
 

Turing’s Diffusive Threshold in Random Reaction-Diffusion Systems

Pierre A. Haas *

Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom

Raymond E. Goldstein †

Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,
University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

(Received 9 November 2020; accepted 29 April 2021; published 9 June 2021)

Turing instabilities of reaction-diffusion systems can only arise if the diffusivities of the chemical species
are sufficiently different. This threshold is unphysical in most systems with N ¼ 2 diffusing species,
forcing experimental realizations of the instability to rely on fluctuations or additional nondiffusing species.
Here, we ask whether this diffusive threshold lowers for N > 2 to allow “true” Turing instabilities. Inspired
by May’s analysis of the stability of random ecological communities, we analyze the probability
distribution of the diffusive threshold in reaction-diffusion systems defined by random matrices describing
linearized dynamics near a homogeneous fixed point. In the numerically tractable casesN ⩽ 6, we find that
the diffusive threshold becomes more likely to be smaller and physical as N increases, and that most of
these many-species instabilities cannot be described by reduced models with fewer diffusing species.
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In 1952, Turing described the pattern-forming instability
that now bears his name [1]: diffusion can destabilize a
fixed point of a system of reactions that is stable in well-
mixed conditions. Nigh on threescore and ten years on, the
contribution of Turing’s mechanism to chemical and
biological morphogenesis remains debated, not least
because of the diffusive threshold inherent in the mecha-
nism: chemical species in reaction systems are expected to
have roughly equal diffusivities, yet Turing instabilities
cannot arise at equal diffusivities [2,3]. It remains an open
problem to determine the diffusivity difference required for
generic systems to undergo this instability, yet this diffusive
threshold has been recognized at least since reduced
models of the Belousov–Zhabotinsky reaction [4,5] only
produced Turing patterns at unphysically large diffusivity
differences.
Therefore, the first experimental realizations of Turing

instabilities [6–8] relied on gel reactors in which reversible
binding to the (nondiffusing) substrate greatly reduced the
effective diffusivity of one species [9,10]. A biological
analog is membrane binding in protein pattern formation
[11]. (Additionally, transmembrane transport in biological
tissues can increase effective diffusivity differences [12].)
More abstractly, a third, nondiffusing species can allow

Turing instabilities even if theN ¼ 2 diffusing species have
equal diffusivities [13–15]. Such nondiffusing species
continue to permeate recent work on the network topology
of Turing systems [16,17].
Moreover, fluctuation-driven instabilities in reaction-

diffusion systems have noise-amplifying properties that
allow their pattern amplitude to be comparable to that of
deterministic Turing patterns [18], with a lower diffusive
threshold than the deterministic one [19–22]. A synthetic
bacterial population with N ¼ 2 species that exhibits
patterns in agreement with such a stochastic instability,
but does not satisfy the conditions for a deterministic
instability [23], was reported recently.
These experimental instabilities relying on fluctuations

or additional nondiffusing species and the nonlinear insta-
bilities arising from finite-amplitude perturbations [2] are
different from the true Turing instabilities defined by
Turing [1]. Can such instabilities be realized, instead, in
systems with N > 2 diffusing species? Equivalently, is the
diffusive threshold lower in such systems? These questions
have remained unanswered, perhaps because, in contrast to
the textbook case N ¼ 2 and the concomitant picture of an
“inhibitor” out-diffusing an “activator” [24,25], the com-
plicated instability conditions for N > 2 [26] do not lend
themselves to analytical progress.
Here, we analyze the diffusive threshold for Turing

instabilities with 2 ⩽ N ⩽ 6 diffusing species. Inspired
by May’s work on random ecological communities [27],
we analyze random Turing instabilities by sampling
random matrices that represent the linearized reaction
dynamics of otherwise unspecified reaction-diffusion
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systems. A semianalytic approach shows that the diffusive
threshold is more likely to be smaller and physical for
N ¼ 3 compared to N ¼ 2, and that two of the three
diffusivities are equal at the transition to instability. We
extend these results to the remaining numerically tractable
cases of reaction-diffusion systems with 4 ⩽ N ⩽ 6 and
two different diffusivities: their Turing instabilities are still
more likely to have a smaller and physical diffusive
threshold, but most of them cannot be described by reduced
models with fewer diffusing species.
We begin with the simplest case, N ¼ 2, in which

concentrations u, v obey

_u ¼ fðu; vÞ þ du∇2u; _v ¼ gðu; vÞ þ dv∇2v: ð1Þ

The conditions for Turing instability in this system [25]
only depend on the four entries of the Jacobian

J ¼
�
fu fv
gu gv

�
; ð2Þ

the partial derivatives of the reaction system at a fixed point
ðu�; v�Þ of the homogeneous system. This fixed point
is stable to homogeneous perturbations if and only if
J ≡ det J > 0 and I1 ≡ tr J < 0. A stable fixed point
of this kind is unstable to a Turing instability only if
p≡ −fugv > 0 [25]. Defining the diffusion coefficient
ratio D2 ¼ max fdu=dv; dv=dug ⩾1, a Turing instability
occurs if and only if these conditions hold along with [28]

D2 ⩾ D�
2 ≡

� ffiffiffi
J

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
J þ p

p
min fjfuj; jgvjg

�2

: ð3Þ

This diffusivity difference D�
2, which is required math-

ematically for instability, is unphysical [Fig. 1(a)] if it
exceeds the diffusivity difference D ⩾ 1 of the physical
system: D ≈ 1 for similarly sized molecules in solution,
but, e.g., D ≈ 20 for the stochastic Turing instability
observed in Ref. [23]. Hereinafter, we take D ¼ 5 arbi-
trarily in numerical examples (but have checked that the
value ofD does not affect results qualitatively). To quantify
D�

2, we introduce the range R of kinetic parameters,

R≡max fjfuj; jfvj; jguj; jgvjg
min fjfuj; jfvj; jguj; jgvjg

: ð4Þ

If gðu; vÞ ¼ −fðu; vÞ, Eqs. (1) describe a mass-
conserving reaction-diffusion system [29]. For such a
system [28], D�

2 ¼ R, and so the instability is physical if
and only if R < D. However, while D is expected to be
“small” in many cases, there is no physical reason to expect
R to be similarly small. Therefore, the condition R < D
expresses a fine-tuning problem for the reaction kinetics.
We now return to general systems, for which one obtains

[28] the upper bound

D�
2 ⩽ Dmax

2 ðRÞ≡
�
Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 1

p �
2

: ð5Þ

As R → 1, Dmax
2 → 1: there is no diffusive threshold,

but this limit requires fine-tuning the reaction kinetics
[Fig. 1(a)]. (In fact, it is a particular instance of singular
kinetics that allow Turing instabilities at nearly
equal diffusivities more generally [3].) If R ≫ 1, then
Dmax

2 ¼ OðR2Þ. This does not imply the existence of a
threshold, for it does not preclude most systems with range
R having D�

2 ≪ Dmax
2 [Fig. 1(a)]. Therefore, the existence

of a diffusive threshold relates to the distribution of D�
2 for

systems with range R.
To understand this distribution, we draw inspiration from

May’s statistical analysis of the stability of ecological
communities [27], which studies random Jacobians, cor-
responding to equilibria of otherwise unspecified popula-
tion dynamics. By analogy, we study random Turing
instabilities, sampling uniformly and independently ran-
dom Jacobians corresponding to equilibria of otherwise
unspecified reaction kinetics, and analyze the criteria for
them to be Turing unstable. There is, of course, no more
reason to expect the kinetic parameters to be independent or
uniformly distributed than there is reason to expect the
linearized population dynamics in May’s analysis [27] to be
independent or normally distributed. Yet, in the absence of
experimental understanding of what these parameter dis-
tributions should be (in either context), the potential of the
random matrix approach to reveal stability principles has
been amply demonstrated in population dynamics [36–46].
We sample the kinetic parameters in Eq. (2) independ-

ently and uniformly from ½−R;−1� ∪ ½1; R�, randomly set
one of them equal to �1 and one equal to �R, and, thus,
estimate the probability distribution PðD�

2Þ for fixed R

FIG. 1. Turing’s diffusive threshold for N ¼ 2. (a) Cartoon of
the diffusive threshold and the fine-tuning (FT) problem for R ≈ 1
and R ≫ 1. The diffusivity difference required mathematically is
unphysical in the hatched region D ⩽ D�

2 ⩽ Dmax
2 . (b) Distribu-

tion PðD�
2Þ, supported on the (scaled) interval ½1; Dmax

2 ðRÞ�,
estimated for different R. (c) Plot of PðD�

2 < DÞ [shaded areas
in panels (a) and (b)] against R, revealing the diffusive threshold.
Markers: estimates from panel (b); solid line: exact result [28] for
R > D [35].
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[Fig. 1(b)]. The threshold is quantified by the probability of
a Turing instability being physical,

PðD�
2 < DÞ ¼

Z
D

1

PðD�
2Þ dD�

2: ð6Þ

Both from the estimates in Fig. 1(b) and by evaluating the
integral in closed form [28], we find that PðD�

2 < DÞ is tiny
[Fig. 1(c)], except if R < D. This generalizes the result for
mass-conserving systems, and raises the fine-tuning prob-
lem again. The consequent rareness of physical Turing
instabilities expresses the diffusive threshold for N ¼ 2.
To investigate how this threshold changes with N, next,

we consider N ¼ 3 and

_u ¼ fðu; v; wÞ þ du∇2u; ð7aÞ

_v ¼ gðu; v; wÞ þ dv∇2v; ð7bÞ

_w ¼ hðu; v; wÞ þ∇2w; ð7cÞ

where we have rescaled space to set dw ¼ 1. We introduce
the matrix of diffusivities and the reaction Jacobian,

D ¼

0
B@

du 0 0

0 dv 0

0 0 1

1
CA; J ¼

0
B@

fu fv fw
gu gv gw
hu hv hw

1
CA; ð8Þ

in which the entries of J are again partial derivatives at a
fixed point ðu�; v�; w�Þ of the homogeneous system. This
fixed point is unstable to a Turing instability if it is
stable but, for some eigenvalue −k2 < 0 of the
Laplacian, J̄ðk2Þ ¼ J − k2D is unstable [3], i.e., has an
eigenvalue λ such that ReðλÞ < 0. More precisely, a
Turing instability arises when a real eigenvalue of J̄ðk2Þ
crosses zero, i.e., when J ðk2Þ≡ det J̄ðk2Þ ¼ 0 and,
therefore, arises first at a wave number k ¼ k� with
J ðk2�Þ ¼ ∂J =∂k2ðk2�Þ ¼ 0 [3]. Hence, J , a cubic poly-
nomial in k2, has a double root at k2 ¼ k2� > 0, so its
discriminant [31] vanishes. This discriminant, Δðdu; dvÞ, is
a polynomial in du, dv. We denote by Kðdu; dvÞ the double
root of J corresponding to a point ðdu; dvÞ on the
curve Δðdu; dvÞ ¼ 0.
Thus, determining the diffusive threshold for Turing

instability in Eqs. (7) requires solving the problem

minimize D3ðdu; dvÞ subject to

�Δðdu; dvÞ ¼ 0;

Kðdu; dvÞ > 0;
ð9Þ

in which the diffusion coefficient ratio is

D3ðdu; dvÞ ¼ max fdu; 1=du; dv; 1=dv; du=dv; dv=dug:
ð10Þ

With the aim of obtaining statistics for the minimal value
D�

3, direct numerical solution of this constrained optimi-
zation problem is obviously not a feasible approach. In the
Supplemental Material [28], we therefore show how
solving problem (9) reduces to polynomial root finding.
This semianalytic approach reveals a particular class of
minima, attained at the vertices of the contours of
D3ðdu; dvÞ [Fig. 2(a)], i.e., at du ¼ 1, dv ¼ 1, or
du ¼ dv. In these cases, Δðdu; dvÞ ¼ 0 is a (sextic) poly-
nomial in a single variable. We call these minima “binary,”
since the corresponding systems have only two different
diffusivities. We implement this approach numerically [28],
and sample random systems similarly to the case N ¼ 2,
drawing the entries of J in Eq. (8) uniformly and inde-
pendently at fixed range R.
Remarkably, all global minima we found numerically

were binary [28]. Thus, the minimizing systems come in
two flavors: those with two “fast” diffusers and one “slow”
diffuser, and those with one fast diffuser and two slow
diffusers. Systems with a nondiffusing species are a limit of
the former; this will be discussed below. The latter arise in
models of scale pattern formation in fish and lizards
[47,48], in which short-range pigments respectively acti-
vate and inhibit a long-range factor.
The distribution of D�

3 [Fig. 2(b)] has a different shape
from that of D�

2 [Figs. 1(a) and 2(b), inset]. While the
support of the distribution of D�

3 appears unbounded,
Fig. 2(c) shows that PðD�

3 < DÞ > PðD�
2 < DÞ. Hence,

the diffusivity difference is more likely to be physical for
N ¼ 3 than for N ¼ 2: the diffusive threshold is lowered.

FIG. 2. Results for N ¼ 3. (a) Contours of D3ðdu; dvÞ in the
positive ðdu; dvÞ quadrant. (b) Smoothed distribution PðD�

3Þ,
estimated for different R. Inset: same plot, scaled to ½1; Dmax

2 ðRÞ�
for comparison to N ¼ 2 in Fig. 1(a). (c) PðD�

N < DÞ against R
for N ∈ f2; 3g: the diffusive threshold lowers for N ¼ 3 com-
pared to N ¼ 2. (d) Proportion ϕNðDÞ of random Jacobians that
have a physical Turing instability, plotted against R, for
N ∈ f2; 3g. Inset: proportion τN of random Jacobians that have
a (physical or unphysical) Turing instability, averaged over R, for
N ∈ f2; 3g [35].
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The proportion τN of random kinetic Jacobians that have
a Turing instability (be it physical or unphysical) is smaller
for N ¼ 3 than for N ¼ 2 [Fig. 2(d), inset]. This is not
surprising, because a random Jacobian is less likely to
correspond to a stable fixed point (which, we recall, is a
necessary condition for Turing instability) for N ¼ 3 than
for N ¼ 2, essentially because it has to satisfy more
conditions for stability if N ¼ 3. It is therefore striking
that the threshold reduces sufficiently for N ¼ 3 for the
proportion ϕNðDÞ ¼ τNPðD�

N < DÞ of random Jacobians
with a physical Turing instability to be larger for N ¼ 3
than for N ¼ 2 [Fig. 2(d)], even though a Turing instability
of any kind is more likely if N ¼ 2.
To extend these results to N > 3 diffusing species, we

consider the (linearized) reaction-diffusion system

_u ¼ J · uþ D · ∇2u; ð11Þ

where J is a random kinetic Jacobian, and D is a diagonal
matrix of diffusivities. Even with our semianalytic
approach, this cannot be analyzed for general D: not even
for N ¼ 4 were we able to obtain closed forms of the
required polynomials. To make further progress, we there-
fore restrict to binary D in which the N diffusivities take
two different values only, since we showed above thatD�

3 is
attained for such binary D. As in the case N ¼ 3, this
reduces the discriminant condition ΔðDÞ ¼ 0 to polyno-
mial equations in one variable that determine the minimum
diffusivity difference D�

N for these binary Turing instabil-
ities [28].
Figure 3(a) shows that the diffusive threshold lowers

further for 4 ⩽ N ⩽ 6 in these systems. Meanwhile, the fact
that most stable random kinetic Jacobians undergo such a
binary Turing instability [Fig. 3(b)] suggests that these
provide a useful picture of the threshold. However, ϕNðDÞ
decreases for N ⩾ 4 [Fig. 3(c)] because τN decreases
[Fig. 3(c), inset]. Nonetheless, as both PðD�

N < DÞ and
the proportion σN of stable random Jacobians that are
Turing unstable increase [Figs. 3(a) and 3(b)], so does the
proportion of stable random Jacobians having a physical
Turing instability.
How, then, to realize the true Turing instabilities defined

by Turing [1] experimentally? Our analysis shows that the
diffusive threshold is more likely to be physical the more
species there are, but how to find an experimental Turing
instability in the first place? Turing instabilities remain rare
in random systems even as the number of species increases,
but the above shows that this rareness mainly results from
the rareness of stable equilibria in such systems. Hence, the
proverbial search for the needle in a haystack might be
avoidable by evolving biochemical systems that admit a
stable equilibrium toward a true Turing instability.
This analysis does not, however, reveal whether these

instabilities lead to patterns observable at the physical scale
of the system. Analysis of the wave number at which the

linear instability first arises [28] suggests that we can
extend our conclusions: Turing instabilities with more
species are more likely to have physical diffusivity
differences and to be observable. However, our statistical,
linearized analysis cannot fully answer this question of
observability, because its answer depends on the kinetic
nonlinearities, which set the precise nature and scale of the
Turing patterns that develop beyond onset of the instability;
this is why we have relegated this analysis to the
Supplemental Material [28].
The species in the binary systems with 3 ⩽ N ⩽ 6

separate into fast and slow diffusers. The diffusion of these
slow species is often ignored in analyses of systems of
many chemical reactions [32], such as the full Belousov–
Zhabotinsky reaction [49]. Corresponding reduced models
are obtained by substituting the steady-state kinetics of the
slow species into the remaining equations, thereby elimi-
nating them [32]. The conditions for Turing instability in
these reduced models are (almost) equivalent to those for
the full model with nondiffusing slow species [32].
However, the diffusion of the slow species cannot in
general be ignored: up to reordering species and rescaling
space,

D ¼
� I 0

0 dI

�
; J ¼

� J11 J12
J21 J22

�
; ð12Þ

where d < 1 is the diffusivity of the slow diffusers.
Reference [32] implies that there is a Turing instability with
nondiffusing slow species (d ¼ 0) only if J11 − J12J−122J21
has a positive (real) eigenvalue [28]. Although the pro-
portion of Turing unstable systems with n ⩾ 2 fast diffusers
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FIG. 3. Results for binary systems with 4 ⩽ N ⩽ 6.
(a) PðD�

N < DÞ against R for 4 ⩽ N ⩽ 6, revealing further
lowering of the diffusive threshold compared to N ¼ 3. (b) Pro-
portion σN of random stable kinetic Jacobians that have a (binary,
if N > 3) Turing instability, averaged over R, and plotted
against N. (c) Proportion ϕNðDÞ of random Jacobians that
have a physical Turing instability plotted against R, for
3 ⩽ N ⩽ 6. Inset: proportion τN of random Jacobians that have
a (physical or unphysical) Turing instability, averaged over
R, for 3 ⩽ N ⩽ 6 [35].
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(that could a priori still undergo a Turing instability with
d ¼ 0) is large [Fig. 4(a)], the proportion of systems that do
undergo such an instability is small, even if we restrict to
those systems with physical diffusivity differences
[Fig. 4(b)]. Hence, most of these binary Turing instabilities
withN > 2 species require all species to diffuse. Thus, they
are more general than reduced instabilities with equal
diffusivities and additional nondiffusing species. With
our main result, that the diffusive threshold lowers as N
increases, this shows how these reduced models give but an
incomplete picture of Turing instabilities.
In this Letter, we have analyzed random Turing

instabilities to show how the diffusive threshold that has
hampered experimental efforts to generate the true Turing
instabilities defined by Turing [1] in systems of
N ¼ 2 diffusing species lowers for systems with N ⩾ 3,
most of whose instabilities cannot be described by reduced
models with fewer diffusing species. However, why the
threshold should be “large” in the first place remains
unclear; this does not follow from the requirement of
unequal diffusivities [2,3]. In this context, we prove an
asymptotic result in the Supplemental Material [28]: for a
Jacobian J to allow a Turing instability at almost equal
diffusivities D ≈ I, J must be even closer to a singular
matrix J0, i.e., J − J0 ≪ D − I. Thus, the threshold D − I is
asymptotically large. Understanding how a large threshold
arises more generally outside this asymptotic regime and
lowers as N increases remains an open problem, as do
extending the present analysis to include the nonlocal
interactions [50,51] that arise, for example, in vegetation
patterns [52] and extending previous work [17,53] on the
robustness of Turing patterns to N ⩾ 3. The latter, in
particular, may help to identify those chemical or biological
systems with N ⩾ 3 in which the true Turing instabilities
discussed here can be realized experimentally.
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