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Summary

In this paper we study nutrient uptake by a very simple model of a swimming microorganism, a
sphere moving its surface tangentially to itself with constant concentration on the surface. The
effect of its swimming motions on the concentration field and uptake is investigated. We find
the relationship between the Sherwood number (Sh), a measure of the mass transfer across the
surface, and the Ṕeclet number (Pe), which indicates the relative effect of convection versus
diffusion. Then we compare the results with those for a rigid sphere moving at the same speed
under the action of an external force.

Analytical and computational results prove that there is little difference between the two cases
when the flow field is dominated by diffusion, but substantial differences arise when convection
plays an important role. In particular, for Pe large enough, Sh for a steady squirmer increases as
the square root of Pe, compared with the cube root for a rigid sphere. For intermediate values
of Pe, only numerical results are available, and they are obtained using a Legendre polynomial
method and a separate finite volume method, allowing us to compare the two sets of results and
assess the procedures used to obtain them. In Appendix A we discuss the effect of an alternative
boundary condition on the Sherwood number expansions at small and large Pe.

1. Introduction

Computer models of populations of microscopic marine organisms are widely used in the study
of phenomena such as harmful algal blooms, or the impact of nutrients on planktonic ecosystems
(1). The rate of nutrient uptake by phytoplankton (plant-like microorganisms living in the upper
layers of the ocean) constitutes an important element of such models. The amount of nutrient
absorbed determines how large a microorganism can grow, and whether it can reproduce. When
food is depleted from the water, the microorganisms either die or become cysts and wait again
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for appropriate nutrient conditions. Therefore, studying the mass transfer to microorganisms is
important for plankton ecology. In particular, little is known about how their swimming motion
might affect the nutrient uptake rate: swimming could modify the concentration field near the
surface by stirring the concentration boundary layer and bringing more nutrient-rich fluid near to
the cell surface, thereby increasing the uptake.

In this paper we investigate the effect of swimming on nutrient absorption in the simplest
model problem we can think of. The model microorganism is a sphere which moves its surface
steadily and tangentially to itself. This is called a sphericalsteady squirmer; a model of a nearly
spherical squirming organism was introduced by Lighthill (2), and the velocity field calculations
were completed by Blake (3). In this paper we consider the radial velocity at the surface to be zero,
and the tangential velocity to be independent of time; we also assume this time independence for
the mass concentration in the ambient fluid.

Some microorganisms, likeOpalina for example, move through the water by the beating of many
little hairs (calledcilia) attached to the surface. The cilia can follow different types of synchronized
movement: when they remain densely packed throughout the motion, the time-dependent, wave-
like squirming of the envelope covering the ends of the cilia can model the motion. Some authors
(4, 5) have argued that this same envelope model could be applied directly to tiny blue–green algae,
also called cyanobacteria, if one assumes that they propel themselves through the water by surface
distortions. In fact, Ehlerset al. (5) used this assumption to find an approximation for the swimming
speed of a microorganism propelling itself by means of small-amplitude, high-frequency sinusoidal
wavestravelling along the outer cell membrane. Skerker and Berg (6) haverecently made direct
observations of extension and contraction of some elements localized on the surface of certain
cyanobacteria, but only at the tail of the microorganism. These protrusions are believed to be
responsible for imparting the necessary swimming thrust. However, in order to show qualitatively
that swimming motions can dramatically affect nutrient uptake, we will consider the model for self-
propulsion used by Lighthill (2), and we will model the microorganism as a spherical squirmer,
that is, we do not investigate any shape effects or unsteady effects. All these simplifications and
modelling assumptions mean that we cannot claim realism for our simple model. Unsteady spherical
squirmers will be considered in a subsequent paper, and we will modify our model still further in
future work so that the results become realistic.

Our objective is to determine the Sherwood number Sh, a measure of the rate of mass transfer,
as a function of the Ṕeclet number Pe, which indicates the importance of convection relative to
diffusion, and compare it with that of a rigid sphere moving at the same speed under the action of an
external force. In the microscopic realm, the range of values the Péclet number can take is large. For
instance, for a bacterium and a cyanobacterium Pe isO(10−3) to O(10−2), but for a ciliate such as
Opalina Pe may be of order 102. Thus, it is important to see whether swimming is important for any
value of the Ṕeclet number. We use the known velocity field in the convection–diffusion equation
to find the mass concentration, and thereby determine the functional relationship between Sh and
Pe, both analytically for small and large Péclet numbers, and numerically for the whole range of
values.

For small Pe, the procedure followed is the same as that presented by Acrivos and Taylor (7)
for heat transfer from a rigid sphere. For large Pe, the asymptotic behaviour can be deduced from
boundary-layer theory. Finally, we obtain numerical results for all values of Pe. All the calculations
are made under the assumption that the nutrient concentration is constant and uniform at the cell
surface. A different boundary condition, possibly more applicable to nutrient absorption by living
cells, is explored in Appendix A. We check the accuracy of the numerical results by comparing
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NUTRIENT UPTAKE BY A SELF-PROPELLED STEADY SQUIRMER 67

with the asymptotic behaviours, pointing out some discrepancies between numerical and analytical
results for large Pe. We also see the extent to which the swimming motions enhance mass transfer
by comparing with the results for a rigid sphere.

2. The flow field

We consider the scalingU = U∗/U∗, whereU∗, the characteristic velocity, is the velocity of
translation of the squirmer in still fluid and in the absence of a body force;U∗ is the velocity field,
and an asterisk indicates a dimensional variable. As stated above, the radial velocity at the surface
is zero. The Reynolds number Re for the microorganisms we are interested in studying is in the
range 10−5 (for a bacterium) to 10−1 (for a ciliate protozoon) (8), which allows us to use the Stokes
equations for the flow field.

All the analysis is in a frame such that the squirmer has zero translational velocity, and there
is a uniform flow of speedU∗ coming from the far right (see Fig. 1). The velocity field for
r∗ > a, relative to axes fixed in the sphere, is obtained by solving the differential equation for
the Stokes stream function, and by applying the appropriate boundary conditions both at the surface
and at infinity, together with the condition of axial symmetry. For the steady squirmer, the velocity
components are (3)

U∗
r = −U∗µ + 2B1a3

3r∗3
P1(µ) +

∞∑
n=2

(
an+2

r∗n+2
− an

r∗n

)
Bn Pn(µ)

and

U∗
µ = U∗ (

1 − µ2
) 1

2 + B1a3

3r∗3
V1(µ) +

∞∑
n=2

[
nan+2

2r∗n+2
−

(n

2
− 1

) an

r∗n

]
Bn Vn(µ),

wherer∗ is the distance from the centre in spherical polar coordinates,µ = cosθ , Pn is the Legendre
polynomial of ordern, and we define

Vn = 2

n(n + 1)

(
1 − µ2

) 1
2

P ′
n(µ) = − 2

n(n + 1)
P1

n (µ).

For the motion to have finite total energy it is necessary thatU∗ = 2B1/3 (3). Also, we assume
the characteristic lengthscale to be the radiusa of the sphere (as shown in Fig. 1), so that the
dimensionless radial coordinate isr = r∗/a. Then the velocity field in non-dimensional form is
given by

Ur = −µ + 1

r3
P1(µ) + 3

2B1

∞∑
n=2

(
1

rn+2
− 1

rn

)
Bn Pn(µ) (2.1)

and

Uµ =
(
1 − µ2

) 1
2 + 1

2r3
V1(µ) + 3

2B1

∞∑
n=2

[
n

2rn+2
−

(n

2
− 1

) 1

rn

]
Bn Vn(µ). (2.2)
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68 V. MAGAR et al.

Fig. 1 The model microorganism. The spherical self-propelled body is moving with uniform velocityU∗.
The tangential velocity at the surface is non-zero

Fig. 2 Tangential velocity at the surface of the squirmer for (a)q = 5 (solid line); (b)q = 3 (dashed line);
(c) q = 1 (dashed and dotted line); and (d)q = 0·1 (dotted line)

While the radial velocity vanishes (by definition of a squirmer), the tangential velocity at the
surface is a function of the polar angleθ . For the purpose of detailed calculation, we takeBn = 0
for n > 2, andU andB2 are constants. This is a large simplification since we need several harmonics
and time-dependent functions to describe a realistic wave propagating over the surface. However,
these two coefficients are sufficient to illustrate the effects being investigated. In Fig. 2 we plotUµ

at the surface for a few positive values of the parameterq, which is defined asq = B2/B1. When
q is negative, the plots are symmetrical to theµ = 0 axis. Now, we know that the characteristic
velocity is proportional toB1, and Fig. 2 shows thatUµ vanishes at a third point of the surface of the
microorganism when|q| > 1. Therefore, when|q| > 1 we expect a recirculation region to appear
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NUTRIENT UPTAKE BY A SELF-PROPELLED STEADY SQUIRMER 69

at the back of the microorganism, which means thatq represents a measure of the stirring of the
water due to the movement of the surface versus the translation of the self-propelled body.

3. The mass transfer equation

The convection–diffusion equation satisfied by the nutrient concentrationC∗ is given by

C∗
t∗ + U∗ · ∇∗C∗ = D∇∗2C∗, (3.1)

whereD is the diffusivity of nutrients. If the concentration of nutrients is uniform at the surface,
with the valueC∗

0, and at infinityC∗∞, then we can consider the classical scaling

C = C∗∞ − C∗

C∗∞ − C∗
0
,

so that the boundary conditions areC = 1 at the surface andC → 0 asr tends to infinity. As
we said before, in Appendix A we explore how the results are affected if we take an alternative
condition on the concentration at the boundary which seems more realistic. In the steady case the
non-dimensional form of (3.1) is

Pe(U · ∇C) = ∇2C, (3.2)

where Pe=aU/D, the Ṕeclet number, is based on the radius of the squirmer, andU is given by
(2.1) and (2.2). Since the diffusivityD of all solutes is small compared to the kinematic viscosityν

of water, Pe can be large. The non-dimensional uptake rate, the Sherwood number, is given by

Sh= −
∫ 1

−1

(
∂C

∂r

)
r=1

dµ. (3.3)

Our goal is to find Sh as a function of Pe. We will start by considering small values of the parameter
Pe.

4. Analytical solution for small Péclet numbers

Following Acrivos and Taylor (7) we solve the problem in the limit of small Pe using the method
of matched asymptotic expansions. In the inner region,r = O(1) and the governing equation is
(3.2); in the outer region, we use the radial variableρ = (Pe)r , and the governing equation ceases
to contain Pe explicitly. We letCin and Cout represent the expansions forC in the two regions
respectively. The two expansions must be equivalent in an intermediate region. For the current
problem, the inner solution is regular up toO(Pe2), and the final result is

Cin = (Cin)0 + Pe(Cin)1 + Pe2 (Cin)2 + · · · ,

with

(Cin)0 =1

r
,

(Cin)1 = − 1

2

(
1 − 1

r

)
+

(
−1

2
− 1

4r3
+ 3

4r2

)
µ

− 3q

2

(
1

6r4
+ 1

4r2
− 5

12r3

)
P2(µ)
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and

(Cin)2 = − 1

4

(
1 − 1

r

)
+ R0(r) − R0(1)r−1

+ µ

[
1

4

(
r − 1

r2

)
+ R1(r) − R1(1)r−2

]

+
4∑

n=2

[
Rn(r) − Rn(1)r−(n+1)

]
Pn(µ),

whereR0, . . . ,R4 in (Cin)2 are polynomials ofr . The Sherwood number defined in (3.3) can be
computed from the inner solution alone. Also, in order to determine the coefficient of theO(Pe2)
term of the Sherwood number expansion, we only needR0(r), which is of the form

R0(r) = r

6
+ 1

24r2
−

(
3q2

80

)
1

r3
+

(
3q2

64
− 1

16

)
1

r4

+
(

1

60
+ 3q2

400

)
1

r5
−

(
q2

32

)
1

r6
+

(
3q2

280

)
1

r7 .

The explicit forms of the functionsR1, . . . ,R4 are given in Appendix B. From the above, the
Sherwood number can be shown to be given by

Sh= 2 + Pe+
(

−13

40
+ 41q2

5600

)
Pe2· (4.1)

It is worth remarking that the corresponding expansion for the rigid sphere includes a term of order
Pe2 ln (Pe) (7). This is absent in our case as a result of the fact that for a self-propelled body there is
no external force, so that the velocity field decays as 1/r2 asr → ∞, not 1/r as for the rigid sphere.
However, the first two terms are the same in the two cases, reflecting the fact that the differences are
not very important when the mass transfer is diffusion-dominated.

5. Asymptotic solution for large Péclet number

When Pe takes large values, a concentration boundary layer is expected to form near the surface of
the microorganism, in the region wherer − 1 	 1. The thickness of this boundary layer can be
estimated by introducing the variable

Y = Pem(r − 1).

The velocity isO(1) near the surface, and it follows from the mass transfer equation thatm = 1
2,

that is, the boundary-layer thickness isO(Pe− 1
2 ). In the rigid sphere casem = 1

3—the boundary-
layer thickness beingO(Pe− 1

3 )—because the velocity field near the surface isO(r − 1). Thus there
is a marked difference between the two cases. In fact, the mass transfer is enhanced by squirming,

since the Sherwood number is proportional to Pe
1
2 , not Pe

1
3 , with constant of proportionalityc, say

Sh= cPe
1
2 . (5.1)
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NUTRIENT UPTAKE BY A SELF-PROPELLED STEADY SQUIRMER 71

In order to determinec, we need to find a similarity variableη so thatC , in the mass transfer
equation

∂2C

∂Y 2
= −3Y

[
µ + q

2

(
3µ2 − 1

)] ∂C

∂Y
− 3

2

(
1 − µ2

)
(1 + qµ)

∂C

∂µ
, (5.2)

depends only onη. Equation (5.2) is theconcentration boundary-layer equation for this problem
(9), and when a similarity solutionC(η) exists, this equation can be transformed into an ordinary
differential equation forC , with coefficients which are either a constant or a function ofη. It is
customary in heat transport processes at large Péclet numbers to seekη in the formη = Y/g(µ), for
some positive functiong(µ). HereY is the concentration boundary-layer coordinate normal to the
body surface at each point, andg(µ) represents theµ-dependence of the boundary-layer thickness.
Now, if we substituteη and the derivatives ofC with respect toη required in equation (5.2), we
obtain

∂2C

∂η2
−

{
3

4

(
1 − µ2

)
(1 + qµ)

(
g2

)′ − 3
[
µ + q

2
(3µ2 − 1)

]
g2

}
∂C

∂η
= 0. (5.3)

Then, a necessary condition for a similarity solution to exist is that

3

4

(
1 − µ2

)
(1 + qµ)

(
g2

)′ − 3
[
µ + q

2
(3µ2 − 1)

]
g2 = constant. (5.4)

However, this condition is not sufficient for we also need to find a solution of equation (5.3) which
is compatible with the boundary conditions imposed onC . If, without loss of generality, we take
the constant as−2, equations (5.4) and (5.3) can easily be solved. In fact, the expression forC is
given by

C = erfc(η), (5.5)

whereas that forg is of the form

g = 2
√

2/3

(
k − µ − qµ2/2 + µ3/3 + qµ4/4

) 1
2(

1 − µ2
)
(1 + qµ)

. (5.6)

From equation (5.6) we deduce thatg may be singular at the front and rear stagnation points, that
is, atµ = 1 andµ = −1, respectively. It may be singular atµ = −1/q also but only when|q| > 1.
In the next two subsections, we explain how to choosek on physical considerations, so thatg is
bounded at the appropriate points: we will allowg to be singular at points where we expect the
boundary-layer scaling to break down (for example, near the wake), but we will adjustk so thatg
is bounded otherwise.

5.1 q > −1

The point at which we will chooseg to be bounded will be a stagnation point at which the flow
impinges on the sphere surface. In the case whenq > −1 that point corresponds to the front
stagnation pointµ = 1, and we set the constantk as 2

3 + 1
4q so thatg is bounded there.

From (3.3), the constant of proportionality is given by

c = 2√
π

∫ 1

α

dµ

g(µ)
, (5.7)
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Fig. 3 Stream function contours when|q| � 1. The solid line corresponds toq = 0·1, and the dash-dotted
one toq = 1. The flow comes from the right and is unidirectional, so that there are no closed streamlines in

any region. The stream function contours correspond to values of the stream function from−1 to −9 in steps
of 2, and to the value 0

where the lower limitα is equal to−1 if we can apply the above boundary-layer theory over the
whole surface, that is, whenq < 1. However, whenq > 1 the tangential velocity on the surface
vanishes atµ = −1/q, as we know from Fig. 2, and a recirculation region appears at the back of the
squirmer. Flow streamlines for various values ofq are plotted in Figs 3 and 4, and they show that
the recirculation region becomes larger asq increases. Only the front part of the sphere is exposed
to streamlines that originate upstream at infinity, bringing fresh nutrient close to the surface.

Mass transfer is likely to be significantly reduced at the rear, so in this case we takeα = −1/q.
Comparison with the numerical solution will provide a test for this assumption. From (5.7) we thus
obtain

c = c< =
√

8

π
when|q| � 1, (5.8)

c = c+ =
√

6

π

(
2

3
+ q

4
+ 1

2q
− 1

12q3

) 1
2

whenq > 1. (5.9)

Formula (5.9) is valid for allq larger than 1, because in that range the function under the square
root sign is always positive;q positive means that squirming is in the same direction as the uniform
flow. We also remark thatc is constant when|q| � 1—because then the terms depending onq in
the expression forc cancel each other—and thatc increases asq increases whenq > 1. Therefore,
whenq > 1, the largerq, the greater the mass transfer, for a given swimming speed.
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Fig. 4 When|q| > 1, the tangential velocity on the surface vanishes at an angleθ0 = cos−1(−1/q). Sofor
θ0 < θ < π , there is a recirculation region at the back of the microorganism, in which boundary-layer theory
cannot be applied. Here stream function contours are plotted forq = 3 (solid),q = 5 (dashed) andq = 10

(dash-dotted). The contours are symmetrical with respect to they-axis for negativeq, but the direction of the
flow is still from right to left

5.2 q < −1

In the case whenq < −1, boundary-layer theory may be applicable for−1 < µ < −1/q. On
physical grounds we expect the boundary layer to be thinnest atµ = −1/q because the flow comes
from the far right. We choosek in (5.6) so thatg is bounded atµ = −1/q, so we require that
k = −1/2q + 1/12q3. Theng may be written as

g = 2
√

2√
3

1(
1 − µ2

)
(

3q2µ2 − 2qµ + 1 − 6q2

12q3

) 1
2

,

but only if the polynomial 3q2µ2 − 2qµ + 1 − 6q2 is negative for all the values ofµ, because in
that case the function under the square root is positive. Now, that polynomial is negative whenµ

is in the interval

[
1 + √

18q2 − 2

3q
,

1 − √
18q2 − 2

3q

]
. But whenq < −1,

1 + √
18q2 − 2

3q
is less

than−1, and−1/q is less than
1 − √

18q2 − 2

3q
. Therefore, the polynomial is negative whenµ is

in the range of values for which boundary-layer theory is applicable, that is, between−1 and−1/q,
and we can defineg as above.
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From (3.3), we determine the constant of proportionalityc with the integral

c = 2√
π

∫ −1/q

−1

dµ

g(µ)
, (5.10)

which can be readily found to be

c = c− =
√

6

π

(
−q

4
+ 2

3
− 1

2q
+ 1

12q3

) 1
2

. (5.11)

The equation above shows thatc decreases as|q| decreases for allq < −1, up to the value of
c− = 1·6 whenq = −1. Therefore, the greater|q|, the greater the mass transfer to the steady
squirmer. Moreover, it is easy to deduce from (5.9) and (5.11) thatc−(−q) = c+(q), which,
together with (4.1), lead us to the conclusion that Sh(q) = Sh(−q) both at small and large Péclet
numbers, despite the fact that the flow is not reversible. This non-intuitive result helps to validate
our analysis, because it is consistent with a theorem, proved by Brenner (10), that the net rate of
heat flow from a particle into an incompressible Stokes flow is independent of direction.

Finally, it is worth noting that ifk = −2
3 + 1

4q, g is bounded atµ = −1, the other stagnation
point, but then the function under the square root is negative for allµ if q < −1

3, in particular, if
q < −1. Another argument is to see that whenq is less than−1, −1/q is positive and thenµ = 0

is in the range of integration forc. However, whenµ is zerog is proportional tok
1
2 , and therefore

it is necessary thatk > 0, orq > 8
3, which is a contradiction.

6. Numerical methods

6.1 The Legendre polynomial expansion method (LPEM)

It is quite difficult to achieve good accuracy in the numerical solution of equation (3.2), at larger
values of Pe. Therefore we have used two different methods, as a test of each other. In the first,
we follow the analysis of Denniset al. (11) for the heat transfer to a rigid sphere. We write the
concentrationC as a Legendre polynomial expansion, so that

C =
∞∑

n=0

Cn(ξ)Pn(µ), (6.1)

whereξ = ln(r); we take this radial variable so that mesh points near the surface of the squirmer
are more densely packed. Then we need to solve only a system of ordinary differential equations
for Cn(ξ). In spherical polar coordinates, equation (3.2) is

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2

∂

∂µ

{(
1 − µ2

) ∂

∂µ

}]
C = ε


Ur

∂C

∂r
−

(
1 − µ2

) 1
2

r
Uµ

∂C

∂µ


 , (6.2)

where ε = Pe. If we substitute the velocity field (2.1), (2.2), introduce the Legendre series
expansion, and multiply both sides by exp(2ξ), the left-hand side (LHS) becomes

LHS =
∞∑

n=0

[
C ′′

n + C ′
n − n(n + 1)Cn

]
Pn(µ),
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whereas the right-hand side (RHS) takes the form

RHS= ε
[
exp(−2ξ)− exp(ξ)

] ∞∑
n=0

∞∑
k=0

α1(n, k)C ′
k(ξ)Pn(µ)

+ε
3q

2

[
exp(−3ξ)− exp(−ξ)

] ∞∑
n=0

∞∑
k=0

α2(n, k)C ′
k(ξ)Pn(µ)

−2

3
ε

[
exp(ξ) + 1

2
exp(−2ξ)

] ∞∑
n=0

∞∑
k=0

β0,2(n, k)Ck(ξ)Pn(µ)

−3q

5
ε exp(−3ξ)

∞∑
n=0

∞∑
k=0

β1,3(n, k)Ck(ξ)Pn(µ),

where

αi (n, k) = 2n + 1

2

∫ 1

−1
Pi Pk Pndt

and

βi, j (n, k) = 2n + 1

2

∫ 1

−1

[
Pi − Pj

]
P ′

k Pndt .

The boundary conditions to be satisfied areC0 = 1 andCn = 0, for n > 0, at the surface. If
we choose a suitably large valueξmax, which will depend on the range of Pe considered, we can
approximate at that value the boundary condition at infinity, so we takeCn = 0 for all n, atξ = ξmax.
Another way of approximating that boundary condition is described by Denniset al. (11), who
proved that asr → ∞ the concentration is exponentially small except in a wake region for which

π −θ = O
(

r− 1
2

)
. These same authors then proved that the boundary condition at a large boundary

mesh pointi = M can be related to the previous mesh pointi = M − 1 through the condition

Cn(Mh + h) = exp(−2h)Cn(Mh). (6.3)

This is due to the fact that, at largeξ , the functionsCn(ξ) are asymptotically equal toDn exp(−2ξ).
In section 7.3 we will compare some results obtained using equation (6.3) orCn(Mh) = 0 as the
conditions at the outer boundary, but in general we considerCn(Mh) = 0 because, as we will
see, the difference between results is very small. Moreover, since it is impossible to consider an
infinite number of functionsCn , wetruncate the series (6.1) afterN terms, and increaseN until the
predicted value of Sh ceases to change significantly.

The quantitiesαi andβi, j can be found explicitly by using the recurrence relations for Legendre
polynomials. Their values are given in Appendix C. Thus the mass transfer equation can be written
as

C ′′
n + f pi C

′
n + fi Cn + f pj C ′

n+1 + f j Cn+1 + f pk C ′
n+2

+ fk Cn+2 + f phC ′
n−1 + fhCn−1 + f pg C ′

n−2 + fg Cn−2 = 0,
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where the functions in the expression above depend onn, ξ andq. Then we introduce three-point
finite differences to discretize the equation, and together with the boundary conditions, we need
finally to solve a system of the form

M X = B, (6.4)

where the resultant matrixM is block quindiagonal, in which each of the blocks is a tridiagonal
matrix. This can be solved quite easily by using block Gaussian elimination. In our problem the
matrixM is too ill-conditioned for an iterative method to work well, so a direct method was selected.
Finally, the Sherwood number was determined by using the interpolatory [r,s] method, described by
Iserles (12). This method states that the first derivative at the origin can be written as a series of the
values at the grid points of the function itself, so that[

∂C0

∂ξ

]
ξ=0

= 1

h

s∑
i=0

αi C0(ih),

whereh is the grid size. Theαi are of the form

α0 =
s∑

j=1

1

j
and αi = (−1)i+1

i

s!
i !(s − i)! .

We chooses = 5, because the rigid sphere results for larger values ofs are not accurate when
compared to the ones obtained by Acrivos and Taylor (7), for small Péclet number. Then, the
formula to calculate the Sherwood number is

Sh= −2

(
1

h

) [
−137

60
+ 5C0(h) − 5C0(2h) + 10

3
C0(3h) − 5

4
C0(4h) + 1

5
C0(5h)

]
· (6.5)

6.2 The finite volume method (FVM)

The second numerical procedure is based on a type of finite volume discretization. Equation (3.2)
has the identical solution to the steady solution of the following time-dependent equation:∫

∂C

∂t
dV +

∫
u · nC d S − 1

Pe

∫
∇C · n d S = 0, (6.6)

which is in integral form. Time is non-dimensionalised bya/U , and the velocity field is divergence
free. We solve equation (6.6) in an orthogonal coordinate systemξ = (ξ, η), whose components
correspond to ther andθ coordinates, respectively, instead of thex = (x, y) coordinate system.
The coordinateξ is defined by a logarithmic function ofr , and the form of this function depends on
the radius of the outer boundary, on a parameterimax , and on the boundary-layer thickness. Then,
equation (6.6) becomes∫

∂C

∂t
dV +

∫
C

(∣∣∣∣ ∂x
∂ξ

∣∣∣∣ U,

∣∣∣∣ ∂x
∂η

∣∣∣∣ V

)
dS

− 1

Pe

∫ (∣∣∣∣ ∂x
∂ξ

∣∣∣∣
−1

∂C

∂ξ
,

∣∣∣∣ ∂x
∂η

∣∣∣∣
−1

∂C

∂η

)
dS = 0, (6.7)
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where S is the surface area in physical space and is normal toξ or η, and U = (U, V ) =
(ξx u + ξyv, ηx u + ηyv) is the contravariant velocity. DefiningC as the average value ofC in a
computational cell, we rewrite equation (6.7) as

∂

∂t
Ci, j V +

∫
Si, j

E
(
C

)
d S − 1

Pe

∫
Si, j

F
(
C

)
d S = 0, (6.8)

for a cell (i, j) of volumeV . Here,i represents the cell number in theξ direction, andj the cell
number in theη direction. The interval between the cells is chosen as unity in theξ coordinate
system.

In the equation above the derivative with respect to time can come out of the integral, for the
volume is independent of time. There are several choices one can make for the numerical fluxes,E
andF , through the cell surface. We adopt the ones equivalent to the second-order central difference
scheme in both the convection and the diffusion terms, that is,

Ei+ 1
2 , j = 1

2

(
Ui+ 1

2 , j

) (
Ci+1, j + Ci, j

) ∣∣∣∣ ∂x
∂ξ

∣∣∣∣ , (6.9)

Fi+ 1
2 , j = (

Ci+1, j − Ci, j
) ∣∣∣∣ ∂x

∂ξ

∣∣∣∣
−1

. (6.10)

Time marching in equation (6.8), which can be written as

�C + �t

V

∫
E

(
�C

)
d S − 1

Pe

�t

V

∫
F

(
�C

)
d S

= −�t

V

∫
E

(
C

k
)

d S + 1

Pe

�t

V

∫
F

(
C

k
)

d S, (6.11)

is dealt with implicitly, so that numerical instabilities caused by the convection term are suppressed.
The superscriptk in (6.11) refers to the present time step and

�C = C
k+1 − C

k;
(6.11) is a set of algebraic equations for�Ci, j , whose solution at timek+1 may be obtained directly
through inversion of an(imax × jmax)2 matrix. Instead, we use an approximate factorization,
which transforms the differential operator expressed by the original matrix into the product of a
ξ -dependent operator and anη-dependent one, and they are both linear int . In each step, these
matrices are tridiagonal if the fluxes in equations (6.9), (6.10) are employed, and then the tri-
diagonal matrix algorithm is used to solve the equations.

The boundary condition on the squirmer(r = 1) is set as

1
2

(
C0, j + C1, j

) = 1. (6.12)

The cell (1, j) is at the boundary of the squirmer and the dummy cell(0, j) inside it. For the
condition at infinity, we set

Cimax+1, j = Cimax, j , (6.13)

so that we neglect the effect of the diffusion on the boundary and the concentration is transferred
only by the flow. In theη direction, the boundary condition of axisymmetry is automatically satisfied

 at C
am

bridge U
niversity on Septem

ber 2, 2012
http://qjm

am
.oxfordjournals.org/

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org/


78 V. MAGAR et al.

since we consider triangular cells when the cells touch thez-axis, and therefore the area of the
surface on the axis is zero.

The Sherwood number is calculated from

Sh= 1

2π

jmax∑
j=1

F1
2 , j . (6.14)

The integral over the surface is replaced by the summation in this equation. The error caused by this
simplification is estimated to be 0·004 per cent by the difference in surface area between the one
given by this computation and the ideal one (4πa2). The computations are started impulsively:

C0, j = 2, Ci, j = 0 (i �= 0) at t = 0. (6.15)

Here�t is 0·01, and the mesh numbers are fixed toimax = 1000, jmax = 180. The meshes are
clustered near the squirmer in theξ direction; the smallest cell size in physical space is chosen as
1·0×10−2 for small Pe< 1, and 1·0×10−3 for large Pe, reflecting the thickness of the concentration
boundary layer. In theη direction, the interval is 1◦.

For small Pe, the computational domain extends tor = 5000 (very large) in order to minimize
the effect of taking the boundary condition at infinity at a finite value. The calculation is stopped
at t = 100, which is before the effect of convection and diffusion reaches the boundary. For large
Péclet number, the outer boundary is set atr = 50. When the sum of relative error inC (�C/(C�t))
overthe computational domain becomes smaller than 10−10, weconsider the solution to be steady.
For large Pe, the calculation is stopped at that moment. The relative error in Sh per unit time is 10−3

per cent at most.

7. Results and discussion

7.1 q > −1

7.1.1 Small Péclet numbers. For small Pe, convergence of the numerical results was attained for
N = 5, ξmax = 9, andh = 2 × 10−2 for the LPEM. In preliminary calculations for a rigid sphere,
we found that the LPEM is more accurate than the FVM for this range of Péclet numbers.

The results are shown in Fig. 5, for various values of the squirming parameterq. The difference
between the results forq = 0·1 andq = 1 is not noticeable at this scale, but as soon asq becomes
larger than 0.5, the Sherwood number increases asq increases. Moreover, whenq = 10 the graph
bends upwards, which is to be expected from our analytical expansion. In fact, this is so for values
of q larger than 6·6626 approximately, so that the other plots, which correspond toq = 5 andq = 3,
bend downwards. The thick line corresponds to Sh versus Pe for the rigid sphere, indicating that
for any value ofq the mass transfer is enhanced by squirming, even though the difference is not
significant in this range of Pe.

7.1.2 Larger Péclet numbers. As Pe increases, the importance of the swimming motions is
greater as well, as can be seen from Fig. 6; convergence of the results also depends onq. In the
case of the LPEM, the numberN of terms in (6.1) was varied between 100 and 140, and the outer
boundary condition was applied atξmax = 19. As we reach large values of Pe, small values ofh
are required in order to reflect the asymptotic behaviour, otherwise a graph for the numerical results
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Fig. 5 Sh versus Pe for Ṕeclet numbers up to 0.5. The thick line corresponds to the rigid sphere (numerical
result). The curves forq = 0·1 andq = 1 are very close together, so we just show here the results forq = 1

(+: numerical, solid line: analytical), and are the closest to the rigid sphere. The other plots shown
correspond to (a)q = 3 (�: numerical, dotted line: analytical); (b)q = 5 (x: numerical, dashed line:

analytical); andq = 10 (◦: numerical, dash-dotted line: analytical)

Fig. 6 Plots for intermediate and large Péclet numbers showing results for the rigid sphere (thick line) and the
squirmer whenq = 0·1 (solid: LPEM, +: FVM);q = 3 (dashed: LPEM,∗: FVM); andq = 5 (dash-dotted:
LPEM, ×: FVM). Again, we do not plot the curve corresponding toq = 1 because the results forq � 1 are

comparable for all Pe
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80 V. MAGAR et al.

Fig. 7 q = 0·1: ln(Sh) versus ln(Pe) for Pe large, with +: LPEM, o: FVM, dashed: boundary-layer theory

such as the ones shown in Figs 7 or 8 would start to bend upwards, instead of slowly converging to
the dashed line.

Since the uptake occurs at the surface, we refined the grid in the vicinity of the squirmer by taking
h = 10−2 up to a certainξ0, which was modified according to the value ofq being studied. In the
case of the FVM, we tookh = 4 × 10−3 everywhere.

Forq � 1, we found that both the power1
2 and the proportionality constantc are well reproduced

by the numerical schemes. This can be seen from Fig. 7 and Table 1. The relative error (RE) for the
numerical and the theoreticalc is small, although the FVM agrees better.

When q > 1, we still find the power12, as is shown in Fig. 8 (whereq = 3), but the
discrepancy between theoretical and numerical results increases withq (see Table 1). However,
the two numerical results are comparable, despite the fact that the results of LPEM are restricted to
Pe� 160 due to the memory availability of the computer. Therefore the difference with the theory
for q > 1 comes from another source.

The concentration contours plotted in Fig. 9 for Pe= 10 and Pe= 100, for q = 5, indicate
that as Pe increases the concentration distribution in the recirculation region becomes more uniform
and the wake narrower, creating another boundary layer near this part of the surface, so that in the
limit of very large Ṕeclet numbers boundary-layer theory might also be applicable at the back of
the microorganism, that is, fromµ = −1 to µ = −1/q. In this regionk—in equation (5.6)—is
−2

3 + 1
4q so thatg is bounded atµ = −1, and then its contribution to the constant of proportionality

is

√
6

π

(
−2

3
+ q

4
+ 1

2q
− 1

12q3

) 1
2

, which means that

c+ =
√

6

π

{(
2

3
+ q

4
+ 1

2q
− 1

12q3

) 1
2 +

(
−2

3
+ q

4
+ 1

2q
− 1

12q3

) 1
2
}

(7.1)
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Fig. 8 q = 3: ln(Sh) versus ln(Pe) for Pe large, with o: FVM, dashed: boundary-layer theory excluding the
recirculation region, dotted: boundary-layer theory applied everywhere

Table 1 Proportionality constantc. Comparison of theoretical, LPEM and FVM results

q c from (5.8) and (5.9) c LPEM c FVM RE LPEM RE FVM c+ from (7.1)

0·1 1·5957 1·6928 1.6433 6·1% 3.0%
1 1·5957 1·6928 1.6461 6·1% 32%
3 1·7366 1·9276 1.8920 11·0% 9.0% 2.424
5 1·9516 2·3787 2.3244 21·9% 19.1% 3.1042

when we apply boundary-layer theory to the whole surface. The constantc+ obtained following
this procedure is shown in Table 1 forq = 3 andq = 5, and the results with thisc+, whenq = 3,
are plotted in Fig. 8 (dotted line.) We can conclude that, whenq > 1, there is a contribution to
the mass transfer from the recirculation region behind the squirmer, but not as much as indicated
by equation (7.1). For values of Pe between 12·18 and 148·41, the Sherwood number lies
between the predictions of the two versions of boundary-layer theory. Rather surprisingly, however,
the numerical results become closer to the simple boundary-layer theory (that is, neglecting the
recirculating wake region) as Pe increases, despite the appearance of a thin rear boundary layer.
The resolution of this apparent paradox is presumably that the approximately constant value ofC in
the recirculation region is not the value at infinity, zero, but is intermediate between 0 and 1. There
appears to be no way of estimating this value at large Pe, other than from the numerical results.
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Fig. 9 Concentration contours (q = 5). The upper half corresponds to Pe= 10, and the lower half to
Pe= 100; the step between contours is 0·1

Finally, Fig. 6 proves that swimming has a large effect on the nutrient uptake for any value of
q, but such effect is enhanced ifq � 1. For instance, when Pe= 100 andq = 5, the Sherwood
number is four times larger in the case of the self-propelled body than for the rigid sphere, and if
q = 0·1, the Sherwood number is only 2·5 times larger.

7.2 q < −1

We chose Pe= 400 in order to determine the numerical values ofc− for q = −3 andq = −5,
which we compared with the ones forc+ shown in Table 1 forq = 3 andq = 5, respectively. The
relative error is smaller than 0·05 per cent in both cases, so we conclude that the symmetry of Sh
with respect to negative and positive values ofq is confirmed. However, Fig. 10 shows how different
the concentration distribution is according to whetherq is positive or negative. Whenq is negative
the wake is much narrower, and the concentration seems to vary smoothly across the recirculation
region. The numerical results for intermediate values of Pe showed that Sh is symmetric with
respect toq for any value of Pe, a result which was not expected, for whenq < −1 the swimming
mechanism seems unphysical.

7.3 Alternative boundary condition at large ξ

To conclude this section, we now see whether taking the alternative boundary condition given by
equation (6.3) at larger affects the results. We will only show results for the case whenq = 1,
since one reaches the same conclusions for any value ofq. Also, for the purposes of this study we
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Fig. 10 Concentration contours (Pe= 400). The upper half corresponds toq = 3, and the lower half to
q = −3; the step between contours is 0·1

need only to take the value of the outer boundary atξmax = 3—which is the value taken by Dennis
et al. (11)—since our objective is just to compare the results obtained with the two alternative
boundary conditions. Then, if the boundary condition isC = 0, in the discretization we replace
Cn(ξmax + h) by 0; if, instead, we exploit the fact that at larger the concentration distribution
behaves as a function proportional to exp(−2ξ), then we takeCn(ξmax+ h) as exp(−2h) Cn(ξmax).

For intermediate values of the Péclet number, one observes that the RE between the two sets of
data is less than 10−3 per cent, which is insignificant. For small and for large values of Pe, shown
in Figs 11a and 11b, respectively, the RE becomes larger but remains in a range where we can
conclude that the two alternative codes give very similar results, except in the limits of very small
or very large Pe.

However, we also know, from the discussion at the beginning of this section, that when Pe is
small we can take a quite smallξmax and apply the boundary condition there since the results vary
little if we increaseξmax further. This suggests that the type of boundary condition will not affect
the result in this range. We can therefore conclude that the type of boundary condition we choose
may affect the results but only for values of Pe which are larger that those considered here.

8. Summary and conclusions

In this study we found qualitative and quantitative differences between the steady squirmer and the
rigid sphere. We saw that for small Pe the expansion is regular up toO(Pe2), because there is no
external force when the microorganism is self-propelled. We also found that, although the mass
transfer is enhanced, the difference is not very significant when diffusion dominates the behaviour.
However, as convection becomes more important, the Sherwood number is greater as well, and
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Fig. 11 This figure shows the relative error (RE) versus Pe, when (a) Pe is small and when (b) Pe is large,
between the two alternative boundary conditions at larger

when Pe is large enough Sh becomes asymptotically proportional to Pe
1
2 , rather than Pe

1
3 as for the

rigid sphere. This is as predicted by the boundary-layer theory.
Another parameter affecting the behaviour isq, which measures the effect of stirring. When

|q| � 1, the effect of stirring is almost independent ofq. However, the numerical results
show that the mass transfer is enhanced as|q| increases for values of|q| larger than 1, and
this enhancement is evident for any value of Pe. Also, the Sherwood number is symmetric in
q – Sh(q) = Sh(−q), which is to be expected from the theorem by Brenner (10) but is quite
surprising since the swimming mode whenq < −1 does not seem, intuitively, very effective;
however, the concentration distribution of the nutrients is not symmetric inq.

Finally, when comparing the results for large Péclet numbers, we found that the power of1
2

of the asymptotic behaviour is well reproduced by the numerics. When the stirring parameter
q is less than or equal to one, we obtained good quantitative agreement between numerical and
theoretical behaviour. Moreover, forq > 1 plots of concentration contours induced us to think
that boundary-layer theory may also be applied in the recirculation region that appears behind
the squirmer, because as the Péclet number increases a thin concentration boundary layer appears,
outside which the concentration distribution is approximately uniform. Then, the numerical values
of the Sherwood number lie between the two theoretical ones, obtained by assuming either one
boundary layer, over the front part of the squirmer only, or two, over the rear as well; in both cases
the concentration outside the layers is assumed to be the same as at infinity. We conclude that the
recirculation region does contribute to mass transfer, but that the uniform concentration within it is
not equal to that at infinity.
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APPENDIX A

Alternative boundary condition on the surface

A.1 Small Pe

One may ask whether a constant concentration distribution is a realistic boundary condition for living
organisms. In this Appendix we will see how the results are affected by this simplification. To do so, we
suppose that the nutrient is consumed uniformly within the sphere, which requires that we determine the
nutrient concentrationC∗

cell inside the sphere; the concentration at the sphere surface is unknown in advance,
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and might not be uniform around the surface. We therefore takeC∗
cell to be the solution of the equation

∂C∗
cell

∂t∗ = Dcell∇∗2C∗
cell − k2C∗

cell,

where Dcell is the internal diffusivity, assumed uniform. The first term on the right-hand side describes
diffusion, whereas the second corresponds to the consumption of nutrients. If we consider, again,r = r∗/a
to be the non-dimensional distance to the centre of the spherical squirmer, but nowC = C∗/C∗∞ as the
non-dimensional concentration, then the steady version of the equation above can be rewritten as

∇2Ccell − κ2Ccell = 0 , (A.1)

whereκ = ak/
√

Dcell.
At the surface of the squirmer the transport of nutrients across the membrane is dominated by diffusion.

The rate at which the nutrient is flowing to and from the cell is determined by a resistance of the membrane
to the passage of nutrients, and at equilibrium the diffusive fluxes from the fluid and into the cell are equal.
Therefore, the two boundary conditions we need atr = 1 are

D
∂Cin

∂r
= Dcell

∂Ccell

∂r

and

β
[
Cin − Ccell

] = Dcell
∂Ccell

∂r
,

whereCin is the solution of the mass concentration equation outside the cell, but close to the surface, andβ is
the permeability of the cell membrane. We setβ ′ = β/D andD′ = Dcell/D, sothe equations above reduce to

∂Cin

∂r
= D′ ∂Ccell

∂r
= β ′ (Cin − Ccell) . (A.2)

Now, we know thatCin is the regular solution of the mass transfer equation and is of the form

Cin =
∞∑

n=0

fn(ε) (Cin)n (r, µ).

Then, in order forCcell to satisfy the boundary conditions (A.2) at the surface, it needs to be of the same form,
that is,

Ccell =
∞∑

n=0

fn(ε) (Ccell)n (r, µ),

and each of the functions(Ccell)n is the solution of an equation of the type (A.1), because that equation is
independent of the Ṕeclet number.

If we set (Ccell)n = ∑∞
m=0 Rm(r)Pm(cosθ) and introduce this expansion into equation (A.1), then the

radial functionsRm are solutions of the modified spherical Bessel equation (13), of which two particular

solutions are the modified Bessel functions of the first kind,

√
π

2κr
Im+ 1

2
(κr), and of the third kind,√

π

2κr
Km+ 1

2
(κr). Since the functionsKm+ 1

2
diverge at the origin, the functions(Ccell)n are all given by

(Ccell)n =
∞∑

m=0

Em

√
π

2κr
Im+ 1

2
(κr) Pm(cosθ).
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In the fluid surrounding the cell, we still have the same steady advection–diffusion equation except that now
(Cin)0, the zero Pe limit, is no longer a constant on the surface. We still assume that the ambient concentration
is constant, which means that(Cin)0 → 1 asr → ∞. Moreover,(Cin)0 corresponds to the solution near the
surface of the organism which is not affected by advection (because it is independent of the Péclet number).
Therefore, it cannot have any angular dependence. Since(Cin)0 solves Laplace’s equation, the above boundary
conditions lead us to conclude that

(Cin)0 = 1 + A

r
, (A.3)

whereA is constant.
Now, because of the conditions (A.2), it follows that(Ccell)0 is independent of the angular direction as well,

and it can then be written as

(Ccell)0 = E0
sinh(κr)

κr
, (A.4)

with E0 an arbitrary constant (13). The constantsA, in equation (A.3), andE0, in equation (A.4), will be
determined using the boundary conditions (A.2), which can be written as

A + D′ [cosh(κ)− sinh(κ)/κ] E0 = 0

and

−κ
(
1 + β ′) A + β ′ sinh(κ)E0 = κβ ′,

when we use expressions (A.3) and (A.4), together with their derivatives. Then, from the above we can deduce
the explicit values ofE0 andA and introduce them into equations (A.4) and (A.3), so that

(Ccell)0 = κλ

κ cosh(κ)− sinh(κ)

sinh(κr)

κr
(A.5)

and

(Cin)0 = −λ

r
+ 1, (A.6)

respectively, where

λ = β ′D′ [κ cosh(κ)− sinh(κ)]

(1 + β ′)D′κ cosh(κ)+ (β ′ − D′ − β ′D′) sinh(κ)
. (A.7)

Wenote thatλ is positive for all (positive) values of the constantsκ, β ′, D′, as it must be for the concentration
at the sphere surface to be less than it is far away. From the small Pe expansion of section 4 above, the leading
term corresponds to takingλ = 1 − C∗

0/C∗∞ in (A.6).
We now need a new definition of the Sherwood number. In analogy to (14), the instantaneous rate of mass

transfer into the cell is given by

Q = D
∫
A

n · ∇∗C∗d A = 2πa2D
∫ 1

−1

(
∂C∗
∂r∗

)
r∗=a

dµ = 2πaDC∗∞
∫ 1

−1

(
∂C

∂r

)
r=1

dµ,

with µ = cosθ , since the cell is a sphere of radiusa. If Q0 is the instantaneous rate of mass transfer due to
diffusion alone, and if we define the Sherwood number as Sh= Q/Q0, sothat Sh0 = 1, then from the above
we deduce that

Sh= 1

2λ

∫ 1

−1

(
∂Cin

∂r

)
r=1

dµ. (A.8)
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Let us consider the new variableCn = C − 1. Then,

(
Cn

in
)
0 = −λ

r
(A.9)

and

(
Cn

out
)
0 = −λ

ρ
exp

[ρ

2
(−µ − 1)

]
. (A.10)

Wenow want to find the first-order term
(
Cn

in

)
1, which is a solution of the equation

∇2 (
Cn

in
)
1 = −λ

(
1

r2
− 1

r5

)
µ + 3λ

2B1

∞∑
n=2

(
1

rn+4
− 1

rn+2

)
Bn Pn(µ).

It is straightforward to deduce that the general solution of the equation above is

(
Cn

in
)
1 = λµ

2

(
1 + 1

2r3

)
+ 3λ

2B1

∞∑
n=2

[
1

2(n + 1)rn+2
+ 1

2nrn

]
Bn Pn(µ)

+
∞∑

n=0

[
D̂nrn + Ênr−(n+1)

]
Pn(µ). (A.11)

Wenext proceed to match
(
Cn

in

)
1 with

(
Cn

out
)
0. The matching requirement is that

(
Cn

in
)
1 ≈ λµ

2
+ D̂0 + D̂1rµ +

∞∑
n=2

D̂nrn Pn(µ).

Then, we deduce that̂Dn�1 = 0, andD̂0 = 1
2λ as opposed to−1

2 when assuming that the concentration is
constant at the boundary. With our new boundary conditions,

(
Cn

in

)
1 and(Ccell)1 satisfy equations of the form

(A.2) whenr = 1, that is,

−Ê0P0(µ) + . . . = D′E0 (cosh(κ)− sinh(κ)/κ) P0(µ) + . . . (A.12)

and

−Ê0P0(µ) + . . . = β ′ (1
2λ + Ê0 − E0 sinh(κ)/κ

)
P0(µ) + . . . , (A.13)

and so the two constantsE0 and Ê0 are linked by the conditions at the cell’s surface. Solving the system of
equations (A.12) and (A.13), we deduce thatÊ0 = −1

2λ2, and since

Sh1 = − 1

2λ

∫ 1

−1

(
∂

(
Cn

in

)
1

∂r

)
r=1

dµ = Ê0

λ
= −λ

2
,

we conclude that the Sherwood number term ofO(ε) is reduced with these new boundary conditions, because
it is equal to−1

2λ, which is negative, and not12 as in the case with constant nutrient concentration at the
surface.

Further modifications to the results would be observed if we continued the analysis to higher orders of the
Péclet number expansion, but the study carried out so far has already demonstrated that the results are affected
when we consider other types of boundary conditions which may be closer to reality. However, in the example
considered here, the form of the expansion of Sh remains the same, and the variations are seen in the coefficients
of the expansion, which now depend on the membrane permeabilityβ ′ and the nutrient consumption factorκ.
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A.2 Large Pe

When the Ṕeclet number is large, certain similarities with the case studied previously arise naturally. For
instance, boundary-layer theory should still be applicable for the concentration distribution outside the sphere,
but now it is possible that no similarity solution is available. In that case the Sherwood number would not be
proportional to the square root of the Péclet number, but to another power of Pe, or a more intricate function of
Pe instead. To check this, we need to explore in more detail the implication of having a variable concentration
at the surface of the microorganism.

In order for convection and diffusion to be of similar order in the boundary layer, the change of variable

Y = Pe
1
2 (r − 1) remains valid, and equation (5.2) still holds forCext, the nutrient concentration distribution

in the vicinity of the membrane and external to the cell. The local variableY represents a Cartesian coordinate
perpendicular to the microorganism’s surface. We consider again the change of variableη = Y/g(µ), by
analogy with the analysis in section 5, but keep in mind that nowη does not correspond to a similarity variable,
sinceCext might depend not only onη but onµ as well. Then,

∂2Cext

∂η2
+ 2 f (µ)η

∂Cext

∂η
= 0,

with f (µ) = 3
2g2 [

µ + q P2(µ)
] − 3

8

(
1 − µ2

)
(1 + qµ)

(
g2

)′
. Remember that the non-dimensional

concentration is defined asCext = C∗
ext/C∞

ext, so thatCext → 1 whenr , or η, tends to infinity. The solution of
the equation above, together with the boundary condition we have just discussed, may be written as

Cext = 1 + A
∫ ∞
η

exp
[
− f (µ)t2

]
dt,

which leads toCext(η = 0) = 1 +
√

π

2 f (µ)
A, and

∂Cext

∂η
(η = 0) = −A, on the surface of the cell.

The inner solution is still dependent onr andµ but, if A should turn out to be very small as Pe→ ∞, the
leading-order term of the solution of equation (A.1) will again be spherically symmetric and given by (A.4).
Then, the boundary conditions take the form

−ν A = D′E0

[
cosh(κ)− sinh(κ)

κ

]
= β ′

[
1 +

√
π

2 f (µ)
A − E0

sinh(κ)

κ

]
,

with ν = Pe
1
2 /g(µ) � 1. Now, assuming thatβ ′, D′ andκ are allO(1), the first equality implies thatE0 � A,

and since

E0

{
D′ cosh(κ)

(
1 + β ′

ν

√
π

2 f (µ)

)
+ sinh(κ)

κ

[
β ′ − D′

(
1 + β ′

ν

√
π

2 f (µ)

)]}
= β ′,

we deduce thatE0 is of order 1 as well, and thatE0
{

D′ cosh(κ)+ (
β ′ − D′) sinh(κ)/κ

} ≈ β ′. Therefore,

A = O(Pe− 1
2 ) is very small and we may assume that 1− Cext = O(Pe− 1

2 ) 	 1, so that[∂Cext/∂η]η=0 =
O(Pe− 1

2 ) and[∂Cext/∂r ]r=1 = O (1). Hence the Sherwood number, as defined in (A.8), is given for Pe� 1
as

Sh≈ β ′
λ

, (A.14)

whereλ is given by (A.7). This is greater than 1 but certainlyO(1), sothe reduction in Sh seen from the small
Pe expansion is even more marked at large Pe. It is interesting to note that the quantity defined by (A.14) is
independent of the nature or speed of the sphere’s squirming, at leading order. This is quite unlike the case
with a constant concentration at the boundary. However, the squirming is essential, because it is that which
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causes the concentration boundary layer on the sphere’s surface to be so thin that the internal concentration
is spherically symmetric, and the external concentration to be only infinitesimally reduced below its value at
infinity. Further investigation of this problem, at intermediate values of the Péclet number, would be of interest.

APPENDIX B
Functions R1, ···, R4 in (Cin)2

The functionsR1, ···, R4 in the second-order term of the small Péclet number asymptotic expansion for the
concentration field are of the form

R1(r) = −1

4
−

(
3q

40

)
1

r
+

(
11q

40
− 1

8

)
1

r3

+
(

3q

400

)
1

r4
−

(
11q

80

)
1

r5
+

(
23q

560

)
1

r6
,

R2(r) = r

12
− 1

4r
+

(
5

24
− 3q

16

)
1

r2
+

(
9q2

140

)
ln(r)

r3

−
(

1

8
+ q

8
− 15q2

112

)
1

r4
+

(
5

168
+ 3q2

784

)
1

r5

−
(

5q2

112

)
1

r6
+

(
5q2

336

)
1

r7
,

R3(r) =
(

3q

40

)
1

r
−

(
3q

16

)
1

r2
−

( q

40

) 1

r3

+
(

9q

140

)
ln(r)

r4
−

(
33q

160

)
1

r5
+

(
13q

240

)
1

r6
,

R4(r) =
(

81q2

1960

)
1

r3
−

(
81q2

448

)
1

r4

+
(

9q2

140

)
ln(r)

r5
−

(
9q2

112

)
1

r6
+

(
9q2

385

)
1

r7
.

APPENDIX C
Values of the constants αi and βi, j

In this Appendix we give the values of the constantsαi andβi, j which appear in section 6.
For i = 1, we have that

α1(n, n + 1) = n + 1

2n + 3
,

α1(n, n − 1) = n

2n − 1
,

and fori = 2,

α2(n, n − 2) = 3

2

n(n − 1)

(2n − 1)(2n − 3)
,

α2(n, n) = n(n + 1)

(2n − 1)(2n + 3)
,

α2(n, n + 2) = 3

2

(n + 1)(n + 2)

(2n + 3)(2n + 5)
.
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The values forβ0,2 are

β0,2(n, n + 1) = 3

2

(n + 1)(n + 2)

2n + 3
,

β0,2(n, n − 1) = −3

2

n(n − 1)

2n − 1
,

whereas forβ1,3 we get

β1,3(n, n − 2) = −5

2

n(n − 1)(n − 2)

(2n − 1)(2n − 3)
,

β1,3(n, n) = 5

2

n(n + 1)

(2n − 1)(2n + 3)
,

β1,3(n, n + 2) = 5

2

(n + 1)(n + 2)(n + 3)

(2n + 5)(2n + 3)
.
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