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Flexive and Propulsive Dynamics of Elastica at Low Reynolds Number
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A stiff one-armed swimmer in glycerine goes nowhere. However, if its arm is elastic, the swimmer
can go on its way. Quantifying this observation, we study a hyperdiffusion equation for the shape of the
elastica in a viscous fluid, find solutions for impulsive or oscillatory forcing, and elucidate relevant as-
pects of propulsion. These results have application in a variety of physical and biological contexts, from
dynamic experiments measuring biopolymer bending moduli to instabilities of twisted elastic filaments.
[S0031-9007(98)05911-0]

PACS numbers: 87.45.—k, 03.40.Dz, 47.15.Gf

In Stokes flow, the Aristotelian fluid regime inhabi- symmetric objects such as the sphei =€ 67 pav,
ted by the very small or the very slow, inertia is irrele- with w the viscosity anda the radius), and those for
vant. This fact underlies the inability of a variety of which lengthL greatly exceeds widtll, whereslender-
swimming motions, perfectly successful on human scaleyody hydrodynamicq8] applies. To lowest order in
to generate net motion on microscopic scales [1]. An oftl/In(L/d), force and velocity obey a local, anisotropic
guoted example is the lack of propulsion for a swimmerproportionality. For velocityy hormal to the long axis,
with only one degree of mechanical freedom, e.g., thehe force per unit lengthf = £, v, with the normal
paradigmatic scallop of Purcell's 1977 lectukife at drag coefficient ¢, = 47 w/[In(L/d) + c¢], where ¢
Low Reynolds Numbewhich introduced many to the is an O (1) constant determined by the shape of the
principles of Stokes flow [2]. Colloquially known as “the object. For an elastic filament with bending modu-
scallop theorem,” this observation derives from the mordus A, —f is the functional derivative of the bending
general statement that motions invariant under —¢  energy A/2 [5 dxy?, written here for small planar
can produce no net effect [1]; movies of Stokes flow musdeformationsy(x); thus, f = —Ay,.... At free ends
appear equally sensible when reversed [3]. the functional derivative implies boundary conditions of

Purcell observed two ways to elude the scallop theotorquelessness and forcelessness: = y,... = 0. For
rem: rotate a chiral arm or wave an elastic arm. Whilesmall deformationsy = y,, and with the hyperdiffusion
the former dynamic is well studied (generally, in the con-constanty = A/{,, we have

text of E. coli [4]), the latter is largely uninvestigated, de- y, = —py (1)
spite its relation to such experiments as motility assays . e
and dynamic studies of biopolymer bending moduli. Theperhaps the simplest model equation of elastohydrody-

namics.

notable exception is the work of Machin [5], who solved In 1851, Stokes suggested two problems in fluid me-

for the shape of a passive pivoting arm. After noting that hanics, here termed Sl and SlI (Fig. 1), to illustrate vis-

the equation of motion did not support the experimentallyc P . . ) X
observed wave form, Machin (and subsequent authors) if:ous dn“fugon of ye!omty [9]: _SI—|mpuIS|ver move a
all bounding a fluid; Sll—oscillate the wall at frequency

stead studied the forces and flow requisite upon assumin .
a particular flagellar shape. Analyses in this spirit may be_* '_I'hese [T‘O“V";‘te t\;\'/o pr](-)tl)lérgglfor_thsltqh)/ldrody-
traced at least to 1930 [6]. We are instead interested iﬂﬁm'cﬁgu? Ior;ilgmmﬁtl'olr:_]l—(lD)l.l le'[nptl:]swen)é mlcr)1veél
determining the shape vielastohydrodynamicdhe bal- one end ot a ent, —oscilate the end.

ance between elasticity and viscous drag. Specificallfmd S.”' the Nawer-Stpkes_, equation _reduc;es to a diffusion
equationu; = vu,,, with kinematic viscosityy = u/p.

we study a one-armed swimmer with an elastic pros- S : : X
thesis, or equivalently the motion of a driven eIasticFor a Se.m"mf'mte domaln,.the post-transient solution of
filament; the passive arm produces a perfectly viabl Il consists of decaying, rlght-mO\_/lng wavasx, ) =
swimming motion, whose propulsive force and hydro- _exp(—n/\/f)cps(n/\/z - i), W'trﬂ/zn = x/¢,, and
dynamic efficiency may be calculated. Building on ex- VIScous penetration lengf) :.(V/w) : _In EHDII t_he
periments showing thieyperdiffusivityof small-amplitude analogous elastohydrodynamic penetration length is
planar deformations [7], we quantify how an elastic oar (@) = (7/w)'*. )
eludes the scallop theorem, suggest experiments to testimposing the left filament end positiopn cosw: and
these results, and show how this analysis allows for meaorquelessness for the left end [10} (0, r) = 0, we find

surement of bending moduli. y _ 1o &, < ~3y —
Force-velocity proportionalities in Stokes flow are y, 2 [e codSn + wi) + e "M codCn — wi)],
generally not simple; notable exceptions are for highly 3)
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FIG. 1. Geometry of Stokes problems | and Il (left) and of = ]
elastohydrodynamic problems | and Il (right). a oo .
where C = cogw/8), § = sin(w/8), and now 5 = A N N B
x/€5. Unlike Sll, EHDII supports left- and right-moving 0 2 4 6
waves (with different velocities and decay lengths), =x/1-
despite the lack of a reflecting right-end boundary. n v
For finite filaments we define a rescaled length= FIG. 2. Solutions to (1) for oscillatory driving at various

L/¢;(w) and coordinatex = x/L. When £ =< 1 the lengths. Analogous figures for the pivoting case may be found
filament behaves as a rigid rod, while it undulatesi [5]. Inset: experimental verification [7] of the frequency

: : dependence of; ielding a persistence length for actin
appr_euably forL > 1. In this way {3 resemblgs the LppE AlksT — 7&{”}1% Wellgwith[i)n the range (0.% a7 um
persistence lengtih, = A/kT. The exact solution of [12]) of measurements employing statistical techniques.
EHDII for finite L [11] has an expansion in powers 6f*

whose first terms are moving waves dominate the left movers. An unexpected,

4 fascinating feature is the maximum kI (Fig. 3) indicat-

Y (1 - 2 a)cotwr) + L

Yo 1680 ing an optimal value of the length. = 4.07¢;. This
X (16a — 7003 + 70a* — 21a°) may be compared to studies of active or helical flagella,
in which the shape is dictated and an optimal combination
X sin(wt) + O(L?). (4)  of parameters (e.g., helical wavelength) is chosen [1,13].

At order £, the filament is a straight rod that pivots !N @ familiar way, this force is associated with the
about a point two-thirds of its length. Flexive correctionstrajectory of the filament shape in a low-dimensional
at O(L*) break time-reversal invariance. Solutions of
increasingL are shown in Fig. 2, whose inset shows the T
results of an experiment on actin [7] in which observed i
shapes in a range of frequencies were fit fgrto the
exact expressions [11], verifying the scalifig ~ o /4 04—
as well as providing a novel dynamic technique for I et
measuring the bending modulds i : |

The propulsive force” imparted to the fluid by the fil-
ament (or vice versa) may be computed by integrating the
projected elastic force density along the filament. Because
the (geometrically exact) elastic force per unit length can
be expressed as the total derivative (with respect to ar-
clengths) of a quantity which must vanish at free ends
[11], F is expressible in terms of the curvatuke and
tangent angled at the forcing point:F = A(k,sing —

5 k2€080)|,=0 = A(Yxuyr — 352)|=0. The time av- -
erage of this quantity over one period gives C by b b by

R 0 2 4 8 8 10
F = §y0§L|w|Y(£)- 5) L/IF

—_ 4 T o 272 274 .
Foth t<< 1’. lf/ it 511/3;60); t! Sof.li yotglde /A; FIG. 3. Scaling functions¥ for propulsive force andZ for
a shor (or_ infinitely stiff) _p'VO Ing lament produces no_efficiency versus rescaled length = L/¢;(w). Dotted and
net force (in agreement with the scallop theorem). FleXisolid lines indicate functions for EHDII or pivoting prosthesis,
bility leads to a net leftward propulsion, as the right- respectively (Inset: see text).
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projection of configuration space. The relatiéitz) =  are obtained from those with constrained tangent and
Ay (0,1)y,.. (0, r) and the equation of motion imply position, respectively. We may then construct the expan-
. le 27/ w 9 L lLw SioNs forysorce, Yiorque» @Ndypiver @nalogous to Eq. (4):
F = 2— Yy ydx = Opd A , ) 3 4 5
2T at 2T Yforce _ <L . ia + a  a + a—>COiwl)
6) FoL3/A  \105 216 6 6 20
where A is the area under the curvg(x) and 6y = + £ 7%4 — 6a)sin(wr) + O(LY),

yx is the tangent angle at the left end. Thus, the net
force during the cyclic motion is the area enclosed - o+ — - — + —)cos(wt)
in the associated “Carnot diagram” -6, space; it ToL?/A 140 2 3 40

results from pushing aside some volume of fluid (area, — L *asinwr) + O(LY),

in two dimensions), projected vié, in the direction of [4

propulsion. For EHDII, the trajectory is an ellipse; it acodwr) + 1—20(015 +20a” — 10a?)
thins to a straight line for the time-reversible pivoting . 3

of a rod, encloses no area, and thus produces no force. X sin(wr) + O(L7).

Observe the intuitive result that net propulsion in theNote that in the limit £ — 0, if we constrain torque
transverse direction, proportional fod A = 0, vanishes or force, we face divergent,(0) ~ £ =3 or ~L 2,

Ytorque < 33 a? o’ a’

Ypivot

R

identically. respectively, leaving the linearized regime. The pivoting
We estimate the hydrodynamic efficiendy of this  case, however, remains well defined in this limit.
motion [1] by comparing the powet, = Fuv, = F /L{j As above, we may construct the appropriate force and
for longitudinal propulsion to the poweP, = Fyv, =  efficiency diagrams as functions of for the pivoting
[ ds¢, y? dissipated in transverse motions, to obtain case. Averaging\(y..yx — 3 y2)lx—o Over one period,
1 [y 2 e we find that the existence of a local maximum in force
E= 5<E> g—”Z(L), (M and efficiency is preserved (cf. Fig. 3). For real sper-

whereZ (L) is the scaling function shown in the inset to Matazoans, the “excess” length performs work, consuming
Fig. 3. Filaments that are short relativeftg(w) flex little ~ @denosine triphosphate and exerting a bending moment; as
and produce little propulsion, while long ones have excesg'@y be expected, their lengths typically excéed As an

drag from the nearly straight regions far from the point oféxample Lythechinugsea urchin) spermatozoa, for which
forcing, thus explaining the sharp maximum&t~ 4.0. L =38 um ande = 180 Hz, haveL./{; ~ 7.4 [17].

The maximum in the force may arise from a spatial The pivoting force and efficiency may be written as

resonance, brought about by the boundary conditions at _ 1 5

the free end. Fpivot = E (60€5) {J_lwlYp(L )s (8)
These observations suggest experiments in the spirit of ) /

those on swimming with a helical flagellum performed Epivot = = 603 —in(L), 9

by Taylor [13] and later by Purcell [14]. Exploiting the 2 04

results of EHDII, perhaps carried out on microfilamentsfacilitating comparison of the propulsion for the two
with laser [7] or magnetic tweezers, or on macroscopianotions; for §, comparable toy,/€;, we may simply
objects, one might measure the propulsive force throughompare the dimensionless scaling functions. Each of
the transverse displacement at the forcing point, test fothese has a greater maximum in the latter case, with a
the predicted maximum as a function of frequency, in-shorter optimal length for the pivoting prosthesis: =
vestigate the role of nonlinearities, and study interaction.2¢;. The peak force and efficiency are therb pN
between flexing filaments. Analogous experiments in{taking w from Lythechinusand assuming, ~ 0.5) and
corporating twist (perhaps via magnetic optically trapped.03, respectively.

beads, as in [15]) could investigate instabilities exhibited The appropriate Carnot diagram is slightly complicated
by the helical motion of flexible filaments [16] and asso-by the nonzerac = y,, at the left end. We must add to

ciated propulsion. Eq. (6) the term
The geometry described above is merely one of several ) 27/ d lLw
reminiscent of a one-armed swimmer. Instead, one might —=—— ] dtko(t) — I(t) = — jgfcodl,
constrain the tangent angle at the left end, similar to a 2m Jo di 2m
pivoting arm rather than an a low-Re jump rope. The (20)
conjugates to these two conditions are constrained forcand It =1/2 fé dx A(x,t) = 1/2 fg dx X
or torque, respectively. To reveal the generic features of , dx'y(x’,t). Since the curvature is of orderf 4,
the above results we comment on these variants. this term decays even more rapidly #s— 0 than the
In constraining the tangent, we demand(0) = termin Eqg. (6). The time-averaged force is the difference

0y cogwt); y(0) = 0. Solutions for constrained torque of the areas enclosed by the trajectories in thef, and
[7ocodwt) = Ay, (0)] or force[Fycodwt) = Ay, (0)] JT-kq planes.
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The above analysis describes the post-transient dyurthermore, for free elastic rods (at whose ends=
namic, ignoring the decay of initial conditions. This ¢, = 0), the natural complete basis fgris simply the set
second analysis, appropriate to either impulsive drivingpf biharmonic eigenfunctionsW,(s) (described above)
(EHDI) or the decay of initial data, suggests a second elassatisfying W = "W, = 0 at boundaries. The analytical
tohydrodynamic technique for measuring bending modulitools developed for planar elastohydrodynamics are ro-
Since Eg. (1) is linear, we may subtract from its gen-bust, and may be applied to the dynamics and instabilities
eral solution a particular solution, consistent with nonzeroof three-dimensional and even twisted elastica, as will be
boundary conditions or external driving, to obtain a ho-elucidated elsewhere [22].
mogeneous equation with O-valued boundary conditions. We thank A. Ott and D. X. Riveline for collaborations,
This motivates the construction of a self-adjoint operatolS. Block, S. Childress, J. Kessler, P. Nelson, C. O’Hern,
from H = o*, whose well-known eigenfunctions [18] and especially T. Powers for insightful discussions, and
are W. Bialek for bringing [5] to our attention. This work

W, (x) = a; sin(gx) + a,codqx) was supported by an NSF Presiderjtial Faqulty Fellowship,

DMR 96-96257 (REG). We dedicate this work to the
+ assinh(gx) + ascoshgx),  (11)  memory of E. Purcell.
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