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Swimming strategies of microorganisms must conform to the principles of self-propulsion at
Reynolds numbers. Here we relate the translational and rotational speeds to the surface motio
swimmer and, for spheres, make evident novel constraints on mechanisms for propulsion. The
are applied to a cyanobacterium, an organism whose motile mechanism is unknown, by consi
incompressible streaming of the cell surface and oscillatory, tangential surface deformations. F
swimming efficiency using tangential motions is related to the surface velocities and a bound o
efficiency is obtained. [S0031-9007(96)01605-5]

PACS numbers: 87.45.–k, 47.15.Gf
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Swimming microorganisms live in an environme
where viscous forces control their movements [1
Motion is produced by a cyclic distortion of the bod
shape [3,4], e.g., by the coordinated use of cilia
flagella [5,6]. The swimming speed depends on
details of such motions and is constrained such
geometrically reversible surface deformations produce
net displacement of the cell body [5,7].

One topic of scientific interest is to relate an orga
ism’s swimming speed to the surface velocity which
prescribed by a particular cyclic deformation [4,8,9]. T
ditional approaches to this problem involve obtaining
general solution to the governing differential equations
low Reynolds number flows, imposing the boundary c
ditions for the particular surface motion of interest, a
then calculating the swimming speed. In fact, as is sho
below, there is a direct relationship between the sw
ming speed and the surface motions, which does not e
developing the detailed flow field. Furthermore, in cert
cases, the swimming speed may be easily calculated
this relationship. An upper bound on the efficiency of t
swimming stroke may also be established.

We begin our analysis with the equations for
compressible fluid motion in the low Reynolds numb
limit,

2=p 1 m=2u  0  = ? s and = ? u  0 , (1)

where u and p are the fluid velocity and pressur
respectively, ands is the stress tensor. The lack
explicit time dependence in the equations requires
a self-propelled object must execute, in shape spac
cyclic deformation which does not retrace its path [4], a
so reciprocal motions are not allowed.

We next utilize the reciprocal theorem from lo
Reynolds number hydrodynamics [10] in order to rel
the surface motions to the swimming speed. We
interested in the solution to Eq. (1) for self-propell
0031-9007y96y77(19)y4102(3)$10.00
t
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swimming microorganisms. Letsu, s d be the velocity
and stress fields that are the solution to (1) such
there is no net force or torque on the swimming bo
Also, let sû, ŝ d be the solution to (1) for translation o
the same shaped object at a velocityÛstd when acted
upon by an external forcêFstd. The reciprocal theorem
states that the solutionsu, s d and sû, ŝd are related
by Z

Sstd
n ? ŝ ? udS 

Z
Sstd

n ? s ? ûdS , (2)

where Sstd is the instantaneous boundary of the swi
ming object,n is the unit outward normal toS, n ? s is
the stress the fluid exerts on the surface, and the ve
ties u and û decay far fromS. Sinceû  Û on S and
the swimming object is force-free, the right-hand side
(2) vanishes. The surface velocity for the self-prope
swimmer is then decomposed into a translational
locity Ustd and a disturbance motionu0, which typi-
cally varies over the surface. Equation (2) then simpli
to

F̂std ? Ustd  2
Z

Sstd
n ? ŝ ? u0dS . (3)

Equation (3) relates the instantaneous swimming spee
the instantaneous surface velocity for any shape of
propelled organism.

In particular, for a sphere of radiusa, the surface
stress isn ? ŝ  2

3m

2a Û and the Stokes drag force
F̂  26pmaÛ so that (3) reduces to

Ustd  2
1

4pa2

Z
S

u0dS . (4)

For many cyclic deformations,u0 is time dependent
The mean translational velocity corresponds to the t
average of Eq. (4).

For an arbitrarily shaped, torque-free swimmer t
rotates with angular velocityVstd (without translation)
© 1996 The American Physical Society
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owing to a suitable cyclic deformation of the surface,
analog of (3) is

L̂ ? V  2
Z

Sstd
n ? ŝ ? u0dS , (5)

where L̂ is the hydrodynamic torque that acts on t
rigid object when it rotates with angular velocitŷV. For
a rigidly rotating spherêL  28pma3V̂ and n ? ŝ 
23mV̂ ^ n from which it follows that the angular ve
locity of a spherical swimmer due to surface deformat
obeys

Vstd  2
3

8pa3

Z
S

n ^ u0dS . (6)

We note that both (4) and (6) were arrived at recen
using a perturbation expansion approach to the swimm
problem for the special case of small amplitude osci
tions of a spherical object [11,12]. The derivation p
sented here shows that analogous results, (3) and
are valid for arbitrarily shaped swimmers. Equations
and (6), which apply to spherical swimmers, hold for
nite amplitude surface deformations. Simultaneous tr
lation and rotation are studied simply by adding Eqs.
and (5).

Using Eq. (4) particular mechanisms for swimmi
motility may be explored. Here we discuss swimm
cyanobacteria [13] with the understanding that
results apply equally well to other species. As cyanob
teria have no external appendages, the cell b
(approximately a spheroid with aspect ratio about
must itself generate thrust. Also, no observable sh
changes accompany translation. Pitta and Berg
exclude the possibility of self-electrophoresis and ra
the possibility of a bulk streaming of the cell surfac
Here we model the cyanobacterium as a sphere and
that an incompressible (i.e., divergence-free) surf
velocity field on a sphere can be written as the curl o
potential function which has but a radial component. T
surface integral of such a surface flow is identically ze
and hence according to (4) the swimming speed is z
Thus, incompressible, tangential surface deformat
are not propulsive, which rules out simple tangen
streaming of the cell surface as a possible swimm
mechanism.

The remaining mechanism for cyanobacteria’s mo
ity is a cyclic, nonreciprocal, and compressible surf
distortion, i.e., a traveling wave. Blake [9] original
considered this type of problem for the case of c
ated microorganisms by supposing that the waving
of the cilia serve as an effective compressible surfa
Cyanobacteria [13], though lacking cilia, might be co
ered with a motor protein which is capable of simi
wavelike motions. For instance, in terms of spheri
surface coordinatessf, ud, suppose that a material poi
fm on the compressible surface moves in a small am
e
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tude sinusoidal fashion [9]:fm  f 1 e cossnf 2 vtd,
which corresponds to a traveling wave moving from
pole atf  0 towardf  p se ø 1d. Substituting this
surface motion into (4), performing the surface integ
accurate toOse2d, and time averaging gives the result

kUl  2
p

8
e2nvaez , (7)

wherek?l denote the time average andez is the direction
from which f is measured. Swimming speeds are ab
10a s21, so assuminge  1y20 and n  5 10 yields
that the assumed surface motions have frequenciesv 
Os102 103d s21. This result [Eq. (7)] was also arrive
at recently by using a traditional approach [15]. No
that the equations for low Reynolds number motions m
be utilized to analyze periodic surface motions provid
va2yn ø 1, which is satisfied for1 mm radius objects
oscillating in water with the frequencies mentioned abo

To assess the plausibility of a mechanism for motili
it is not enough to know that the mechanism genera
reasonable swimming speeds; the swimming mechan
should also be energetically efficient. Several auth
have introduced definitions of efficiency for characteriz
swimming strokes [3,4,9]. For simplicity we follow
Lighthill’s original definition [3], which is consistent with
other definitions in that the same optimum swimmi
strokes are predicted (see Shapere and Wilczek
In particular, we will draw some conclusions about t
efficiency of tangential swimming motions, again usi
integral identities to bypass detailed calculations.

Any expression for efficiency requires the powerP
expended in the swimming stroke. The work done
an arbitrarily shaped swimming organism is dissipa
viscously in the fluid and so

P  2
Z

Sstd
n ? s ? udS  2m

Z
V std

E : EdV , (8)

where E is the rate-of-strain tensor andV std is the
fluid volume surrounding the swimmer. Substituting t
kinematic identity:2E:E  v2 1 2s=ud:s=ud and using
the divergence theorem, we find

P  m
Z

V std
v2dV 2 2m

Z
Sstd

n ? su ? =uddS . (9)

This result has two consequences. First, for two obje
that translate at the same mean speed, more ener
dissipated by the object which produces the larger amo
of vorticity. Therefore, an axisymmetric object th
rotates as its swims is less efficient than the nonrota
swimmer [4]. Second, for organisms that move us
purely tangential surface motionssu0d, the surface integra
in (9) may be simplified to involve only the surfac
velocity (rather than gradients), which leads to

P  m
Z

V std
v2dV 1 2m

Z
Sstd

u02ksdS , (10)
4103
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whereks denotes the curvature of the surface measu
along the direction of the surface flow [16]. In the partic
lar case of spherical shapes translating with axisymme
surface motions,ks  1ya.

The Lighthill definition [3] of efficiencyhL of swim-
ming spheres is6pmakUl2ykP l. The swimming speed
and power are known from above in terms of surface in
grals of the velocity, and so (4) and (10) lead to the bou

hL #
3
4

∑
k
R

S u0dSl2

4pa2k
R

S u02dSl

∏
. (11)

Hence, knowledge of the surface velocities alone m
be used to set an upper bound for the efficiency o
tangential swimming motion of a sphere. The term
brackets may be shown (using a version of the trian
inequality) to be bounded from above by unity, an
so according to the Lighthill definition the swimmin
efficiency ishL , 3y4; the Lighthill definition is proved
to satisfy the criterion that the efficiency is less than uni

For the small amplitude, sinusoidal tangential surfa
motions considered above, (11) leads to a bound
the efficiency hL ,

3p2

128 e2n2. However, on physical
groundsP  Osnd, and so we expecthL  Osnd. Using
Eq. (8) and details provided by Blake [9], we hav
calculated the efficiency numerically, and the results m
be approximated byhL ø 3p2

128 e2n sn $ 2d; this formula
is only 2% different from the numerical calculation
for n $ 10 and within 33% for n  2. The upper
bound on efficiency for small amplitude motions becom
progressively worse asn increases. For the values o
e and n considered previously (e  1y20 and n 
10), the efficiency is about 0.5%. For comparison, t
hydrodynamic efficiency of a bacterial flagellum is abo
2% [7]. We note that the hydrodynamic efficiency is in
real sense the upper bound on the overall mechanism
motility: the mechanism that transduces the organism
potential energy into mechanical work will have less th
unit efficiency, and the overall efficiency of the swimmin
mechanism is the product of the energy transduct
efficiency and the hydrodynamic efficiency.

In summary, Eqs. (3) and (5) provide a procedu
for calculating swimming speeds for arbitrary swimmin
shapes and surface deformations. Spherical shapes,
resentative of many microorganisms, lead to Eqs.
and (6), which are particularly appealing and straightf
ward to apply. Equation (4) imposes a constraint on p
tential swimming mechanisms: incompressible, tangen
surface motions are not propulsive. Furthermore, co
pressible surface motions lead to a simple result for
average swimming speed [Eq. (7)]. For more gener
situations, to calculate swimming speeds it is only nec
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sary to calculate the Stokes drag force and torque and
surface stresses on the intermediate shapes within a c
and perform the integral prescribed in Eqs. (3) and (
Numerical methods may be applied to solve this mo
general problem. Finally, for tangential surface disto
tions, knowledge of the surface velocity field alone sets
upper limit to the swimming efficiency. Numerical meth
ods are needed to calculate the power and efficiency
more complicated motions. Our results demonstrate t
tangential travelling surface waves are a plausible mec
nism for the swimming of spherical shapes as they pred
both reasonable translational speeds and efficiencies.
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