullers could lead to an instability
involving coupled orientational and bacterial concentration perturbations. Even if one were to
accept the relevance of translational diffusion, however, this analysis is flawed. The bacterial
concentration perturbations in the theory are driven by a flux proportional to the divergence
of 〈pp〉. This term was obtained by performing a nonconvergent convolution integral between
the force-dipole velocity disturbance of a swimmer and the orientation moment [equation 38
of Baskaran & Marchetti’s (2009) supplemental material]. In an appropriate ensemble-averaged
equation approach, the swimmers’ force-dipoles would lead to a solenoidal fluid velocity field
driven by a mean active stress.

Although the linear stability analysis of the isotropic state of pushers predicts the critical
concentration for the onset of collective swimming, it does not predict a dominant length scale
in the unstable regime. This is seen from Figure 3 in which the growth rate of the dominant
stationary mode approaches a shallow maximum in the limit of zero wave number, implying that
a broad spectrum of modes, with wave numbers in the interval [0, O(nL2)], may influence the
nonlinear evolution of the perturbations. A numerical solution of the continuum field equations
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αi

αm = 0.09C(nUL2)

αr

Unstable
Unstablestationary modes

stationary modes Oscillatory
Oscillatorysolutions

solutions

Unstablestationary modes

αr = 0.2C(nUL2)

α l
i = 0.351C(nUL2)

α l*
i = –0.351C(nUL2)

k

Oscillatorysolutions
Stable-unstable transition
k'm = 0.57(CnL2)

Mode 1 

Mode Mode 2 Mode 2 

km = 0.17C(nL2)
Stationary-oscillatory
transition 

Figure 3
The real (αr) and imaginary (αi) parts of the growth rate of fluid velocity modes in a suspension of straight
swimmers plotted as a function of the wave number k.

therefore becomes valuable in this regard and should help reveal the nonlinear flow structures,
along with the characteristic length and time scales, that dominate the collective swimming regime.
A step in this direction has been taken by Saintillan & Shelley (2008b) and Wolgemuth (2008),
who have numerically solved the field equations in two dimensions starting from an initial nematic
state and an initially isotropic orientation distribution, respectively.

An intriguing result in the simulations of Saintillan & Shelley (2008b) is the appearance of large-
amplitude density fluctuations in the nonlinear regime. This result is of particular interest because
the unstable modes in the linearized theory arise owing to a coupling of velocity and orientation
field fluctuations, implying that an initially homogeneous suspension will retain a constant bacterial
number density even as it becomes unstable to fluid velocity and orientation fluctuations. The
fluid velocity field being incompressible, any inhomogeneity of the number density can only arise
because of swimming and is therefore related to the divergence of 〈p〉. Such a quantity will only be
nonzero if there exists a p/−p bias at the macroscopic level, in other words, a macroscopic polarity
fluctuation. Because the dynamics of the instability does not break the p ↔ − p symmetry, it is
reasonable to imagine that an initial condition involving an apolar order at the macroscopic level
will not lead to large polarity fluctuations at later times. Thus the observed density fluctuations in
the simulations of Saintillan & Shelley (2008b) may have arisen because of polarity fluctuations
seeded by the initial condition. The continued presence of large-amplitude density fluctuations
nevertheless implies that the initial seed of large polarity does not die away, in turn suggesting that
the spatially homogeneous state may not be a global attractor for all initial conditions. This might,
however, arise because of the neglect of tumbling and rotary diffusion, which may act to attenuate
any initial polarity fluctuations. Indeed, all simulations of active swimmers to date are restricted to
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the case of straight swimmers, in which case orientation decorrelation arises solely on account of
hydrodynamic interactions. The incorporation of nonhydrodynamic relaxation mechanisms may
help address the relevance of number density fluctuations to the collective swimming regime.

Even for concentrations below the threshold value given by Equation 7, bacterial suspensions
may exhibit novel rheological characteristics. For instance, implicit in the stability analysis of
Subramanian & Koch (2009) is the prediction that the viscosity of a bacterial suspension must,
in sharp contrast to passive particle suspensions, decrease with increasing nL3 up until the onset
of instability. Furthermore, over a range of flow amplitudes in which the intrinsic swimming
behavior of a bacterium is expected to remain unaltered, bacterial suspensions must exhibit a
shear-thickening rheology; this is again in contrast to most complex fluids, which exhibit a shear-
thinning rheology close to equilibrium (Larson 1999). The shear thickening is expected to arise
because, although slender bacteria tend to align with the local extensional axis of a weak imposed
simple shear flow, they must approach flow-alignment in stronger flows. The alignment must
decrease their effect on the flow and thereby lead to an increased viscosity. The nontrivial effects
of (swimming) activity on the rheology of suspensions of active particles have been pointed out,
in a rather general context, by Hatwalne et al. (2004).

There have been recent attempts to determine the nonlinear rheological properties, including
normal stress differences, of active suspensions (Saintillan 2010). The calculation bears a close re-
semblance to earlier analyses for suspensions of dipolar Brownian orientable particles (see Brenner
1972); the bacterium orientation distribution, under the combined influence of flow and relaxation
processes, is first obtained and then used to determine the bacterial stress contribution. Although
the distribution of bacterium orientations is similar to that of Brownian fibers for similar ampli-
tudes of the imposed flow, an analogy between passive Brownian fibers and bacteria does not hold
for the stress contributions associated with the relaxation process. This is because athermal relax-
ation processes in bacterial suspensions must conform to a torque-free constraint (the constraint
that, for instance, causes the bacterium head and the flagellar bundle to rotate in opposite senses
about the swimming axis). As a consequence, the magnitude and nature of the stress contributions
associated with such relaxation processes must differ fundamentally from the corresponding en-
tropic stress contributions that arise from Brownian torques. The active swimming stresses that
dominate the rheology reported by Saintillan (2010) at high shear rates would be correct, but the
Brownian stress contribution, which becomes increasingly important at small shear rates, is not
appropriate to athermal bacteria.

Theories in the physics literature (see Ramaswamy & Simha 2006, Ramaswamy et al. 2003,
Simha & Ramaswamy 2002) have pointed out profound differences between the hydrody-
namic fluctuations in orientationally ordered active and passive systems. For instance, Simha &
Ramaswamy (2002) have shown that surprisingly long-ranged concentration fluctuations arise in
suspensions of self-propelled particles with a macroscopic polar order. The difference in the nature
of correlations arises because the stress driving the flow in an active suspension is proportional to
nn (see Equation 5), whereas the corresponding passive stress, being associated with an (elastic)
free energy functional, involves spatial gradients of the director field n. The active stress thus
drives a much stronger flow in the long-wavelength limit, in turn leading to long-range director
field and concentration fluctuations. It must be emphasized that these fluctuations are a charac-
teristic of the stable regime and differ from those that arise because of a saturation of the linear
instability discussed above. It would be desirable to carry out simulations, for instance, along the
lines of Saintillan & Shelley (2007) (see Section 4), to clarify the nature of the fluctuations in
the stable and unstable regimes. Such simulations must, however, incorporate swimmer-swimmer
interactions leading to a nematic potential so that a stable active nematic state can be observed.
Furthermore, they must include stochastic orientation decorrelation mechanisms, as it is such
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random reorientation events, mediated by excluded volume interactions, that serve as a source
term for the director field fluctuations in the stable regime.

An issue that emerges from the above discussion is to predict under what conditions will
orientational order, either polar or nematic, emerge at the macroscopic level due to local in-
teractions between microscopic polar swimmers (bacteria). Neighboring swimmers may align
due to hydrodynamic interactions or on account of excluded volume constraints. The latter
come into play in swarming films of bacteria and for sufficiently concentrated suspensions (n ≥
1010 cells ml−1). Recent theories, although restricted to two dimensions, have attempted to incor-
porate excluded volume interactions both via a Boltzmann-like collision integral (Aranson et al.
2007, Bertin et al. 2006) and via an Onsager excluded volume potential (Baskaran & Marchetti
2008b) in the kinetic equation for the probability density (see Equation 3); the underlying mo-
tivation is to explore the stability and dynamics of the ordered phase that forms as a result. The
nature of the macroscopic order appears to depend on the shape of the swimmer, and a collec-
tion of symmetrical rod-like swimmers with solely excluded volume interactions only exhibits a
bulk nematic order (see Baskaran & Marchetti 2008a). In their simulations of hydrodynamically
interacting spherical squirmers, Ishikawa et al. (2008) have observed long-range orientation corre-
lations for a certain type of squirmer (see Section 4 for details). On the other hand, in simulations
of force-free dumbbells (see Hernández-Ortiz et al. 2009, Underhill et al. 2008), in which the
near-field hydrodynamics differs from that for a squirmer, hydrodynamic interactions prevent
rather than promote nematic order. Thus it appears that any mechanism that might lead to a
macroscopic ordered state is likely to depend on the details of how bacteria swim in close prox-
imity to one another, and these detailed close-range interactions need to be observed directly in
experiments.

Continuum theories thus far have largely been restricted to exploring collective dynamics in
an unbounded domain. An issue that deserves attention is the boundary conditions that must
complement the field equations for finite-sized domains and the spatial extent of the region in
which such conditions might alter the predicted bulk dynamics. This is particularly important
in the context of microfluidic applications. The few efforts that explore the motion of active fluids
in simple geometries (Edwards & Yeomans 2009) employ rather ad hoc boundary conditions
for the bacterium orientation field motivated in part by similar conditions for passive nematics
(Larson 1999). A formulation of appropriate boundary conditions may need to account for the
variety of behaviors observed for bacteria swimming close to surfaces. These include swimming
in circles (Lauga et al. 2006), swimming along curved trajectories (DiLuzio et al. 2005), upstream
motion in an imposed shear flow (Hill et al. 2007), and a tendency to either recoil (Cisneros
et al. 2006) or to change to a parallel swimming mode (Galajda et al. 2007) in the presence of an
obstacle. Experiments highlighting the interaction of bacteria with nearby surfaces may also offer
clues as to how the intrinsic swimming dynamics (including tumbling and rotary diffusion) might
be modified at high concentrations and may thereby help in arriving at a sensible model for the
excluded volume interactions.

4. SIMULATIONS

Simulations of hydrodynamically interacting self-propelled particles provide opportunities to
(a) test continuum theories under circumstances in which the relevant parameters can be con-
trolled more precisely than in experiments, (b) reveal fluctuations that result from the discrete
nature of the swimmers, (c) explore interactions of swimmers with boundaries that have not yet
been incorporated into continuum theories, and (d ) reveal the effects of short-range hydrody-
namic interactions. The simulations discussed below include a variety of swimmer geometries and
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propulsion mechanisms. Two common features of the work to date are that the swimmers are
force-free, as is appropriate for neutrally buoyant cells, but lack a mechanism such as tumbling by
means of which an isolated cell’s orientation could decorrelate even in the absence of interactions
between swimmers.

The first simulation study exhibiting the long-range collective hydrodynamic motion in
a suspension of self-propelled particles is that of Saintillan & Shelley (2007). The particles
in this study are slender rods, and an actuating shear stress distribution on either the fore
(puller) or aft (pusher) part of a rod causes it to swim. The hydrodynamic interactions are
modeled using viscous slender-body theory (see Batchelor 1970, Mackaplow & Shaqfeh 1998).
The simulations were restricted to initial orientation fields with polar or apolar (nematic) or-
der, and the swimmer concentrations ranged over two orders of magnitude (nL3 ∼ 0.4–40).
In all cases, the initial orientationally ordered state was found to be unstable. The suspension
evolves toward a state that is isotropic on large length scales, although orientational correla-
tions persist at smaller scales. This observation confirms the theoretical predictions of Simha &
Ramaswamy (2002) that an active suspension (of pushers or pullers) with either polar or nematic
order is unstable to long-wavelength orientation fluctuations. Although the theory considered a
nematic potential modeled as a director diffusivity (acting to damp orientation fluctuations) that is
absent in the simulations, the growth rate of the instability at large wavelengths was independent
of the director diffusivity.

The results of Saintillan & Shelley (2007) show that, in the saturated state for a suspension
of pushers, the orientational decorrelation can be modeled with a hydrodynamically induced
rotary diffusivity Dr that grows as nL2U. Although a rotary diffusivity that grows linearly with
swimmer concentration could arise from pairwise interactions in a dilute stable suspension, the
coefficient observed in Saintillan & Shelley’s simulations is about two orders of magnitude larger
than that calculated by Subramanian & Koch (2009) for pairwise interactions. The reason for
this discrepancy is unclear. The translational diffusion D of the swimmers was found to be well
predicted by a Taylor dispersion process [D = U 2/(6Dr )], suggesting that swimming, modulated
by orientational decorrelation, was the primary determinant of the mean-square displacement of
the rods.

Hernández-Ortiz et al. (2005, 2007) developed a fast multipole method of simulating hydro-
dynamically interacting swimming dumbbells. Each dumbbell consisted of a pair of beads linked
by a rigid rod such that the center-to-center distance L between the beads was three times the
bead radius. The swimmers interacted hydrodynamically via point-force velocity disturbance fields
centered at the beads and via excluded volume interactions. The swimming motion was driven by
a phantom flagellum that acted on one of the beads, leading the two beads of a single dumbbell to
exert equal and opposite forces on the fluid. As a result, a swimming dumbbell acted as a force-
dipole on large length scales. The method may be used with periodic boundary conditions in all
directions, or with one or more solid boundaries.

Underhill et al. (2008) have used the above algorithm to simulate an isotropic suspension of
swimming dumbbells in a spatially periodic cubic domain. The hydrodynamic diffusivity of passive
non-Brownian fluid tracers was found to grow as H0.63 with the domain size H in suspensions of
pushers for the range H/L = 10–50; on the other hand, the diffusivity was much smaller in sus-
pensions of pullers. The fluid velocity variance in the former case was, however, a weak function of
H and of the same order as the square of the swimming speed. These observations are consistent
with the postulate that fluid mixing arises from large-scale coherent motions associated with the
instability in an isotropic suspension of pushers (discussed in Section 3). A criterion for the insta-
bility of straight swimmers in a finite domain may be obtained by replacing the maximum unstable
wave number k′

m (see Equation 8 in Section 3) by 2π/H, leading to the threshold concentration
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for instability (nL3)crit = 2π/[0.57C(H/L)]. Neglecting the hydrodynamic interaction between
the beads constituting a dumbbell, the force-dipole coefficient (see Equation 5 in Section 3) is
C = 2π , implying H/L > 1.75/(nL3) for instability. Because nL3 = (3/5π ) in all the simulations,
the entire range of domain sizes simulated allows for the existence of unstable modes, although the
wavelength of the unstable mode approaches the domain size for the smallest domains. Thus the
suspensions of pushers simulated are expected to develop fluid motion on length scales much
larger than L. Furthermore, the observed O(U) amplitude of the fluid velocity fluctuations implies
that the fluid velocity gradient is O(U/λ), where λ is the wavelength of the fluid motion. This fluid
shear rate will cause a swimmer to rotate through an order one fraction of its Jeffery orbit in the
shear, as it swims across a wavelength, and as a result it provides an optimal opportunity for an
excess swimmer orientation density to develop near the extensional axis of the flow as discussed
by Subramanian & Koch (2009). Underhill et al.’s observation that the tracer diffusivity induced
by pullers is small and nearly independent of domain size, under conditions that yield large dif-
fusivities for pushers, constitutes an important confirmation of the theoretical prediction that the
former system is stable and the latter is unstable. A surprising feature of the simulations of pushers
is that the correlation length and time of the fluid velocity, while dependent on the domain size,
remain smaller than H and H/U, respectively.

Hernández-Ortiz et al. (2009) simulated suspensions of swimming dumbbells with gap-
averaged concentrations of 〈n〉L3 ≈ 0.01–0.6 confined between planar rigid walls with gaps of
5L–10L. The majority of the dumbbells swam in thin layers near the walls with a much smaller
concentration in the bulk suspension away from the walls. That both pullers and pushers, whose
interaction with their respective hydrodynamic images is of an opposite nature, formed thin lay-
ers near the walls suggests that the mechanism leading to the layers was predominantly ballis-
tic impingement rather than sustained hydrodynamic dumbbell-wall interactions. Simulations
that included hydrodynamic interactions between dumbbells had significantly larger bulk con-
centrations than those that did not. Thus the hydrodynamic interactions among the dumbbells
may have largely accounted for the desorption from the wall layer. It would be interesting to
know what role tumbling, which was omitted from these simulations, might play in such a des-
orption process. Under the conditions simulated, the hydrodynamic flow consisted of vortical
motions on a length scale comparable with the wall spacing. However, these motions could be
explained by a superposition of the hydrodynamic flows by independent swimmers in the pres-
ence of walls and are not a manifestation of collective dynamics. Indeed, the flow field of even
an isolated swimmer interacting with a wall contains closed streamlines, and any inference of
collective swimming merely based on visual evidence of large closed streamline regions (vortices)
may be subject to error. Hernández-Ortiz et al. (2009) noted that the apparent collective motion
reported earlier by Hernández-Ortiz et al. (2005) resulted from the omission of excluded volume
interactions among the dumbbells and the unrealistically large velocities that resulted from close
encounters.

Ishikawa et al. (2008) have simulated a suspension of hydrodynamically interacting spherical
particles known as squirmers. The swimming in this case occurs owing to a specified tangential
velocity distribution on the particle surface; the surface velocity is a superposition of two fun-
damental modes—a fore-aft symmetric stresslet singularity and a potential dipole singularity. A
squirmer may provide an accurate model of eukaryotic cells such as Opalina and Paramecium cau-
datum, which swim by the waving motion of the many cilia that cover their surfaces (Brennen &
Winet 1977, Ishikawa & Hota 2006), but it is not expected to model the short-range interactions
of flagellated bacteria. The simulations make use of Stokesian dynamics (Brady & Bossis 1988,
Durlofsky et al. 1987), an approach developed for passive particles that incorporates many-body
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force-dipole interactions as well as an exact pairwise description of short-range hydrodynamic
interactions. By considering a spherical model, Ishikawa et al. (2008) forego the possibility that
the swimmers’ orientation distribution can be deformed by their interaction with a simple shear
flow; in turn, this precludes the hydrodynamic instability of nonspherical pushers thought to cause
the collective motion observed in the simulations of Underhill et al. (2008). The most striking
results for the squirmer model occur for pullers and specifically for a unit ratio of the stresslet and
potential dipole coefficients. In this case, there is a large excess of close pairs with parallel orien-
tations, implying that short-range hydrodynamic interactions may lead to polar order. It should,
however, be noted that the behavior of squirmers is sensitive to the model parameters, and these
have not been tuned to reflect any specific microorganism. Indeed, the observation that the puller
rods simulated by Saintillan & Shelley (2007) show a deficit of close pairs, whereas the puller
squirmers of Ishikawa et al. (2008) show an excess, indicates the importance of seeking an accurate
model of the short-range interactions and geometry. Mehandia & Nott (2008) have also adapted
the Stokesian dynamics method to simulate a suspension of swimmers in an attempt to rigorously
incorporate short-range hydrodynamic interactions. However, the approach is again restricted to
spherical swimmers and uses a surface velocity boundary condition that is not representative of a
flagellated swimmer.

It would be desirable to develop a new generation of swimmer simulations that aims to ac-
curately model the short-range interactions of cells while maintaining reasonable computational
efficiency. As noted in Section 1, the hydrodynamic resistance to rotation of a bacterium swim-
ming with a flagellar bundle is strongly influenced by the flagella, so it is essential to model the
nonspherical nature of the swimmer. A slender-body treatment with a no-slip head and a tail
having a specified slip velocity, which drives the swimming, is a reasonable starting point. It is
known that the counter-rotation of the tail and head causes cells to swim in circles adjacent to walls
(Lauga et al. 2006), and this motion, which could be incorporated in a slender-body treatment by
distributing rotlets along the cell axis, may also influence short-range cell-cell interactions. The
finite thickness of the cell and flagellar bundle may play a role in creating nematic ordering at high
concentrations. This may be implemented by simply allowing for an excluded volume of a finite
thickness along with slender-body hydrodynamics. The effect of finite thickness on hydrodynamic
interactions could also be simulated using a Stokesian dynamics formulation for spheroids such as
that developed by Claeys & Brady (1993a–c) in the context of passive particle suspensions.

Simulations of active swimmers have thus far been restricted to the case in which the swimmer
orientation changes only due to hydrodynamic interactions. Although useful as a base case in
isolating the role of hydrodynamics, one must include nonhydrodynamic relaxation mechanisms
to simulate the dynamics of a bacterial suspension. The mechanisms most relevant to a swimming
bacterium are rotary diffusion and tumbling, both of which decorrelate its orientation on charac-
teristic time scales of 1–3 s. These mechanisms play an essential role in allowing a sufficiently dilute
isotropic bacterial suspension to be stable. In rigid-rod suspensions, Brownian rotary diffusion,
in acting to eliminate any flow-induced orientation anisotropy, leads to an entropic stress; the
stress arises from the restoring action of Brownian torques (see Hinch & Leal 1972). However, as
discussed in Section 3, rotary diffusion of a bacterium has an athermal origin and must therefore
conform to a torque-free constraint. As argued by Subramanian & Koch (2009), this is likely to
make the athermal analog of the entropic stress much smaller. In a simulation of slender rods,
this could be accomplished by choosing a new orientation for the rod without allowing for any
fluid flow associated with the rod rotation. The increment in orientation could be small for rotary
diffusion or large for a tumble. In the case of swimmers with finite thickness, this artifice could,
however, lead to particle-particle overlaps. An alternative method would be to specify a force
distribution, having no net force or torque, that nonetheless induces a rotation of a swimmer.
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5. FUTURE ISSUES

Herein we summarize some of the main issues that need to be addressed in the future. There is a
clear need to conduct experiments on a well characterized system and, in addition, to be able to
monitor multiple quantities in a given experiment, for instance, the effective viscosity, velocity,
and orientation fields as a function of the bacterial concentration. This should help isolate, in an
unambiguous manner, the critical concentration for the onset of collective dynamics, and thereby
forge a connection between experimental measurements and linear stability theories that predict
the threshold for collective motion. The theoretical formulations need to account for the presence
of boundaries, and the boundary conditions must capture the variety of behavior exhibited by
bacteria swimming in the vicinity of solid surfaces. Simulations must use model swimmers that
accurately reflect the short-range interactions of real microorganisms and, in addition, incorporate
the nonhydrodynamic orientation decorrelation processes, exhibited by bacteria like E. coli and
B. subtilis typically used in experimental studies. Finally, studies of collective motion in these
systems need to account for the presence of both imposed and induced chemoattractant fields, and
hence the combined effects of hydrodynamics and cell-cell signaling on the large-scale dynamics
of the system.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

This work was supported by NSF grant CBET-0730579.

LITERATURE CITED

Angelini TE, Roper M, Kolter R, Weitz DA, Brenner MP. 2009. Bacillus subtilis spreads by surfing on waves
of surfactant. Proc. Natl. Acad. Sci. USA 106:18109–13

Aranson I, Sokolov A, Kessler J, Goldstein R. 2007. Model for dynamical coherence in thin films of self-
propelled microorganisms. Phys. Rev. E 75:040901

Baskaran A, Marchetti M. 2008a. Enhanced diffusion and ordering of self-propelled rods. Phys. Rev. Lett.
101:268101

Baskaran A, Marchetti MC. 2008b. Hydrodynamics of self-propelled hard rods. Phys. Rev. E 77:011920
Baskaran A, Marchetti M. 2009. Statistical mechanics and hydrodynamics of bacterial suspensions. Proc. Natl.

Acad. Sci. USA 106:15567–72
Batchelor GK. 1970. Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech.

44:419–40
Berg HC. 1993. Random Walks in Biology. Princeton, NJ: Princeton Univ. Press
Berg HC. 2003. E. coli in Motion. New York: Springer
Bertin E, Droz M, Gregoire G. 2006. Boltzmann and hydrodynamic description for self-propelled particles.

Phys. Rev. E 74:022101
Brady JF, Bossis G. 1988. Stokesian dynamics. Annu. Rev. Fluid Mech. 20:111–57
Brennen C, Winet H. 1977. Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech.

9:339–98
Brenner H. 1972. Rheology of a dilute suspension of axisymmetric Brownian particles. Int. J. Multiphase Flow

1:195–341
Brenner MP, Levitov LS, Budrene EO. 1998. Physical mechanisms for chemotactic pattern formation by

bacteria. Biophys. J. 74:1677–93

656 Koch · Subramanian

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
1.

43
:6

37
-6

59
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 o

n 
09

/0
2/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



FL43CH26-Koch ARI 15 November 2010 14:32

Budrene EO, Berg HC. 1991. Complex patterns formed by motile cells of Escherichia coli. Nature 349:630–33
Budrene EO, Berg HC. 1995. Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature

376:49–53
Chaikin P, Lubensky T. 2000. Principles of Condensed Matter Physics. Cambridge, UK: Cambridge Univ. Press
Chen DTN, Lau AWC, Hough LA, Islam MF, Goulian M, et al. 2007. Fluctuations and rheology in active

bacterial suspensions. Phys. Rev. Lett. 99:148302
Cheng S, Heilman S, Wasserman M, Archer S, Shuler M, Wu M. 2007. A hydrogel-based microfluidic device

for the studies of directed cell migration. Lab Chip 7:763–69
Childress S, Levandowsky M, Spiegel EA. 1975. Pattern formation in a suspension of swimming microorgan-

isms: equations and stability theory. J. Fluid Mech. 69:591–613
Cisneros L, Dombrowski C, Goldstein R, Kessler J. 2006. Reversal of bacterial locomotion at an obstacle.

Phys. Rev. E 73:030901
Claeys IL, Brady JF. 1993a. Suspensions of prolate spheroids in Stokes flow. Part 1. Dynamics of a finite

number of particles in an unbounded fluid. J. Fluid Mech. 251:411–42
Claeys IL, Brady JF. 1993b. Suspensions of prolate spheroids in Stokes flow. Part 2. Statistically homogeneous

dispersions. J. Fluid Mech. 251:443–77
Claeys IL, Brady JF. 1993c. Suspensions of prolate spheroids in Stokes flow. Part 3. Hydrodynamic transport

properties of crystalline dispersions. J. Fluid Mech. 251:479–500
Couder Y, Chomaz JM, Rabaud M. 1989. On the hydrodynamics of soap films. Physica D 37:384–405
Daniels R, Reynaert S, Hoekstra H, Verreth C, Janssens J, et al. 2006. Quorum signal molecules as biosurfac-

tants affecting swarming in Rhizobium etli. Proc. Natl. Acad. Sci. USA 103:14965–70
Darnton N, Turner L, Breuer K, Berg HC. 2004. Moving fluid with bacterial carpets. Biophys. J. 86:1863–70
DiLuzio W, Turner L, Mayer M, Garstecki P, Weibel D, et al. 2005. Escherichia coli swim on the right-hand

side. Nature 435:1271–74
Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO. 2004. Self-concentration and large-scale

coherence in bacterial dynamics. Phys. Rev. Lett. 93:098103
Durlofsky L, Brady JF, Bossis G. 1987. Dynamic simulation of hydrodynamically interacting particles. J. Fluid

Mech. 180:21–49
Edwards S, Yeomans J. 2009. Spontaneous flow states in active nematics: a unified picture. Europhys. Lett.

85:18008
Galajda P, Keymer J, Chaikin P, Austin R. 2007. A wall of funnels concentrates swimming bacteria. J. Bacteriol.

189:8704–7
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