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1 .  INTRODUCTION 

Vast numbers of microorganisms are suspended in temperate aqueous 
environments. Oceans and rivers, puddles and droplets, the fluid interiors 
of animals, all host an array of splendidly varied creatures. Although their 
presence is usually not casua1\y obvious, they constitute the major part of 
the world's biomass. Their population dynamics-replication and decay, 
accumulation and dispersal-modulates and regulates their own life, the 
life of the larger creatures that feed on them, and even the climate (Charlson 
et al 1987). Microorganisms interact with each other and with the world, 
at length scales that vary upward from the size of an individual, say 10-4 
cm, to the dimensions of the entire body of fluid in which they live. 

Fluid mechanics, in concert with the organisms' behavior, governs the 
dynamics of many of these interactions. However, we are concerned here 
with relatively localized, small-scale phenomena. We consider only single­
celled microorganisms which are motile, i .e. self-propelled, and so small 
that inertial effects can be ignored in describing their locomotion. Examples 
to be discussed include species of algae, bacteria, and protozoa, not to 
mention spermatozoa. 

The trajectories along which individual cells swim are determined by thc 
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314 PEDLEY & KESSLER 

swimming velocity vector, relative to the fluid, coupled with advection by 
the fluid flow. The swimming velocity is itself oriented by fluid mechanical 
and environmental influences of various kinds. Concentrated populations 
of cells can modify the environmental influences acting on a given cell, c.g. 
by shading from the light or by consuming nutrients; they can also modify 
the ambient fluid velocity field, through convection currents driven by 
nonuniformities in the cell concentration. 

A concentrated population of suspended cells is a nonlinear dynamical 
system. As such, it is a generator of spatial and temporal patterns that are 
both physically fascinating and potentially of great biological significance. 
This article summarizes the progress made thus far in understanding the 
system, tracing the thread from individual to collective dynamics. 

2. PROPERTIES OF SWIMMING 

MICROORGANISMS 

2.1 Shape and Behavior 

We consider microorganisms that swim and are small enough for inertial 
effects to be ignored in an individual's locomotion. This group includes 
bacteria, spermatozoa and other gametes, unicellular and colonial algae, 
and protozoans. Names of some typical genera (excluding gametes) are, 
respectively, Bacillus, Chlamydomonas, Volvox, and Tetrahymena. Their 
mean diameters lie in the range from I to 200 jlm. The organisms con­
sidered are denser than the water in which they swim, by a few percent for 
the algae, approximately 10% for bacteria such as B. subtilis (Hart & 
Edwards 1987), and 30% for spermatozoa (Bretherton & Rothschild 
1961 ). 

Microorganisms propel themselves through the water by using waving, 
undulating, or rotating appendages, called flagella or cilia, which are 
arranged in various geometries. Swimming speeds ( Vs) range up to several 
hundred jlm s - 1. The Reynolds number based on Vs and diameter d of 
individuals is usually less than 10- 2. There is a very great diversity of 
microorganism shapes (e.g. Bold & Wynne 1978, Pelczar et al 1986, Pres­
cott et al 1990). The fluid habitats of swimmers range from soil moisturt­
and melting snow to lakes, oceans, and even saturated saline ponds. The 
bloodstream, digestive, and reproductive canals of animals are enclosed 
fluid environments which also house motile microorganisms. Within any 
particular environment the successful motile forms often vary greatly. 

In this article we concentrate attention on a few cell types, one in 
particular: a spheroid that swims by a breaststroke-like motion of two 
flagella, which are attached near the anterior end (Ruffer & Nultsch 1985). 
The mass distribution is typically anisotropic, so that the center of mass 
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SWIMMING MICROORGANISMS 3 1 5  

is posterior to the center of buoyancy. There are many genera of algae 
having this general form. Many others which do not, such as the Euglenas 
(Leedale 1 967) and Dinoflagellates, nevertheless exhibit similar physical 
behavior patterns to those of the gcnus Chlamydomonas (d = 1 0-20 ,urn, 
Vs = 50- 100 ,urn S-I) from which the generic body pattern adopted here 
is derived. We believe, therefore, that the simplification achieved by analyz­
ing mainly one generic type of algal cell is appropriate. 

We shall in addition consider the larger ciliated protozoan, Tetrahymena 
pyriformis, often used in bioconvection studies (Section 4). This has a 
typical diameter d of35 ,urn and swimming speed Vs::;::: 500 ,urn S-I. At the 
other end of the size range we shall take the "typical" bacterium to be 
Bacillus subtilis, rather elongated (length � 2 ,urn, diameter::;::: 0.7 ,urn) and 
propelled by a rotating flagellum at the rear (Vs up to �20,um S-I) . One 
further general shape, a small body (head) propelled by a long tail, appears 
in many cells. They include spermatozoa and swarmer cells involved in 
reproduction of (for example) fungi, macro-algae, echinoderms, and mam­
mals. Spermatozoa typically have a dense head with a volume of 6 ,urn 3 
and a tail up to 50 ,urn long (Bretherton & Rothschild 1 96 1 ); they swim 
with speed Vs in the range 80-250 ,urn S- 1 (Bishop 1 962). Some bacteria 
are also propelled by a single polar flagellum. One spectacular case is 
Bdellovibrio bacteriovorans. It swims at the rate of 100 cell body lengths 
per second. The cell body is 1 . 5 ,urn long x 0.3 ,urn diameter, the tail length 
is � 4 ,urn. This predator cell bores into larger bacteria by rotating its 
"head" at 6000 rpm (Neidhardt et al 1 990). Other examples of a body 
propelled by a postcrior flagellum are the small alga Pedinomonas (Bold 
& Wynne 1978), and the Trypanosomes (Pelczar et al 1 986), which are 
protozoa that live in the bloodstream of mammals, causing sleeping sick­
ness and Chagas' disease. 

One of the most interesting aspects of microorganism locomotion is cell 
rotation, approximately around the direction of locomotion. As seen from 
the rear, most species of bacteria rotate clockwise about the swimming 

. direction p, in order to balance the torque of their counterclockwise rotat­
ing flagella (Berg 1 983, Prescott et aI 1 990). Algal cells exhibit many distinct 
swimming styles, but cells of a given species all rotate in the same direction 
as a result of a genetically determined asymmetry of their flagellar attach­
ments (Melkonian 1 989, Floyd & O'Kelley 1 989). All of the many species 
of dinoflagel1ates rotate clockwise (Levandowsky & Kaneta 1987). 

ORIENTATION MECHANISMS Microorganisms respond to stimuli by swim­
ming, on average, in particular directions. Such responses are called taxes. 
Taxes of importance in this article are gravitaxis (or geotaxis), a response 
to gravity or acceleration; phototaxis, a response to light; and chemotaxis, 
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316 PEDLEY & KESSLER 

a response to chemical gradients. Responses to shear in the ambient flow 
are sometimes called rheotaxis (see footnote to Section 3 . 1). Compensating 
torques due to shear and gravity produce gyro taxis. Some bacteria contain 
magnetic particles (magnetosomes), which cause them to swim along mag­
netic field lines (magnetotaxis) . 

Gravitaxis causes many organisms to swim vertically upwards, on aver­
age, in still water; this is particularly true for photosynthetic algae. Some 
of the more complex protozoa have a primitive gravity-sensing device. 
Loxodes (Fenchel & Finlay 1 984, 1 986) has an internal weighted lever, 
whose position, together with the local oxygen concentration, appears to 
control the swimming direction. As previously mentioned, the simplest 
mechanism for responding to the gravitational field is to havc an asym­
metric mass distribution, so the center of mass G is displaced from the 
center of buoyancy B. The consequent gravitational torque tends to keep 
G below B. If the cell swims in the direction GB it will swim upwards. 
Various species of algae are bottom-heavy and swim upwards in this way. 

The easily visible off-axis chloroplast of the nearly spherical biflagellated 
alga Chlamydomonas oligochloris (Ettl 1976) causes the center of mass also 
to be located well off the symmetry axis of the cell. The cell rotates 
approximately around its symmetry axis while it swims. This rotation, 
acting in concert with the gravitational torque, causes the celI to swim 
upward on average, yet with a pronounced wobble superimposed on its 
mean progress. The rcsultant motion is quitc common; it probably indi­
cates a dynamically equivalent morphology. The dinoflagellate Peridinium 
is another case where the wobble is marked, but the mass anisotropy has 
not been observed. 

Most green, photosynthetic, motile algae, whether or not they are bot­
tom-heavy, are phototactic to some extent (Haupt & Fcinleib 1979, 
Nultsch & Hader 1988). Some always swim towards the brightest light; 
most, such as Euglena or Chlamydomonas swim towards a weak light but 
away from a strong one [leading them to form interesting patterns as they 
seek to shelter behind each other (Wager 1 9 1 1 ,  Kessler 1 986a)]. Negative 
phototaxis-the tendency to swim away from strong light-is sufficient 
to overcome negative gravitaxis (Hader 1 987). Physical and physiological 
orienting mechanisms occur simultaneously and ought to add in a manner 
that is useful to the organism. In many algal species phototaxis exploits 
the rotation that accompanies locomotion (Colombetti & Lenci 1 983). The 
mechanism depends on the intermittent shading of a centrally-located 
photoreceptor by an opaque region, called a stigma or eyespot, which is 
located near the outer surface of the cell. When the cell rotates with its 
axis transverse to a beam of light, the eyespot intermittently interrupts the 
illumination. Whcn the cell's rotation axis is parallel to the light, the 
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SWIMMING MICROORGANISMS 317 
modulation ceases. This mechanism, together with intensity information, 
serves to guide the cell relative to the light beam. The eyespot usually 
consists of a patch of pigment, but on occasions it is a diffraction grating 
(Foster & Smyth 1 980). There are various other rather complex responses 
to illumination (Hader & Tevini 1 987). For example, the reaction of cells 
to spatial or temporal variations in light intensity often includes start/stop 
behavior ("photophobic responses"). A complete theory of strongly illumi­
nated bioconvection patterns will have to include such effects. 

A variety of mechanisms can cause microorganism populations to 
accumulate in regions of space that have particular properties. These 
mechanisms include changes of swimming style or speed, modulation of 
intermittent activities such as random rcorientations, or taxis, which is 
oriented locomotion. Thermotaxis of Paramecium is  an example of such 
an accumulative effect (Tsuchiya & Kawakubo 198 1) .  This discussion is 
included as a warning to the reader that "C-taxis" need not mean direct 
locomotion along ± grad C. 

The accumulation (or depletion) of bacterial cells in gradients of chemi­
cal concentration is classified as chemotaxis. It seems obvious that an 
organism 1 -2,um long is unlikely to be able within itself to sense a chemical 
concentration (C) gradient with a length scale of millimeters. Various 
other models have been proposed. Since many bacteria are known to swim 
in straight line bursts, separated by random reorientations (Berg & Brown 
1 972) and pauses (Armitage & Macnab 1 987, Lapidus et al 1 988), they 
could arrange for the bursts to be longer when appropriately directed. 
Another possibility, that more vigorous but totally random swimming in 
a region of higher C could lead to a C-dependent effective cell diffusivity 
D and hence to a net cell flux, does not work because the flux is inevitably 
from the region of higher D to that of lower D (Schnitzer ct al 1 990). Of 
course, cells could accumulate by swimming more slowly in the "desired" 
region. Many bacteria swim up and down oxygen gradients, toward a 
preferred concentration. The kinetics of this aerotaxis is not as well under­
stood as other bacterial chemotaxes, although the mechanism is sometimes 
quite similar (Shioi et al 1 987). Depending on concentration, oxygen can 
be either a metabolic requirement or a poison. One would therefore expect 
that response to it would be different from rcsponse to other chemicals 
that have less physiological importance. Optimal oxygen concentrations­
often in the middle of a concentration gradient-are reproducibly occu­
pied by bacteria (Taylor 1 983, Nelson et al 1 986), as well as by large 
ciliated microorganisms (Finlay et al 1 987). The consumption of oxygen 
by swimming organisms, coupled with their aerotactic response to con­
centration, excites spectacular spatial and temporal fluid dynamical 
patterns (see Section 4). 
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31 8 PEDLEY & KESSLER 

In a shear flow, with both vorticity and strain-rate, elongated cells 
have a preferred orientation aligned with the streamlines. The associated 
accumulative behavior is called rheotaxis, especially in the context of 
spermatozoon motility investigations (Rothschild 1962, Bretherton & 
Rothschild 1961 , Roberts 1970). The joint effect of shear alignment and 
another orienting influence can lead to orientation and therefore swimming 
in a direction different from that which would result from either influence 
separately. For example, bottom-heavy cells in a flow with horizontal 
vorticity tend to swim at an angle to the vertical, a process known as 
gyrotaxis. The combination of viscous and other orienting torques is 
discussed fully in the next section. 

The typical nose-heavy shape of spermatozoa suggests that these cells 
ought to be positively gravitactic (Roberts 1972, Katz & Pedrotti 1977, 
Winet et al 1984). That thought has spawned many attempts to separate 
X from the somewhat lighter Y chromosome-bearing spermatozoa. Winet 
et al review some of these efforts and show experimentally that gravitaxis 
is remarkably weak in human spermatozoa (see Section 3.1). 

ENERGY The energy stored within microorganisms is acquired by various 
means such as photosynthesis. When an algal cell swims it generally uses 
a very small amount of its stored energy, so that for any given experiment 
of several hours duration, or for an overnight interval of active swimming 
by the cell, energy consumption and supply need not be considered. 
The supply and consumption time scales are not as well separated for 
bacteria. 

From the Stokes formula one may calculate, for a "typical" algal cell 
(radius 10 /lID, speed 100 /lm) a swimming power of 2 x 10 -15 J s-I cell-I. 
The light input can be taken as I W m - 2; using a photosynthetic conversion 
efficiency of 3%, and the cell's area, the power input is estimated at 10 -11 
J s -1 cell-I . Thus, for algae, swimming requires only a small fraction of 
the input energy. Estimates for spermatozoan swimming power range from 
2 x 10 -15 to 2 X 10-13 J S-I cel l-I (Bishop 1962); in that case the fluid 
medium in which they swim can also supply energy. The temperature 
increase of the fluid due to the swimming power dissipated by a typical 
cell population is quite negligible. For 107 cells cm- 3, the temperature rises 
by 10-8 °C S-I. If 1 W m- 2 1ight intensity is absorbed and converted to 
heat by the cells, the temperature rise from that source can be as high 
as 10-4 °C S-I. Illumination can be a source of convection currents in 
experiments that investigate the interactions of organisms with light. 

The doubling time for a bacterial population in exponential growth 
phase can be as short as 20 minutes. For algae and larger organisms it is 
generally not less than half a day. Most bioconvection patterns assume 
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SWIMMING MICROORGANISMS 3 1 9  

their steady state forms quickly enough for population number changes 
to be ignored. 

2.2 Dynamics of an Individual Cell 

In general, an individual cell translates and rotates relative to the fluid 
element in which it finds itself as a result of (a) an external body force F 
per unit mass, (b) an external couple L, and (c) intrinsic swimming motions. 
(a) In almost all cases known to us the only relevant body force is gravity 
[sometimes augmented by placing the cells in a centrifuge (Hemmersbach­
Krause & Wider 1 990)] which operates whenever the average density 
p+l1p of the cell differs from p of the ambient fluid; in this case F = g I1p/ p, 
where g is the gravitational acceleration. A cell that is not swimming and 
for which I1p is nonzero will have a terminal or sedimentation velocity V,. 
(b) External couples produce translational motion only for bodies with a 
particular type of asymmetry such as a helical shape (the same is true for 
the rotational effect of an external force), and then only if L has a com­
ponent parallel to the axis of the helix. Thus even for flagellate swimmers 
that move their flagella helically, such as bacteria and some spermatozoa, 
the direct effect of L on translation can be neglected. (c) Different micro­
organisms exhibit a great variety of swimming motions, mainly using the 
beating of cilia or flagella to generate a viscous thrust which overcomes 
the viscous drag on the body and a viscous torque which must be balanced 
by viscous and external torques on the body (Sleigh 1 973, Brennen & 
Winet 1 977). All the cells under consideration, and a fortiori their append­
ages, move at very small Reynolds number, so inertia can be neglected in 
modeling the locomotion process (Lighthill 1 975, 1 976; Childress 1 98 1). 
The result of the locomotory movements i s  that a cell has a swimming 
velocity, V" relative to the fluid. In most cases of interest, the magnitude 
ofVs is much greater than that of V, and sedimentation may be neglected 
while the cell is swimming. Most cells also rotate as they swim (see Section 
2. 1 above). 

The direction in which a cell swims, represented here by the unit vector 
p (so that Vs = Vsp), is at any instant determined by the balance of viscous 
and external (in general gravitational) torques on the cell, by internal or 
external random processes such as rotational Brownian motion (these can 
be significant but for the purposes of this section will be ignored: see 
Section 2.4), and by the response of the cell to external influences that 
elicit directional swimming behavior (light, oxygen concentration, etc.). 
It will be assumed that such physiological orientation processes can be 
characterized as equivalent to an external torque which can be added to 
any other external torques. 

There is a fundamental distinction between the external torques which 
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320 PEDLEY & KESSLER 

are actually exerted on a cell, for example by gravity, and the apparent 
torques which can be used to describe a cell's response to directional 
sensory information. A locomotory response to a sensory stimulus consists 
of a change in the beat of the propulsive apparatus so that the cell body 
turns, moves faster, and so on. Thus, from the viewpoint of a swimming 
cell, a light beam, say, may seem to exert a turning moment which causes 
the cell to swim in a direction correlated with the dircction of the light 
beam. It is likely that the combined application of a physical torque and 
a light beam will result in a motion which can be analyzed by balancing 
the real and the apparent torque. Initial data on such phenomena (Kessler 
et al 199 1 )  are encouraging. 

At any instant, then, the sum of the total effective external torque Land 
the viscous torque Lv exerted by the ambient fluid must be zero. If L is 
zero and the cell is not swimming then it will rotate with a time-dependent 
angular velocity n that depends linearly on the ambient vorticity OJ and 
strain-rate E, as analyzed for ellipsoidal bodies by Jeffery ( 1 922). If the 
cell is swimming then the angular velocity is likely to be modified. If L is 
nonzero and the ambient fluid at rest, then the cell must either rotate or 
activate its swimming apparatus to generate an equal and opposite Lv' 
However, if L and the ambient velocity gradient are both nonzero, it is 
possible for the cell to have zero angular velocity or in other words a fixed 
swimming direction. 

Many microorganisms appear to swim, on average, in a given direction, 
k say, when the ambient fluid is at rest. This suggests that, if p were not 
parallel to k, the body would experience an effective external couple tending 
to reduce the angle between them. According to the simplest linear model 
such a couple would have the form 

L = Lop A k. (2. 1 )  

Indeed, i n  the particular example o f  bottom-heavy spheroidal algae (see 
above), Equation (2. 1 )  is exactly correct, with k directed vertically upwards 
and Lo = hmg, where h is the offset, along the symmetry axis, of the cell's 
center of mass from its geometric center and m is the cell 's mass. 

For a general rigid body at zero Reynolds number, the viscous torque 
Lv can be written as a linear combination of the velocity and angular 
velocity of the body relative to the fluid and of the strain rate. For a 
swimming cell the details of the flagellar or ciliar motions will also be 
important but their effect on Lv has as yet been analyzed only for sper­
matozoa with helically beating flagella in a fluid otherwise at rest (Lighthill 
1976). Most of the interesting effects to be discussed can be understood if 
we treat a cell as a rigid prolate spheroid whose axis of symmetry is aligned 
with p. In that case, 
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SWIMMING MICROORGANISMS 32 1  

Lv = Y'[�w-n+IXop /\ (E'p)], (2.2) 

where 

Y = flV[IXIIPp+IX1-(I-pp)] 

and 

0(0 = (r2 - 1 )/ (r2 + 1 ) .  

(2.3) 

Here v is the cell volume, r is thc ratio of major to minor axis of the cell, 
and lXII' 0(1- are dimensionless constants representing the resistance to cell 
rotation about axes respectively parallel and perpendicular to p. Since P is 
a unit vector, the angular velocity can be written 

and the vector product with P of the torque balance equation L + Lv = 0,  
with (2.1), gives 

1 I 
P = 

2B
[k-(k'p)p]+ 2w /\ p+IXoP'E'(I-pp) (2.4) 

(Leal & Hinch 1 972, Hinch & Leal 1 972b). (Note that this differs from 
Equation ( 1 . 1 7) of Pedley & Kessler ( 1 990) by a factor of 2, omitted in 
error in that paper.) The quantity B in (2.4) is defined by 

flVIX1-
B= -

2Lo 
(2.5) 

and is a time scale for the reorientation of p by the external torque against 
viscous resistance; for the case in which L is gravitational B was called 
the "gyrotactic orientation parameter" by Pedley & Kessler (1987). The 
component of the torque balance equation parallel to p merely states that 
the component of the cell's angular velocity in that direction is the same 
as that of the ambient fluid. That component can be, and in most cases is, 
modified by swimming motions without affecting Equation (2.4). 

2.3 Effect of the Cells on the Bulk Flow 

Since inertia is negligible in cell swimming the net force and couple on an 
individual cell is zero. Therefore any external force F or couple L on a cell 
is transmitted to the ambient fluid. If the number of cells per unit volume 
in a suspension is large, then the aggregate of all the external forces F may 
represent a significant body force on the suspension as a whole. This is 
true even when sedimentation is negligible compared with swimming in 
determining the cell's velocity; l ike Brownian motion in a colloid suspen-
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sion, the swimming motions do not influence the net force exerted on 
the suspension as a whole. The effect of this body force is dominant in 
bioconvection (Section 4). 

Similarly the presence of a body couple can have an effect on the motion 
of the suspension as a whole, by introducing a nonsymmetric contribution 
1:(L) to the bulk stress tensor 1:. Here the distinction between actual and 
apparent external torques is vital: Only actual torques are transmitted to 
the fluid and provide a body couple to the whole suspension. For example, 
when a horizontal beam of light shines on a suspension of bottom-heavy 
algal cells, the cells swim, on average, at an angle to the vertical (Kessler 
et al 1 991) .  The effective external torque on each cell is (on average) 
zero, but a net gravitational couple continues to be exerted on the fluid. 
Incidentally, the sign of1:(L) can be reversed by reversing the direction, or 
increasing/decreasing the intensity, of the illumination. 

Other contributions to 1: arise from the fact that a suspended body does 
not in general deform and rotate in the same way as the fluid would if the 
body were not there. All these "particle stress" contributions 1:(p) were 
analyzed for suspensions of randomly oriented rigid bodies by Batchelor 
( 1 970), in a seminal work that has been the foundation for rational studies 
of suspension rheology ever since. For a representative suspension of 
swimming cells, however, Pedley & Kessler (following a suggestion by 
J. M .  Rallison, personal communication) showed that there is another 
contribution to 1:, more significant than either 1:(p) or 1:(L). This arises from 
the stresslets associated with the organism's swimming motions 
themselves. For a biflagellate algal cell, the stresslet strength S was esti­
mated to be 

(2.6) 

where 2T is the drag on the cell body, twice the (viscous) thrust exerted 
by each flagellum, and 11 is the distance ahead of the cell center at which, 
on average, the thrust is applied. Although in the example analyzed by 
Pedley & Kessler ( 1990) the contribution 1:(s) of these intrinsic stresses was 
small, it was much bigger than 1:(p) and 1:(L) and must be considered in 
future work. 

Swimming cells generally rotate while they swim (Section 2. 1 ) .  Chiral, 
i.e. rotationally asymmetric, motions of the locomotory organelles produce 
a torque on the fluid, equal and opposite to that generated by the rotating 
cell body; the combined effect on the fluid is a "torque-doublet." This is 
a higher-order flow singularity than the stresslet or the "couplet" associ­
ated with an external torque and therefore does not influence the bulk 
stress tensor. 
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A population of living organisms exhibits various levels of stochastic 
behavior. An individual organism in its entirety is subject to thermal 
fluctuations which result in Brownian motion. In the cases considered here, 
translational Brownian motion is negligible compared with swimming, 
but rotational Brownian motion could be an important determinant of 
swimming direction (Berg 1 983). For a bottom-heavy organism whose 
center of mass is offset by a distance h relative to the center of buoyancy, 
the criterion for deciding on the relative strengths of gravitational align­
ment and rotational diffusion involves mghfkT, where m is the mass of the 
organism, g is the acceleration of gravity, and kT is the thermal energy. 
For algae such as Chlamydomonas this parameter is around 100 showing 
that Brownian rotations are negligible. For geometrically similar 2-llm 
bacteria it would be about 0.16, and even smaller if the mass distribution 
were less asymmetric, so Brownian rotations could be important (Kessler 
1 990). In fact, however, the orientation of bacteria is dominated by other 
influences (e.g. chemotaxis), and Brownian rotations are again unim­
portant. 

The foregoing comments apply to a precisely built mechanical automa­
ton as well as to a biological cell .  The latter may exhibit stochastic, 
seemingly or actually capricious, behavior which might be relatable to 
fluctuations in chemical concentration or light intensity of the environ­
ment, or to thermally generated fluctuations within the locomotory appa­
ratus of the cell itself. Kawakubo & Tsuchiya ( 1 98 1 )  suggested membrane 
fluctuations as one possibility. A convenient way to model such biological 
stochastic behavior is to subsume it into an effective "kT" factor, leading 
to an effective rotational diffusivity (Pedley & Kessler 1 990). Eventually it 
should be possible to validate this procedure, by the results obtained, and 
by computer-assisted statistical analysis of many cell trajectories. 

There exist additional fluctuations which are actually stochastic or can 
be modeled as if they were. Cell concentration is one of these, where mixing 
processes presumably cause it to fluctuate by jNf N, where N is the cell 
number in a particular volume. Such fluctuations can be involved in the 
initiation of plumes and bioconvection patterns (see Section 4). Cell size 
and behavior are also subject to fluctuations. The principal causes of this 
polydispersivity are the distribution of cell ages within a culture and 
imperfections in cell replication. Secondary fluctuations also occur. These 
can be due to shading of some individuals by the rest of the population, 
or to the effect of a fluctuating concentration of population members on 
local chemical concentrations seen by a particular cell. It is no surprise 
that polydispersivity of a cell population can convert a sharply peaked, 
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324 PEDLEY & KESSLER 

calculated distribution of deterministically guided cells into a broad, nearly 
Gaussian one (see Section 3 .2) . Presumably, if one incorporates sufficiently 
many stochastic processes, the central limit theorem will permit relatively 
simple parameterization of the entire collection-possibly into an effective 
kT. 

3. BEHAVIOR IN A PRESCRIBED FLOW 

3.1 Individual Orientations and Trajectories 

In the absence of random effects, Equation (2.4) can be used to determine 
a cell's swimming direction p as a function of time for any set of initial 
conditions. In many situations, however, the solution tends to a stable 
equilibrium value P, in a time of order B. In those cases, if the time-scale 
for the variation of wand E, or the time required for the cell to swim to 
a location where wand E are different (R/ V" where R is a length scale for 
the flow), is large compared with B, then the cell trajectory can be cal­
culated by setting p equal to P at all times. If a stable equilibrium orien­
tation does not exist, p will follow an orbit in the two-dimensional p-space 
(the unit sphere), as calculated by Jeffery ( 1 922) for zero external couple 
(B = (0). 

The first calculation of orientation for particles with an external couple 
of the form (2. 1 )  was made by Hall & Buesenberg ( 1 969) (their application 
was to magnetized particles in a uniform magnetic field parallel to k). 
These authors considered spherical particles, so that cto = 0 and strain­
rate would have no effect on p, and showed that there is a unique, stable, 
equilibrium orientation P unless both W' k = 0 and Bw > 1 ,  where 
w = \w\. In that case p performs a periodic orbit with period 
2nB(B2w2_1)-l/2. If we think of k as being vertically upwards, as for 
bottom-heavy algae, the case W' k = 0 corresponds to a flow whose vor­
ticity is entirely horizontal, such as unidirectional flow in a vertical pipe. 
Many experimental investigations have employed flows of this nature. In 
this case, when Bw < 1 ,  the orientation of P is given by 

sin e = Bw, cos e > 0, sin ¢ = - w l/W, cos ¢ = W2/ W, (3. 1 )  

where (8, ¢) are spherical polar angles with 8 = 0 parallel t o  k, the 3-axis, 
and ¢ = 0 being the vertical 1 � 3 plane, containing the origin of coordinates 
and the cell center (see Pedley & Kessler 1 987). 

For Poiseuille flow in a vertical circular pipe, this means that gyro tactic 
algal cells swim upwards (relative to the flow) and in towards the axis 
(¢ = n) for downflow, out towards the walls (¢ = 0) for upfiow, as long 
as Bw remains less than I. Indeed, it was the observation that swimming 
algal cells became focussed on the axis of a downwards pipe flow (and 
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migrated to the walls in upflow) that confirmed the hypothesis of bottom­
heaviness, leading to gyro taxis (Kessler 1 985a; see Section 3 .2). 

When a small vertical component of vorticity is present the stable equi­
librium orientation P is not greatly altered from that given by (3. 1 )  as long 
as Bw < 1 .  When Bw > 1 ,  however, the stable equilibrium becomes one 
in which sin e :::::; 1 and the cells tend to spiral in towards the axis, swimming 
in a horizontal plane relative to the fluid. When Bw» 1 ,  a cell's trajectory 
becomes almost circular, the radially inwards component of velocity being 
very small (Pedley & Kessler 1 987). 

For nonspherical cells the orientation depends on both the vorticity and 
the strain rate in the ambient flow (Equation 2.4). A variety of simple flow 
fields , symmetric about a vertical axis or two-dimensional in a vertical 
plane, have been considered by Pedley & Kessler ( 1 987), and the results 
can be roughly summarized as follows. For flows in which the vorticity 
and the strain-rate are comparable (vertical pipe flow or simple shear flow) 

there is one stable equilibrium orientation if Bw is less than a certain 
critical value and none if Bw exceeds that value; periodic orbits then 
presumably exist. For pure straining flows (conical sink flow, two-dimen­
sional stagnation-point flow) thcre is one stable equilibrium orientation 
for values of BE (E is a characteristic strain rate) less than a certain critical 
value, but there are two stable equilibria for larger values of BE. In eaeh 
case the critical value of the flow parameter depends on ao and the precise 
orientation of the flow. Calculations have not been made for flows with a 
nonzero vorticity that is small compared with the strain rate. Observations 
of cell populations in which two stable orientations are predicted have not 
yet been made, nor have the implications of this result been worked out. 
Observations have been made of algae in a simple shear flow and observed 
cell trajectories agree qualitatively with the predictions, as for pipe flow 
(Kessler, unpublished). 

Further interesting predictions were made for gyrotactic cells swimming 
in the far field of a dense sphere falling through the fluid at low Reynolds 
number. More rounded cells (cxo < 1) would be focussed into the wake of 
such a sphere, while elongated cells (ao > 1) would swim away from the 
wake. Since the far field of such a sphere depends only on the net force it 
exerts on the fluid, the same focussing (or anti-focussing) would occur 
if it were itself swimming upwards. This gives a potential, but as yet 
unconfirmed, mechanism for the efficient predation of populations of 
swimming algae by larger organisms. Incidentally, the elongated cells 
would not necessarily escape, since below the larger sphere they are 
focussed inwards, while the rounded ones swim away. 

Timm & Okubo ( 1 99 1 )  have made an interesting extension to the above 
predictions of gyrotaxis in the flow field of a falling sphere by computing 
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the trajectories of spherical cells (ao = 0) from initial locations ahead of 
the sphere and at arbitrary distances from the axis of symmetry. They 
deem an algal cell to be captured if its trajectory brings it sufficiently close 
to the falling sphere, and they can thus compute the "capture cross­
section" of the falling sphere. The calculation is complicated by the fact 
that for certain values of BWola (where Wo and a are the velocity and 
radius of the falling sphere) there exists a critical zone near the sphere in 
which Bm > I so there is no equilibrium orientation (3 . 1 ); in that case 
(2.4) must be integrated numerically for each relevant trajectory (the inte­
gration is simplified by the fact that e = nl2 at the point whcrc the tra­
jectory enters the critical zone). 

In a steady but nonuniform velocity field, a cell's orientation will change 
gradually with time-assuming that a stable equilibrium orientation exists 
for each spatial location-because as it swims the cell's trajectory will take 
it to different locations where the vorticity and strain rate are different. 
Computations of the trajectories of individual cells, still neglecting random 
effects, have been made for spherical cells (ao = 0) in downwards pipe flow 
by Kessler ( l 986a). If the vertical velocity of the fluid is 

( r2 ) 
w (r)  = -Wo 1 -

R2 , (3.2a) 

where r is the radial coordinate (horizontal), R is the radius of the pipe, 
and Wo/2 the average fluid velocity, then 

Thus, as long as Bm < 1 for all r ::;; R, 

p = [ -Bm, 0, ( 1 - B2w2) 1/2], 
from (3. 1) ,  and the equation of the trajectory is 

dr 2Wor 
dt = -BVs R---r-

2BV, dz 1 [( r2 ) V, ( 2 2 r2 )1/2J 
� dr = -;. 1 -

R2 - Wo 
1 - 4B Wo 

R2 ' 

(3 .2b) 

(3 .2c) 

(3.3a) 

(3.3b) 

where z is the axial coordinate, measured upwards. The factor BVs was 
called f3 by Kessler ( 1986a); it denotes the distance swum by a cell in one 
orientation time, about 0.21  mm for an algal cell with B = 3.4 s, Vs = 63 
pm S-I. Equations (3 . 3) are easy to integrate for arbitrary initial position 
(ro,zo). It is clear that, if VsIWo < 1 (and in all reported experiments 
VsIWo « 1 ), the trajectory is directed inwards and, except close to the tube 
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wall, downwards; every trajectory eventually asymptotically approaches 
the tube axis. 

Similar trajectory calculations have been made for a simple shear flow 
in a vertical plane (Kessler 1 986a), which is also experimentally realizable. 
Using the coordinate system depicted in Figure 1 ,  the trajectory equations 
are given by 

�� = Sy+ Vs sin (t/J+8), 
dy 
dl = Vscos (t/J+8), (3.4) 

where S is the imposed shear rate and t/J is the angle the streamlines make 
with the horizontal. For spherical cells the gyrotaxis angle 8 is given by 

sin 8 = BS 

from Equation (3. 1 ), as long as BS < 1. For spheroidal cells 8 is given by 

sin 8 = BS[1 +0(0 cos (28+ 2t/J)] 

and exists as long as BS is less than a critical value depending on 0(0 and 
t/J (Pedley & Kessler 1 987). We may note from (3.4) that even gyro tactic 
cells are predicted to follow the streamlines if t/J + () = n12. This has not 
yet been tested experimentally, although observations with t/J = nl2 show 
qualitative agreement with (3.4) (Kessler, unpublished). 

The particular microorganism chosen to i llustrate the above discussion 
has been that o[the bottom-heavy, gyro tactic, spherical or spheroidal algal 
cell for which k is vertically upwards and the viscous torque is given by 
(2.2). Such an organism is propelled by beating flagella at the front or top 

Figure 1 A shear flow u = Sy inclined at an angle I/J to the horizontal; the deterministic 
swimming direction P makes an angle e with the vertical (k). 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
2.

24
:3

13
-3

58
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 o

n 
08

/2
7/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



328 PEDLEY & KESSLER 

end, but the effect of the flagella on the torque has been neglected. Similar 
considerations presumably apply to bacteria, propelled by rotating flagella, 
except that k will be related to the chemotactic gradient, and the cells are 
much smaller so that their trajectories may be expected to exhibit greater 
randomness. 

However, there is one class of microorganism which has been extensively 
studied and which requires separate consideration: spermatozoa. These 
usually have a single tail flagellum, but it is so much longer than the head 
(e.g. 45 /tm compared with 10 /tm for bull sperm) that it is not accurate to 
treat the whole swimming cell as a rigid spheroid (Katz & Pedrotti 1977), 
although an inert cell can be thought of as an elongated body. In this case 
the center of mass is located in or near the head, so k is directed vertically 
downwards. Observations by Bretherton & Rothschild ( 1 96 1 )  on sper­
matozoa in a horizontal flow between two microscope slidcs show that 
dead cells have their heads pointing downstream in the top half of the flow 
and upstream in the bottom half, as would be predicted by the torque 
balance corresponding to (3 . 1 ) .  After sedimentation has acted for some 
time, then, most dead cells appear to point upstream. Live spermatozoa 
were recorded by the same authors as pointing upstream, I on average, in 
both halves of the flow; no explanation for this curious result  was offered. 
Roberts ( 1 970) also observed upstream orientation to be dominant in a 
horizontal tube flow, and supposed that the cells exhibiting the effect were 
in the lower half, having tended to swim downwards, in accordance with 
(3 . 1 ), much more quickly than sedimentation would account for. Winet et 
al ( 1 984), however, made careful observations of human sperm in both 
horizontally and vertically oriented glass flow channels and found no 
difference in either the distribution of cells with distance y from the wall, 
or the distribution of mean swimming direction with y, no matter whether 
the wall was a top wall ,  a bottom wall, or a vertical wall. Indeed most 
cells tended to swim upstream, but that was a consequence of swimming 
towards the wall and being correspondingly rotated by the shear. The 
tendency to approach the wall was very much greater than the tendency 
to swim downwards. In each case, the majority of the cells were to be 
found within 100 /tm of the wall, with a maximum concentration at y :::::: 10 
}lm. We have found no explanation in the literature for the accumulation 
of spermatozoa near boundaries, though we may note that if the time 
required for a cell to change its swimming direction were significantly 

I We have avoided the terms positive rheotaxis and negative rheotaxis because conventions 
differ. Bretherton & Rothschild ( 1 96 1 )  and Roberts (1970, 1 975) describe upstream swimming 
as positive rheotaxis, while Wi net et al ( 1 984) describe it as negative rheotaxis. The term 
rheotaxis was originally coined to describe the tendency for fish to point their heads upstream 
in a rapid flow (Fraenkel & Gunn 1 940). 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
2.

24
:3

13
-3

58
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 o

n 
08

/2
7/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



SWIMMING MICROORGANISMS 329 

longer than the time to swim across the channel, then such accumulation 
would inevitably follow. The importance of these results in reproductive 
physiology is likely to be considerable. 

3.2 Focusing of Trajectories 

The behavior of individual microorganisms can be observed only through 
a microscope, but aspects of their behavior can be inferred from obser­
vations on the laboratory scale of large numbers of them in suspension. 
High cell concentrations can be easily seen. For example, Kessler (I 985a,b, 
1986a, b) has used algal cells of the genera Dunaliella and Chlamydomonas 
in his experiments. These have a mean diameter d in the range 1 0-2 0 11m. 
Assuming that d = 1 5  11m and that cell concentration n ranges between 
1 04 and 1 07 cells cm - 3, one may estimate the mean free path for light 
absorption, A ::::: 4/rcnd2 , to range from 50 to 0.05 cm. Thus the high con­
centration looks very dark green compared with the low concentration. 
Even at the high end of this concentration range, however, the suspension 
is still dilute, the volume fraction being about 0.02. 

Motile algal cells in still water tend to swim upwards as discussed above 
(Section 2 . 1). The cells swim up because they are bottom-heavy; the truth 
of this statement is inferred from the fact that when a suspension of the 
algae is placed in a vertical pipe and a through-flow is imposed, the 
swimming cells concentrate themselves in a green core on the axis for 
downftow and in sheets at the walls for upftow (Kessler 1 985a,b). This 
phenomenon is predicted by the above theory of cell orientation and 
cannot be explained by any other realistic mechanism. Dead cells are not 
concentrated. In this and the next two sections we examine analyses of the 
distribution of cell concentration in the focussed core in downflow. These 
may be compared qualitatively with the concentration distribution mea­
sured by Kessler ( 1 985b) from photographic negatives using an optical 
densitometer. 

One way of working out the concentration distribution is to assume a 
uniform concentration no cells cm- 3  at the inlet of the tube, say z = zo, 
and integrate the trajectory Equation (3.3b) for arbitrary initial radius roo 
After an initial transient, the concentration nCr, z) at a lower level, z, will 
be time-independent and can be calculated from conservation of cells in 
the annulus between the trajectories through Vo, zo) and (ro+dro, zo) . This 
shows that nr2 is conserved on a trajectory. Ifit is assumed that Vs /Wo« 1 ,  
then a typical trajectory is given by 

4BVs 1 2 2 
jf2(zo-Z) = 2 1 0gro/r - R2 (rO -r), 

(3.5) 

and nCr, z) is given by 
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4BVs n r2 
�(ZO-Z) = 10g

nO 
+ 

R
2(l-n/nO) (3.6) 

(Kessler 1 985b). This expression is valid within the trajectory that orig­
inates at (R, Z 0); outside that trajectory n = O. There is a concentration 
defect on the axis relative to the maximum. Neither this defect nor the 
sharp cutoff from maximum concentration to zero at the outer trajectory 
is observed experimentally. 

The source of the discrepancy lies in the fact that in practice thc cells 
(a) are not identical and (b) do not behave deterministically, i .e. they have 
a random component contributing to their orientation at any time (Section 
2.4). The former can be accounted for by incorporating a distribution of 
values of the gyro tactic length scale B V" which succeeds in smoothing the 
sharp cutoff but cannot eliminate a dip on the axis (though a sufficiently 
wide spread of B Vs would make the dip virtually impossible to observe). 
The latter could be included by a Monte Carlo calculation, but this has 
not been done. However, the standard theories of stochastic processes 
suggest that the macroscopic effect of the random aspects of cells' behavior 
can, to a first approximation, be modeled as diffusion. 

3.3 Cell Conservation 

From now on we model the suspension as a continuum, of which each fluid 
element contains large numbers of cells, n per unit volume, which in general 
swim in random directions p; p is taken to be a stationary random variable 
with probability density function (p.d.f.) f(p). Neglecting sedimentation 
the equation describing the conservation of cells is 

On 8, =  -V'[n(u+VJ-D'Vn], (3. 7) 

where u is the bulk fluid velocity (supposed given in this section), Vc is the 
average cell swimming velocity and D is the cell diffusivity tensor. Defining 
<- -) as the ensemble average, given for functions of p by 

where the integral is over the surface of the unit sphere in p-space, we may 
write 

(3.8) 

the latter expression being valid if V" the swimming speed, is a stationary 
random variable independent of p. The diffusivity tensor is given by 
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D(t) = f) (Vr(t)Vr(t-t') dt', 

where Vr is the velocity of a cell relative to V c, so in the special case where 
Vs is a constant we have 

D = V;,«p-(p» (p -(p»), (3.9) 

where, is the direction correlation time. This is the form used by Pedley 
& Kessler (1990). 

The deterministic description of cell focusing in pipe flow given in 
Section 3 .2  can be obtained from (3.9) by setting D = 0 and Vc = VsP, 
where P is the stable gyro tactic swimming direction, if it exists, given by 
(3 . 1 ). With diffusion present, (3.7) has been solved in the case where n is 
a function of the radial coordinate r only, as expected sufficiently far from 
the inlet. In that case, with the fluid velocity w(r) also independent of z, 
the advective term drops out of (3 .7), leaving a balance between radial 
inswimming and outwards diffusion. A single integration (using the bound­
ary condition an/or = 0 at r = 0) gives 

dn 
Drr 

dr 
= n Vcr. (3 . 10) 

Kessler ( l 985b, 1 986a,b) has given the solution to this equation when Vcr 
(the radial component of thc avcragc cell swimming velocity) is given by 
(3. 1 )  to be 

dw 
Vc r = -BVs 

dr' 

and for a constant radial diffusivity Drr- The solution is 

{ BVs 
} n = n(O)exp --[w(r)-w(O)] , 

Drr 

where nCO) should be determined by global cell conservation, i .e .  

2n iR n(r)dr = nR2No , 

(3.11 ) 

(3. 1 2a) 

(3. 1 3) 

No being the given average concentration in the suspension as a whole. 
For Poiseuille flow (3 .2a) we have 

(3 . 1 2 b) 

where k = BVsWo / Drr- This is a satisfyingly Gaussian distribution, and is 
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consistent with qualitative experimental results obtained by collecting the 
focussed celIs in a three-segment collector. However, Drr is unlikely to 
remain a constant, for one thing because of cell-cell interactions: Thc 
ability of the cells to move about randomly will be restricted in regions of 
high cell concentration. Kessler ( 1 986a) gave a simple model for this 
collisional diffusion process. Moreover, even for a sufficiently dilute sus­
pension in which cell-cell interactions can be neglected it is questionable 
whether (3 . 10) can be used with (3 . 1 1 ) .  The latter assumes that the cell 
swimming direction is always equal to its deterministic value P, so ran­
domness is negligible, while the incorporation of diffusion explicitly recog­
nizes that randomness is important. Another problem is that at sufficiently 
large radius the vorticity will become so large that Bw > 1 so no stable 
swimming direction exists. What is required is a rational model for the 
orientation p.d.f., f(p), which will allow nondeterministic estimates to be 
made for Vc and D, from Equations (3.8) and (3.9). This procedure ought 
to yield results analogous to the statistical mechanical Einstein relation 
between mobility and diffusivity. 

3 .4 The Fokker-Planck Equation 
Such a model was provided by Pedley & Kessler ( 1990). It was assumed 
that, in the absence of all torques, the cells swim in totally random direc­
tions, with an isotropic p.d.f., f = I j4n, and an isotropic diffusivity D = 

1 V;rI. In the presence of viscous and gravitational torques, however, the 
p.d.f. will be biased by the tendency for p to approach P after every random 
change of direction. Assuming that the intrinsic tendency for the cells to 
change direction randomly is independent of the instantaneous direction, 
we may model the process as analogous to that of colloidal particles in 
suspension under the action of rotatory Brownian motion, for which there 
is already much theory [e.g. Brenner ( 1 974), Hinch & Leal ( 1972a), etc.]. 
We therefore assert thatf(p) must satisfy the Fokker-Planck equation 

af . 2 
at 

+ V ' (pJ) = DrV f, (3. 1 4) 

where V is the gradient operator in p-space, Ii is the deterministic reori­
entation rate given by (2.4), and Dr is a rotational diffusivity, taken for 
simplicity to be isotropic and constant. The effect of other cells on the 
orientation of a particular cell is neglected, which means that the model 
can be valid only for sufficiently dilute suspensions. A further assumption 
is that the ai/at  term can be neglected in (3 . 1 4), which requires the time 
scale for unsteadiness in the flow to be large compared with Dr- 1 . We also, 
for convenience, continue to assume that Vs is a given constant, not a 
random variable, though its randomness would affect (3.9). 
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SWIMMING MICROORGANISMS 333 

In the case of zero ambient flow, only the first, gravitational term 
remains on the right hand side of (2.4). The solution of (3 . 1 4) is then 
axisymmetric and takes the form 

(3. 1 5) 

(Brenner & Weissman 1972) where 

(3 . 1 6) 

small A means that randomness dominates andfis almost isotropic, while 
large A means that reorientation by the torque balance dominates so f is 
almost proportional to (j(p - P). When ! is given by (3 . 1 5), Vc and D ean 
be readily calculated. Vc is vertical, with 

D is diagonal and axisymmetric, and the ratio of the horizontal to vertical 
diffusivities is 

These results, used together with preliminary data from measured tra­
jectories of individual cells of C .  nivalis (Hader & Hill 1 99 1 ), gave an 
estimated value for A ::::; 2.2 for that species. Combined with B = 3 .4 s 
(Pedley et al 1 988) this gives an estimate for Dr. from (3. 1 6), of 0.067 s- I .  
[This i s  a factor 2 lower than the value given by Pedley & Kessler ( 1990) 
because of the factor 2 missing from Equation (2.4).] For comparison the 
thermal rotational diffusion coefficient for a IO-Ilm diameter sphere is 
1 .3 x 10- 3 s- I. 

Pedley & Kessler (1 990) also computed the first-order correction to 
(3. 1 5) for a weak ambient flow, i.e. for small values of the parameter 

B = Bm, (3 . 1 7) 

where here m is used as a scale for the ambient velocity gradient. For the 
case of spherical cells in downwards pipe flow we use cylindrical polar 
coordinates (r, </J, z), so the z-velocity is given by (3 .2a), the vorticity by 
(3.2b), and e = 2BWo rjR2. The results of the theory give 

where II is another function of A defined by Pedley & Kessler (1 990) 
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(when A = 2.2, K, � 0.57, I, � 0 .45); note that this is not parallel to 
p = ( - 1>, 0, I ) .  The diffusivity tensor is given by 

where I2(A) � 0. 1 6  when A = 2.2. The solution of the cell conservation 
Equation (3. 1 0) for a z-independent distribution is again (3. 1 2b), but with 
k = (AI,/K,) (BWo/r Vs); this indeed represents a narrow, concentrated 
core down the tube axis as long as k »  1 .  Using the estimates given by 
Pedley & Kessler ( 1 990), this requires Wo » 0.22 Vs � 1 4 .um s- ' ; in his 
published experiments Kessler used centerline velocities of 1-3 mm s- ' . 

Since I> is proportional to r, the above solution will always be valid 
sufficiently close to the axis. It will therefore be valid wherever there is a 
substantial cell concentration if I> is still small at r = 2k- ' / 2  R, say, i .e .  if 
4(K,/Ua '/2(B Wor Vs/R2) '/2 « 1 .  For C. nivalis in a I -em radius tube with 
Wo = I mm s- ' , this quantity is approximately 0.28, so the solution should 
be reasonably accurate. However, for larger velocities, e will not be small 
throughout the concentrated core and (3. 1 2b) will not be a good approxi­
mation to nCr). The theory for general values of 8 can be derived by 
extending the analysis of Brenner & Weissman (1972) on dipolar spherical 
particles undergoing Brownian rotations. In particular, an analytical solu­
tion is available at large values of 8, for which the torque due to the ambient 
vorticity is much greater than the gravitational torque, so that no stable 
equilibrium orientation P exists even in the absence of randomness. The 
results, up to (1)(1>- 2), are 

<p) = :I> ( - 1 , 0, ;1» 

9 
1 - 1 51>2 o o 

D 4 4 

V;r 
= 0 1 - - - 82 3 1 582 

° 
4 

- 2 
7 

1 - 1 582 

(Pedley, unpublished). In this case the solution to (3. 1 0) is  

(3 . 1 8) 
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where X = R2j(2BWor Vs) and Nl is a constant, which will be determined 
in terms of the centerline concentration nCO) by matching this solution to 
(3. 1 2b) in an intermediate zone. Clearly the outer solution (3. 1 8) is valid 
only for r »  R2jBWo (8 )> 1 ) .  The algebraic falloff with radius in (3 . 1 8) 
is much more gradual than the exponential decay of (3 . 12b). This is a 
consequence of the much weaker tendency to swim inwards, and the 
diffusivity tensor becoming more isotropic, when the random intrinsic 
reorientations are acting on a deterministic orientation which itself varies 
on a periodic orbit (cf Leal & Hinch 1 97 1 ). 

In summary then, the explicit recognition from the start that there is a 
random distribution of cell orientations, whose p.d.f. satisfies the Fokker­
Planck equation, enables a rational theory of microorganism suspensions 
to be developed, whatever the strength of the ambient flow and whatever 
external torques are acting on the cells. Such a theory should be the basis 
of future studies of collective behavior in such suspensions. In general, for 
spheroidal or more complicated cells, and for flows of arbitrary strength, 
the Fokker-Planck equation will have to be solved numerically, guided by 
the above and other analytical solutions (e.g. Leal & Hinch 1 97 1 ,  1 972; 
Hinch & LeaI 1 972a,b). 

3 . 5  Instability of a Focussed Beam 

The focussed beam of algae in a downwards pipe flow experiment is 
often observed to develop an instability in the form of regularly-spaced, 
axisymmetric blips, (Kessler 1 985b, 1 986b). The blips are regions of 
increased cell concentration, which become roughly spherical with a visible 
radius two or three times that of the beam; they fall at a faster velocity 
than the imposed centerline velocity Wo and therefore have an internal 
vortex-ring structure. Blips tend to form more readily for larger values of 
the initial, uniform cell concentration No or for smaller values of Woo Of 
course, once the blips have formed the velocity field is no longer given by 
the imposcd Poiseuillc flow, but the breakdown of that flow properly forms 
a part of this section. 

The reason that blips fall faster than their surroundings lies in the fact 
that the algal cells are denser than water (Apjp � 0 .05): A drop of fluid 
containing more cells than its surroundings thus must fal l  relative to its 
surroundings. This also means that the focussed beam itself will have a 
velocity greater than Wo, an effect which we have neglected hitherto on 
the grounds that the difference would be small. However, the details of 
the velocity profile, in particular the presence of inflection points, may be 
crucial in the instability mechanism. 

The z-independent axial velocity profile in the presence of negative cell 
buoyancy is given by the momentum equation 
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(3. 1 9) 

where a = vgflp/Il, Il is the fluid viscosity, and pz is the uniform imposed 
pressure gradient (recall that z is measured upwards, W < 0 and pz > 0 for 
imposed downflow). Assuming that Wo is small enough for the small-a 
solution of the Fokker-Planck equation to be valid, the cell-conservation 
Equation (3 . 1 0) again has the solution (3 . l 2a), with Vs replaced by JI Vs. 
When combined with (3. 1 9) this results in a nonlinear ordinary differential 
equation for w (or n) for which a general solution cannot be written down 
(see Joseph & Lundgren 1 973, Childress & Percus 198 1) .  However it is 
clear that if pz (and hence Wo) is big enough there is no inflection point in 
the profile, but that there does exist an inflection point for sufficiently small 

Pz. In particular, when pz = 0 a solution satisfying the boundary conditions 
is 

(3.20) 

where y = rxJ1 B Vs/8Drr; the corresponding velocity profile has an inflection 
point at r = [yn(O)]- 1 /2 . This solution corresponds to a plume that can 
form spontaneously in a tube with no ends and no imposed flow, but i t  
may not  be realized in practice because global cell conservation (3. 1 3) 
shows that nCO) = No/(l - yNoR2), which becomes infinite if either No or 
R is too big. Kessler ( l 986b) speculated that a possible reason for the 
formation of blips could be the nonexistence of a corresponding steady 
solution. The result also has implications for the spacing of spontaneously 
formed plumes in a wide chamber (see Section 4.4). 

What are the possible instability mechanisms when a steady state does 
exist? Blip instabilities are also observed on thin columns of dense dye 
falling longitudinally in an otherwise still fluid, so the swimming of the 
cells is not a necessary condition for instability. At least two possible 
mechanisms appear to exist. First, if a somewhat widcr or morc con­
centrated blob forms on the column it will tend to fall more rapidly than 
the rest of the column and will entrain more dense fluid from the column 
as it falls, enhancing both its size and its speed of fall .  This mechanism 
will actually lead to instability unless the corresponding perturbation to 
the viscous stresses is such as to prevent it; it does not require a high 
Reynolds number. Second, when the velocity profile has an inflection point 
it  is much more prone to suffer a shear instability, independently of the 
density distribution, but only at fairly high Reynolds number. The two 
mechanisms may of course both be destabilizing. There is apparently no 
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way that cell swimming can have a qualitatively distinct effect, but it will 
make a quantitative difference to the growth rate of the blips as a result 
of both gyrotaxis and cell diffusion. 

A relevant theory is that of Smith ( 1989), who analyzed the stability of 
a vertical column of one fluid on the axis of a cylinder containing another, 
both acted upon by a uniform pressure gradient. The densities of the two 
fluids were different but their viscosities were the same. Tnterdiffusion of 
the two fluids was ignored, but most of the discussion concerned the case 
of zero surface tension. The analysis was limited to long axial wavelengths, 
and the Reynolds number remained of (0( 1 )  in that limit so that shear 
instabilities were ruled out. For the case in which the inner fluid was 
slightly denser, Smith found instability if the downwards pressure gradient 
dp/dz exceeds a certain critical value, which depends on the radius ratio. 
The mechanism of the instability relied on a rather subtle interaction 
between the perturbations to the viscous shear stress and the pressure, but 
is presumably allied to the first of those outlined above. The critical 
pressure gradient can be negative, leading to upflow in the outer region, 
but in general the more vigorous the downflow the more unstable the flow. 
This is contrary to the few observations (Kessler 1 986b) that indicate a 
greater propensity to instability if the downflow is decelerated; further 
theoretical and experimental work is clearly desirable. 

4. BIOCONVECTION 

4. 1 Observations 

Bioconvection is the name given to the process of spontaneous pattern 
formation in suspensions of upswimming microorganisms. The name was 
apparently coined in 1 96 1  (Platt 1 961 )  but the patterns have been known 
since at least 1 848 (see Wager 1 9 1 1 ) .  Patterns have been seen in suspensions 
of ciliated protozoa, especially Tetrahymena pyriformis (Loeffer & Mefferd 
1 952, Platt 1 96 1 ,  Winet & Jahn 1 972, Levandowsky et al 1 975), sper­
matozoa (Rothschild 1 949), bacteria (Wager 1 9 1 1 ,  Nettleton et al 1 953, 
Pfennig 1 962, Spormann 1987, Kessler 1 989), dinoflagellates (Levan­
dowsky et aI 1 975), and flagellated green algae from genera such as Chla­
mydomonas, Dunaliella, Euglena, and Volvox (Wager 1 9 1 1 ,  Brinkmann 
1968, Nultsch & Hoff 1973, Kessler, 1984b, 1 985b, 1 986a). In the case of 
magneto tactic bacteria (Spormann 1987), the bacteria swim along mag­
netic field lines, and waves of concentration are generated with crests 
more or less perpendicular to the field lines. In the case of spermatozoa 
(Rothschild 1 949), wavelike concentrations of cells were reported as evi­
dence of large-scale motions but were not described in detail. We will not 
refer to these cases as bioconvection because upswimming is not involved. 
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In all other cases of pattern formation, however, the following features 
are found: The cells are denser than the medium they swim in, they tend 
to swim upwards, on average, in still water, and the patterns die away if 
the cells stop swimming. The cause of the upswimming orientation is not 
the same in each case (gravity-sensing, bottom-heaviness, chemotaxis, 
phototaxis), but the patterns show great similarities between different 
species and orientation mechanisms. 

When bioconvection takes place in a shallow chamber ( < 1 cm deep) 
the pattern may be observed from above, because falling regions of high 
cell concentration absorb or reflect light differently from their surround­
ings. The patterns take a variety of forms (Figure 2): a regular, often 
square, array of dots, each a concentrated plume (Wager 1 9 1 1 ,  Winet & 
Jahn 1 972, Kessler 1 985b, 1 986a) (Figure 2a); a regular, square or hexa­
gonal, array of lines or "filaments" representing falling sheets of cells, 
which are often a transitory phase on the way to an array of dots (Wager 
1 9 1 1 ,  Winet & Jahn 1 972, Kessler 1 986a, 1 989) (Figure 2b)-there is 
evidence that the branching pattern of these filaments may have a fractal 
structure (Noever 1 990a); a "labyrinthine" structure of banded rolls, with 
some hexagonal features (Wager 1 9 1 1 ,  Levandowsky et al 1 975) (Figure 
2c). 

The nature and the size of the patterns are influenced by a number of 
variables. Principal among these are the average cell concentration No and 
the chamber depth h. Some quantitative data are available for Tetrahymena 

pyriformiS (Wi net & Jahn 1 972, Levandowsky et al 1 975, Childress et al 
1 975) and for various algae: Euglena viridis (Wager 1 9 1 1 ), Chlamydomonas 

nivalis, and Dunaliella tertiolecta (Kessler 1 985b, 1 986a). The observations 
on T. pyriformis indicate that no patterns form if h is less than a critical 
value he which decreases as No increases. For a given h there is also, 
therefore, a critical value of No. The value of he was around 4 mm when 
No was around 106  cells cm - 3, but was less than I mm when No was as 
high as 5 x 1 0 6  cells cm- 3. For the lower cell concentration, the steady­
state pattern was in the form of regular dots for slightly supercritical 
depths, but became more irregular and then gave way to lines as h was 
increased. The spacing of the dots or lines, A say, decreased as h was 
increased (Wille & Ehret 1 968); this is opposite to what happens in thermal 
convection. For the higher concentration the labyrinthine pattern was 
always seen, even at very small depths. 

The existence of a critical cell concentration and a critical depth, the 
change from dots to filaments as h i ncreases, and the decrease in A as h 
increases are also found in suspensions of algae, but A decreases with time 
during pattern development. The mechanism of bioconvection is in some 
respect different for the algae. One dramatic difference in their behavior is 
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that they are strongly influenced by light; in some species, for example, 
patterns do not form when the suspension is strongly illuminated (Wager 
1 9 1 1 ), and shining light from different directions can be used to modify 
preexisting patterns (Wager 1 9 1 1 ,  Kessler 1 986a, 1 989). However, the 
general observations above refer to patterns that form in the dark or in a 
dim, nondirected light; so phototaxis is not the explanation for any differ­
ences. The other big difference between the algae and Tetrahymena is that 
the former are bottom-heavy and hence gyrotactic. The consequences of 
this will be discussed below. 

In a deep chamber ( � 2  cm) patterns can be observed from the side, and 
essentially two types of structure are observed. One consists of plumes or 
streamers plunging from a concentrated layer at the upper surface, which 
can happen in suspensions of protozoa, bacteria, or algae (Wager 1 9 1 1 ,  
Plesset & Winet 1 974, Kessler 1 986a); these plumes may exhibit blips (see 
Section 3 .5) at the front or along their length. The other structure has been 
reported only in algal suspensions, and consists of streamers spontaneously 
generated in the interior of the suspension, leading ultimately to "bottom­
standing plumes"-regularly spaced plumes which occupy only the lowest 
2 or 3 cm of the chamber (Wager 1 9 1 1 ,  Kessler 1 985b, 1 986a). 

In the case of bacteria, the labyrinthine patterns have been seen in 
shallow layers with a free upper surface (Figure 2c). The pattern geometry, 
however, is a strong function of layer depth. Viewed from the side, a deep 
chamber reveals no motion at all towards the bottom, but rather complex 
motions in a well defined region at the top (Figure 2e). These will be 
discussed more fully below. 

4.2 Mechanisms 

Common to all the microorganisms that exhibit bioconvection are (a) a 
greater density than water and (b) upswimming. In a fluid of finite depth, 
upswimming means that cells accumulate near the top surface, so the 
upper regions of the suspensions are denser than the lower. If the density 
gradient is high enough the fluid becomes unstable; this leads to an over­
turning convection, analogous to Rayleigh-Benard convection in a layer 
of fluid heated from below. 

For organisms that exhibit gyrotaxis (algae) there is a second, inde­
pendent instability mechanism that leads to spontaneous pattern for­
mation in a uniform, unbounded suspension. Suppose that a small fluc­
tuation causes the cell concentration in a particular blob of fluid to be 
greater than in its surroundings. This blob, being denser than the sur­
roundings, will sink, thereby generating a velocity distribution with hori­
zontal vorticity, which will focus other cells into the wake of the sinking 
blob, and a falling concentrated plume will be formed. Gyrotaxis will also, 
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Figure 2 Photographs ofbioconvection. (a) Steady-state bioconvection in a shallow (h = 3.2 
mm) suspension of algal cells Dunaliella lerlio/ecta viewed from above: mean concentration 
No = 2 X 106 cells cm- 3; breadth of container do = 4 cm. (b) Transient bioconvection in a 
slightly deeper (h = 6.8 mm) suspension of D. tertiolecta viewed from above: No = 2 X 106 
cells cm- 3, do = 4 cm. (c) Steady-state bioconvection in a suspension of bacteria (Bacillus 
subtilis) viewed in dark field illumination from above: No = 109 cells cm- 3, h = 2.5 mm, 
do = 8 cm. This type of pattern was termed "Labyrinthine" by Levandowsky et al (1975). 
(d) Steady-state bioconvection in a deep (h = 1 5  mm) suspension of C. nivalis viewed from 
the side: No = 106 cells cm- 3 Note the occurrence of "bottom-standing plumes," which have 
transported most of the cells towards the bottom, causing wider spacing at greater heights. 
(e) Bioconvection in a deep and narrow (h = 1 mm) suspension of B. sub/iUs viewed in dark 
field from the side; No = 109 cells cm- 3• 
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of course, affect the bioconvection patterns generated by the upswimming 
mechanism in a fluid of finite depth. 

Which mechanism leads to the first instability in any particular sus­
pension of gyrotactic cells depends on the relative magnitudes of various 
time-scales. If the suspension is initially well-stirred-and therefore uni­
form in concentration-the stirring motions will decay in a time td' Sup­
posing this to be short enough, upswimming will tend to set up an unstable 
density stratification near the top surface in a time fs and the growth of 
the overturning instability will take a further time fml '  Meanwhile the 
essentially uniform suspension well below the surface will become gyro­
tactically unstable in a time tm2' This instability will be observed first if 
td < tm2 < ts + tmb while the overturning instability will be seen first if 
td < t s  < tm2' Hill et al  ( 1 989) estimated that the overturning instability will 
occur first if the fluid layer is sufficiently shallow, but that both mechanisms 
are represented in Kessler's ( 1 985b, 1 986a) experiments. If td is longer 
than the other times, the decaying stirring motions themselves trigger the 
formation of focussed plumes without requiring the growth of instability 
from rest. 

Direct thermal convection can of course occur in microorganism sus­
pensions if the containing chamber is heated from below or from the 
sides, or if sufficient heat is absorbed from the illumination. However, 
bioconvection continues in a layer that is strongly cooled from below, so 
cannot be a thermal effect (Platt 1 96 1 ). 

The upswimming in aerobic bacterial suspensions (Figure 2c,e) is a 
consequence of the tendency to swim (on average), not up a gravitational 
gradient, but up an O2 gradient (chemotaxis). There are two important 
differences. One is that the bacteria consume O2 and stop swimming when 
the O2 concentration, C, becomes too low; this explains the inactivity of 
individual cells below a certain depth seen in Figure 2e. The other is that 
O2 can diffuse and, in the presence of fluid motion, is advected. Thus (a) 
the cell swimming velocity Vc and the cell swimming diffusivity D which 
appear in the cell conservation equation (3 .7) are functions of C, and (b) 
C itself satisfies a reaction-diffusion equation of the form 

ac -a = - V · (uC- Do VC) - K(C)n. 
t ' (4. 1 )  

where Do, i s  the O2 diffusivity, and the last term represents O2 consumption 
by the cells. An interesting feature of the resulting convection is the fact 
that it is double-diffusive, since DOl and a typical component of D will 
have different values. This problem is currently being investigated theo­
retically. A further complication can arise at high cell concentration, where 
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SWIMMING MICROORGANISMS 343 

one may expect stirring of the medium by the swimming cells. In that case 
D02 would depend on the cell concentration. 

The mechanism for the band formation in magneto tactic bacteria swim­
ming in a narrow tube cannot be attributed to convective motions driven 
by gravity. Spormann ( 1 987) was also able to rule out direct magnetic 
dipole-dipole interactions between cells. Guell et al ( 1988) have proposed 
a plausible-but as yet untested-mechanism for band formation, based 
on the hydrodynamic interaction between neighboring cells. The magnetic 
field has no direct effect but is important for the purposes of (a) causing 
the cells to concentrate and (b) aligning them all in the same direction. 

4.3 Linear Theories 

We begin by considering suspensions of dense cells that do not exhibit 
gyrotaxis but (on average) swim upwards at all times. We suppose there 
is a free upper surface at z = O. Plesset & Winet ( 1974) proposed a two­
layer model of the unstable density distribution, with a uniform layer of 
dense fluid of given depth H overlying a uniform deeper layer of lower 
density. There was no diffusion-i.e. cell swimming-between the two 
layers. This basic state breaks down through a Rayleigh-Taylor instability, 
analyzed fully for viscous fluids by Plesset & Whipple ( 1 974). The theory 
allowed a prediction of the wavelength of the most unstable disturbance, 
which agreed quite well with observations on finite depth suspensions of 
the up swimming ciliate Tetrahymena pyriformis, although of course it 
depends on a visual estimate of H. 

The main weakness of this model, like that of using Smith's theory for 
the blip instability (Section 3 .5), is the neglect of cell diffusion, with the 
result that the proposed basic state is not a solution of the governing 
equations, in particular the cell conservation equation (3.7). If the cell 
concentration no is a function of Z alone, in a fluid at rest (on average), it 
will be determined by a balance between upswimming and diffusion to 
gIve 

no(z) = Nexp (z VjD.), (4.2) 

where Vc is the average vertical cell swimming speed and Dv = Dzz is the 
vertical cell diffusivity [both of these can be calculated from the orientation 
p.d.f. in (3 . 1 5)]. N is a normalization constant proportional to the global 
average cell concentration No. 

Childress et al ( 1 975) analyzed the linear stability of this basic state in 
the manner that is standard for convection problems, postulating that 

n = nO(Z) + Bn'(Z) eXP [i(k l X + kZy) + O't],} 
U = 8u'(z) exp [i(k 1x + kz y) + O't], 

(4.3) 
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etc, where 8 is a small amplitude parameter, and using the linearized 
version of (3.7) and of the Navier-Stokes equations under the Boussinesq 
approximation: 

V ' U  = ° (4.4a) 

Du 
P 

Dt 
= - VPe-nvLipgk+V · 1:. (4.4b) 

Here Pc is the pressure excess above hydrostatic and 1: is the bulk deviatoric 
stress tensor, taken equal to its Newtonian value 2flE since the suspension 
is supposed dilute. In (3 . 7) the average cell swimming velocity was taken 
to be vertically upwards at all times, equal to Vck, while D was orthotropic 
with a horizontal diffusivity DH different from Dy (Childress et al guessed 
DHIDy < I ,  whereas the Fokker-Planck theory makes it clear that 
DHIDy > I ) . The eigenvalue problem boils down to a sixth-order system 
of ordinary differential equations for the vertical velocity and the con­
centration perturbation, with suitable boundary conditions at top and 
bottom. 

The theory of Childress et al ( 1 975) was the first self-consistent hydro­
dynamic theory of the onset of bioconvection. They used it to predict the 
critical value of the bioconvection Rayleigh number, based on the scale­
height Dy/ Vc of the density distribution (4.2): 

R = gNv(/I,.p/p)D�/v VZ, (4.5) 

the critical wavenumber kc (scaled with Vc/Dv), the growth rate aDy/ V;, 
and the wavenumber km at which (J is maximum, all for various values of 
the dimensionless chamber depth d = h Vc/Dy [we follow the notation of 
Hill et al ( 1 989)]. The Rayleigh number based on chamber depth is d3 it 
Childress et al found (a) that Rc decreases as d increases (for a rigid lower 
boundary and a free upper boundary, for DH = Dy, and for large Schmidt 
number v/Dy: Re ;;:;; 470 when d = 1 ,  k '" 4/d as d -> 00); (b) that kc = 0, 
i.e. infinite wavelength or pattern spacing, for all values of d; but (c) that 
km is finite for R > R, increasing rapidly from zero as R - R increases to 
about R, then leveling off. Thus, given No and hence N, there is indeed a 
critical depth he above which bioconvection will begin (and a critical No 
for a given h) and the pattern wavelength A is predicted to fall as h increases 
above he. This agrees well (qualitatively) with experiments on both 
Tetrahymena and on algae, though there are no reports of extremely large 
wavelengths for depths slightly above critical as the linear theory would 
suggest. 

Quantitatively, Childress et al compared their prediction of km with the 
observed wavelength in two Tetrahymena experiments, necessarily making 
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very rough estimates of some of the parameters. For example, they cal­
culated Dy from Plesset & Winet's ( 1974) visual estimates of the depth 
Dy/ Vc of the upper, cell-rich layer (around I mm), which appeared to be 
smaller for large cell concentrations, coupled with an independent estimate 
for Vc ( � 0.45 mm S- I , so Dy � 4.5 X 1 0- 3 cm2 S- I) . Agreement with 
obscrvation was reasonable (within a factor of 1 .5), though it was best if 
DH/ Dy was taken to be small ( � 0. 1 )  and not greater than 1 as suggested 
by the Fokker-Planck theory. 

Hill et al ( 1 989) repeated the Childrcss ct al theory for a shallow sus­
pension of algae that exhibit gyro taxis. The theory was still not "rational" 
because the cell orientation was taken to be deterministic [given by p = 0 
in (2.4)], so that Vc = VsP in (3.7), while randomness was allowed for by 
including cell diffusion (in the absence of data these authors took 
DH = Dy). The main differences in the results, all directly attributable to 
gyrotaxis, were as follows. (a) The critical wavenumber is finite, not zero, 

so the absence of very large wavelengths in the observations is no longer 
a difficulty. (b) When the upper surface is rigid, there exist oscillatory 
modes of instability, and for some parameter values the critical and most 
unstable disturbances are oscillatory. This is quite different from the case 
of pure up swimming where the growth rate of unstable disturbances was 
proved to be real. The physical mechanism for the oscillatory modes 
comes from gyrotaxis of nonspherical cells in the shear flow at the upper 
boundary, which causes the horizontal component of the cell's swimming 
velocity to be opposite to that of the convective flow. Oscillatory patterns 
have not (yet) been observed. 

A complete survey of parameter space was not attempted because, in 
addition to R, d, and the Schmidt number, there are two more dimen­
sionless parameters in the problem, the cell eccentricity ao and the "gyro­
taxis number," G = BV�/Dy, which is the ratio of the distance a cell will 
swim in one reorientation time to the depth of the cell-rich layer. There is 
no change in the prediction that, for fixed G and ao, R, at first decreases 
as d is increased, then levels off to a constant value as d approaches 00 .  
The pattern wavelength decreases slightly a s  d i s  increased. As  G or  0: 0  is 
increased, however, Rc rises while the pattern wavelength falls; the latter 
variation is quite marked, so a good comparison with experiment requires 
a�curate estimation of these parameters. 

Hill et al tested the theory quantitatively against the experiments of 
Kessler ( 1985b, 1 986a) on Chlamydomonas nivalis, using independent 
measurements or estimates of quantities such as B, Vc, and Dy. Both the 
swimming speed and the diffusivity are considerably smaller than for 
Tetrahymena; Hill et al took B = 3.4 s, Vc = 1 00 /-lm S - I , and 
Dy � 5 X 10- 4 cm2 S- I (so Dy/ Vc � 0.5 mm and G � 0.7), while the later 
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observations of Hiidcr & Hill ( 1 99 1 )  (see Pedley & Kessler 1 990) suggest 
Ve = 32 ,um S - l and Dv � 6.7 X 1 0- 6 cm2 S - l (giving Dv/ Ve � 0.02 mm, 
G � 5 .2). Hill et al's parameter values gavc a predicted wavelength of 2-
3 cm, much larger than for the observed, steady-state, nonlinear convection 
patterns in a chamber I cm deep, but in good agreement with the first 
rather irregular patterns to form in a recently stirred suspension. However, 
the larger estimate of G based on Hiider & Hill's data must call these 
comparisons into question. We still need quantitative experiments in which 
all relevant parameters are measured as carefully as possible. It should be 
mentioned that swimming algae may inhibit accurate measurements by 
accumulating at bounding surfaces of the fluid. They may adhere to the 
walls and even convert the free surface at the top to a virtually rigid 
surface, by interacting and sticking to one another. These accumulations 
can be dislodged by shaking, but they may produce a secular variation in 
the boundary conditions and cell concentration. 

The purely gyrotactic instability of an infinite, uniform suspension was 
analyzed by Pedley et al ( 1 988) using the "old" continuum model 
(Ve = VsP, D is isotropic) and by Pedley & Kessler ( 1 990) using the "new" 
one based on the Fokker-Planck equation. The uniformity of the basic state 
makes this stability problem particularly simple, the ordinary differential 
equations for n' and u' in (4.3) having only constant coefficients. Both 
theories, in fact, led to quadratic equations for the growth-rate (J. The 
main results of the "old" theory (Pedley et al 1 988) were as follows. (a) If 
there is no gyrotaxis there is no instability. (b) Analytical estimates of 
thc critical and the most unstable wavelengths A were made, the latter 
corresponding for C. nivalis to 9 mm for a convection pattern made up of 
rolls, and 13 mm for one made up of squares. These values are well above 
the plume spacing observed in a deep chamber, about 1-3 mm. The 
discrepancy was attributed to the nonlinear nature of the fully-developed 
pattern, since A is observed to decrease with time after the beginning of an 
experiment. (c) If the cells are sufficiently elongated (ao > !) both the 
critical and the most unstable disturbances are predicted to be three­
dimensional, corresponding to blobs (or blips) rather than the usual 
plumes. Despite involving a variety of additional effects-such as a non­
zcro (but divergence-free) intrinsic stresslet distribution in the basic state, 
from (2.6), and asymmetric contributions to the particle stress tensor as a 
result of the external couple-the more rational, Fokker-Planck theory 
did not yield novel predictions. Indeed, the predicted most unstable wave­
length for C. nivalis remained at 9 mm. The only new results were that 
three-dimensional disturbances, with a nonzero vertical wavenumber, 
would always propagate upwards and would always decay. The former 
could have been predicted from the earlier theory, and the latter contradicts 
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prediction (c) above, revealing it to be an artifact of the nonrational model. 
Future work must use a rational theory and earlier predictions such as the 
oscillatory instabilities of Hill et al ( 1989) need reexamination. 

4.4 Nonlinear Models 

There are several approaches to the nonlinear modeling of bioconvection, 
all commonplace in the analysis of thermal convection. They can be classi­
fied under three headings: (a) weakly nonlinear theory, (b) ad hoc models 
for steady-state bioconvection, and (c) numerical simulation by integration 
of the Navier-Stokes equation together with either the cell conservation 
equation or a Monte Carlo simulation of the trajectories of individual 
cells. These have all been attempted but it is fair to say that none has yet 
led to a definitive, quantitative description of steady-state bioconvection, 
nor to good predictions of the pattern shapes or spacing. 

WEAKLY NONLINEAR THEORY For standard convection problems the Ray­
leigh number R is taken to be close to its critical value Rc, so that 
R - Rc = e2R2+ (()(e3) where e is a small parameter (Newell & Whitehead 
1969). The dependent variables are expanded as power series in c;, while 
the time-scale for growth or decay of the disturbances is (()(e- 2). At (9(e) 
the linear theory is recovered, and the first-order disturbance quantities can 
be written as linear combinations of modes with horizontal wavenumber k 
(e.g. cos kx, cos ky) and with time-dependent amplitudes. The solvability 
condition at (9(C;2) determines Rc and the critical wavenumber kc. The 
second-order problem has to be solved, and the solvability condition at 
(()(e3) leads to nonlinear ordinary differential equations (Landau equations) 
for the amplitudes, which contain R2 as a parameter. From these it can be 
determined whether the bifurcation at R = Rc is sub- or supercritical for 
the different modes, whether the resulting small-but finite-amplitude 
disturbances (when they exist) are stable or unstable, and hence, for a 
supercritical bifurcation, what will be the preferred mode (pattern) in 
practice. 

This type of theory could presumably be used to analyze gyro tactic 
bioconvection, extending thc lincar theorics of Pedley et al ( 1988, 1 990) or 
of Hill et al ( 1 989), but this has not yet been done. Hitherto, weakly 
nonlinear theory has been applied only to the case of bioconvection of 
pure upswimmers, and the standard approach does not work because kc 
is zero (Childress et al 1975). In an unpublished manuscript, Childress & 
Spiegel ( 1 980, personal communication) showed that if c;- 2 is again taken 
as the time scale for growth of disturbances, R - Rc has to be (V(e), the 
horizontal length scale is (()(e - 1 /2), and the solvability condition at (()(e3) 
yields a partial differential equation with a nontrivial solution for the 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
2.

24
:3

13
-3

58
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 o

n 
08

/2
7/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



348 PEDLEY & KESSLER 

amplitude as a function of time and horizontal coordinate. They found 
steady-state solutions of this equation and deduced that the bifurcation is 
subcritical, with the consequence that the observed pattern cannot be 
predicted . The reader is referred to Chapman & Proctor ( 1980) for a 
published version of this method. 

AD HOC MODELS In the same unpublished manuscript, Childress & Spiegel 
looked for a steady-state model in which an isolated blob of high cell 
concentration could persist as a solution of the governing equations. They 
neglected both fluid inertia and cell diffusion, and examined only two­
dimensional flow in a vertical plane. They proposed that the blob, being 
a source of downward momentum, would generate a recirculating flow in 
a l1uid of finite depth with laterally periodic boundary conditions; adding 
a constant up swimming velocity to this velocity field inside the blob could 
be consistent with a fixed region of closed cell trajectories (Figure 3). 
Because the boundary C of the blob is unknown a priori, it is difficult to 
construct a mathematical solution for such a flow, but Childress & Spiegel 
developed a variational approach and were able to make it plausible that 
such blobs could exist. An estimate of blob spacing could be made by 
maximizing the area (corresponding, in three dimensions, to the volume) 
of the blob, though it was not clear why such a maximization principle 
should be imposed. Although this was a very interesting model, it may not 
have much relevance to bioconvection patterns that extend from the top 
to the bottom of a fluid layer, or consist of long streamers or plumes. A 
modified version of the model may, indeed, have more relevance to the 
analysis of "bubbles" in fluidized beds. 

Pedley ( 1988) tried to construct a somewhat similar model of "bottom­
standing plumes" in suspensions of gyrotactic algae, again considering a 
horizontally periodic pattern in two dimensions (Figure 4) . The negative 
buoyancy of a concentrated central plume drives a downflow, compensated 
for by a neighboring upflow driven by an induced pressure gradient. Cells 
are ad vee ted with the flow, but also swim relative to it; gyrotaxis causes 
them to swim across the flow streamlines and to be focussed laterally into 
the plume again. Given a plume spacing t, a scale for the height H of the 
plumes can be determined by equating the time for advection to that 
height, Wo/ H (where Wo is a typical vertical fluid velocity), to the time for 
swimming laterally a distance t, VsBw/t (from 3.2c) which is proportional 
to VsB WO/t2. Hence t/H = BVs/t = 8 t .  say, and the model is self-con­
sistent if 8 )  is small. For C. nivaiis, BVs � 0.3 mm and t is observed to be 
� 3 mm, so 8 I � 0. 1 and H � 30 mm, consistent with casual observation. 
If one assumes that, in the plume, the dominant terms in the cell balance 
equation are horizontal swimming and diffusion, as in (3 . 1 0), the plume 
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Figure 3 Two-dimensional model for a concentrated blob of cells, driving a fluid motion 
because of the cells' excess density but remaining stationary because of their upswimming. 
Solid curves are cell trajectories; broken curves are flow streamlines. (Copied from Childress 
& Spiegel 1980, with permission.) 

width J is found to be DC/ WoR Vc. The concentration distribution is pro­
portional to sech2 (x/<5), as found by Kessler ( 1985b), but the pro­
portionality factor will be a function of z (see Figure 4 for the coordinate 
system). Further, if inertia is negligible in the vertical momentum equation, 
then the latter becomes a balance between buoyancy and viscosity, so that 

Wo � t2udpgNo/I1' (4.6) 

Thus the scales for all important quantities are determined, given t. 
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Figure 4 Two-dimensional model for bottom-standing plumes. Solid curves are cell tra­
jectories; broken curves are flow streamlines. Note the lateral component of cell swimming 

as a result of gyrotaxis. Conjectured profiles of cell concentration n and vertical fluid velocity 
w are indicated. 

An additional equation linking the various parameters can be derived 
from an overall energy balance. The whole motion is driven by the micro­
organisms swimming upwards. Hence, in a steady state, the total rate of 
increase of potential energy, Nov/1pg Vs per unit volume, must balance the 
overall rate of viscous dissipation, ft( Wo/t) 2 per unit volume, or 

(4.7) 

Combining (4.6) and (4.7) does indeed give an estimate for t, albeit some­
what small « I mm when No � 106  cells cm- 3), but these equations 
also predict Wo '" V., whereas it is observed that convection speeds are 
significantly larger than cell swimming speeds. The error probably lies in 
some of the assumptions that went into (4.6), such as the neglect of fluid 
inertia. 

A different estimate of an upper bound for plume spacing arises from 
Kessler's ( l986b) observation that there is a maximum radius R I to the 
region from which an axisymmetric plume can be generated from a back­
ground concentration No, since for larger radii a singularity appears in the 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
2.

24
:3

13
-3

58
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 o

n 
08

/2
7/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



SWIMMING MICROORGANISMS 3 5 1  

concentration distribution [see the discussion following (3.20) above]. In 
obtaining that result, Kessler assumed no z-dependence and no pressure 
gradient, whereas both are present in bottom-standing plumes, so the 
estimate is more of conceptual interest than of quantitative value (though 
the estimate of R ]  is again around 1 mm for No = 106  cells cm- 3, not 
much less than the observed half-spacing). 

NUMERICAL SIMULATION Full numerical integrations of the governing 
equations in convection studies are costly in computer time and require as 
deep an interpretation as experimental observations. Very few have been 
devoted to bioconvection. Harashima et al ( 1 988) solved the incom­
pressible Navier-Stokes and cell conservation equations [(4.4) and (3.7)] 
in two dimensions. They followed Childress et al ( 1975) in considering 
pure upswimmers, such as T. pyriformis, so Vc = Vsk, with isotropic cell 
diffusivity (except for one run in which DH/Dv was taken to be 10).  Their 
computational domain was a wide, shallow box with aspect ratio 8 and 
shear-free upper surface; the ratio d of box depth to the scale-height Dv/ Vs 
of the equilibrium concentration distribution (4.2) was given a range of 
values from 2 to 80. The initial condition was taken to be one of uniform 
concentration No, which was varied from run to run, together with an 
infinitesimal random vorticity distribution. The first thing to happen, 
therefore, was that the cells swam up, and the concentration distribution 
evolved towards (4.2). In all the runs described the Rayleigh number R 
(Equation 4.5) was above its critical value, so after a certain time dis­
turbances began to develop in the uppermost unstable zone. The growth 
rate and wavenumber of these disturbances agreed extremely well with 
those predicted for the most unstable disturbance by Childress et al ( 1975). 
These disturbances led to falling streamers [cf Figure I of Harashima et 
al ( 1 988) and Figure I of PIes set & Winet ( 1 974)]. 

As time went on, however, the pattern changed via a number of isolated 
events, at which the number of vertical columns decreased by one, sep­
arated by periods of gradual evolution. Eventually steady-state convection 
rolls were set up, filling the whole depth of the box. In one example shown 
there were three rolls in the box, whereas the initial disturbance had eight 
falling streamers. In another example, the final number of rolls (three or 
four) depended on the initial condition. The steady-state convection pat­
tern was clearly related to the depth of the fluid layer, as for thermal 
convection, while the initial disturbance was related to the characteristics 
of the equilibrium dcnsity distribution. Harashima et al ( 1988) proposed 
minimum total potential energy as a principle for the determination of the 
steady-state roll size (pattern spacing) for a given value of R and for a 
given size box. Their results were reasonably consistent with that principle. 
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An earlier two-dimensional simulation was provided by Childress & 
Peyret ( 1 976). who also integrated the Navier-Stokes equations (4.4) but 
instead of using the continuum cell conservation equation (3 .7) they treated 
the cells as individual moving points cach of which exerts a force on the 
fluid and moves relative to the fluid by a superposition of pure upswimming 
and a random walk. From an initial condition in which all the cells (756 
of them) were in a compact region in the middle of the computational 
box (aspect ratio 2), states could develop in which, depending on the 
parameters, (a) the cells remained in a single compact region, driving a 
recirculating flow (cf their Figure 4.2), or (b) they could form two compact 
regions (convection rolls), or (c) they could become fairly dispersed, but 
still driving a bulk flow. It was not clear, however, whether a statistically 
steady-state convection pattern had been achieved in these examples when 
the computation was stopped. 

There are as yet no published simulations of gyro tactic bioconvection, 
although the early stages of pattern formation can be seen in some pre­
liminary computations by 1. M .  Rees (personal communication) using the 
old continuum model of Pedley et al ( 1 988). 

5. EXPLOITATION 

Microorganisms interact with their physical environment as individual 
automata. Gravity, shear, illumination, and other influences cause them 
to swim, on average, in particular directions. Eventually this directed 
swimming results in local accumulations of organisms. A sufficient con­
centration of them in some region of fluid results in density changes that 
drive collective dynamical patterns. Both the individual and the collective 
dynamics can provide benefits to the organisms, e.g. improve their growth 
or chances of survival. Some of the locomotory phenomena can also be 
exploited for biotechnology and research. 

INDIVIDUAL DYNAMICS Automatic upward locomotion of photosynthetic 
cells keeps them near the surface where the light can penetrate; there is 
thus a strong evolutionary pressure for algal cell types that swim upward 
to be selected. Other organisms, such as Bacillus subtilis as demonstrated 
above, prefer particular ranges of oxygen concentration. Yet others prefer 
no oxygen at all, for example the magneto tactic bacteria that contain 
magnetic particles. These "magnetosomes" guide the cells along the 
Earth's magnetic field lines toward bottom sediments (Guell et al 1 988). 

Bioconvection due to the concentrated cell populations that result from 
upswimming can be avoided when the convective modes are damped by a 
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porous medium that is sufficiently open to allow passage of the organisms 
through the interstitial spaces yet sufficiently tight that the downflow 
driven by the resulting density difference is slower than the cell swimming 
speed. Snow, sand, and cotton wool are examples of such media. The 
populations of algae that accumulate over cotton wool or cloth can be 
harvested (Kessler 1 982, 1 984a, 1 986a); the method can also be used to 
separate rapidly swimming cells from slower ones. In a natural setting, the 
same process generates snow banks colored green or reddish by algae 
that have swum up from the soil through the meltwater (Hoham 1980); 
Chlamydomonas nivalis is one sueh snow alga. A spectacular antarctic 
version of the phenomenon (Everson 1 987) surely affects albedo and there­
fore the entire water-related ecology. 

Self-harvesting of flagellates over porous media also occurs in stagnant 
ponds which are partly covered by floating mats of filamentary blue green 
algae. It is unclear whether there is a direct benefit, but the very marked 
increase in the number of swimmers on the mats, compared with regions 
of open water, suggests that the self-concentration may enhance the fre­
quency of interaction among the organisms and thus have biological sig­
nificance, for example in the mating of motile gametes or in the predator­
prey balance of various up swimming species. 

The existence of gyro tactic focusing can be used to rule out certain 
proposed mechanisms for geotaxis of swimming cells. Cells suspended in 
a one-meter tall cylindrical Poiseuille flow swim toward the axis when the 
flow is vertically downward and toward the periphery when it is upward. 
These observations show that geotaxis does not depend on the pressure 
or pressure gradient, as has been proposed (Levandowsky & Kaneta 1987). 
Closing the water circuit in an algal focusing experiment demonstrates 
that dissolved gas concentration gradients play no role in the cells' upswim­
mingo Focusing in the dark eliminates upswimming responses that depend 
on light. 

Gyrotactic focusing can also be us cd to separate microorganisms having 
different locomotory characteristics. For example, fast swimmers can be 
separated from slow ones, cells where random swimming dominates can 
be separated from more deterministically oriented ones, and cells whose 
trajectories are strongly oriented by phototaxis can be separated from 
light insensitive ones. The feasibility of gyrotaxis as a hydrodynamic cell 
separation technique has been demonstrated (G. J. Morris & J. O. Kessler, 
unpublished). 

There have been no reports of gyro tactic focusing in nature, probably 
because no one has looked for evidence of it. Langmuir circulations 
(Leibovich 1983) are one type of flow where large-scale concentrations of 
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cells might be expected, focused into vertical sheets beneath the wind­
rows. Another possible scenario for natural focusing is provided by the 
mechanism for predation discussed in Section 3 . 1 .  It is conceivable that 
such purely physical mechanisms for bringing individuals close to each 
other could have had considerable biological importance in the early 
development of marine life. 

COLLECTIVE DYNAMICS There are many possibilities for the natural exploi­
tation of bioconvection. Bioconvection is associated with regularly spaced 
regions of high and low cell concentration, correlated with patterns of 
downward and upward streaming, which is much more rapid than an 
individual organism's swimming (or sedimentation) relative to still water. 
Such bio-advection may be involved in the vertical migrations of algal 
blooms. Bioconvective streaming can also enhance mixing, as in the case 
where oxygen is rapidly supplied to an entire population of aerobic bacteria 
(Figure 2e). This is a form of active transport which augments diffusion. 
Spatial variations in organism concentration create environments of 
mottled illumination; this self-shading pattern, devcloped by the popula­
tion as a whole, enables individual cells to swim into a region of preferred 
light intensity and may have implications for population dynamics (Noever 
1 990b). 

If these effects occur naturally, one would expect them to be in quiet 
pools or puddles. Agitation of large bodies of water would tend to destroy 
bioconvection, and turbulent advection would greatly exceed the transport 
of cells by swimming. Furthermore, even in still water, poor contrast 
would usually inhibit observation of collective behavior. Some cases of 
bioconvection and self-gyro tactic focusing have been anecdotally reported. 
One of us (JOK) has found dense algal cell blooms that exhibit biocon­
vection in small natural puddles. It is likely that bacterial convection in 
thin fluid layers will eventually be found quite routinely. 

Finally, it is worth noting that swimming cells can provide a unique 
service to the fluid mechanical study of convection, because the cells 
constitute both the driving force for the convection and the marker par­
ticles that allow the flow to be visualized. As the flow changes, after a 
change in external conditions, the cells reorganize themselves to make the 
new downflow regions as clearly visible as the old ones. We have seen this 
most clearly in some unpublished studies of bioconvection in a container 
on a rotating table (Department of Applied Mathematics and Theoretical 
Physics, Cambridge University, 1 987) where all the phenomena reported 
for thermal convection in a rotating chamber [convective rings, vortex 
grid, irregular vortex pattern (Boubnov & Golitsyn 1 986)] could be 
observed more simply. 
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