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This Supplemental Material is divided into five sections,
which provide (i) details of calculations for # = 2, (ii) the
derivation of the semianalytic approach for # = 3 and a dis-
cussion of its numerical implementation, (iii) an analysis of
the statistics of the wavenumber at which a Turing instability
first arises, (iv) a discussion of Turing instabilities with nondif-
fusing “slow” species, and (v) a proof of the asymptotic result
claimed in the conclusion of our Letter.

I. DETAILS OF CALCULATIONS FOR T = 2

A. Derivation of Eq. (3)

The form of the condition for Turing instability in Eq. (3)
follows from that in Eq. (2.26) on page 85 ofVol. II of Ref. [S1]
which, in our notation, reads

5D + 36E > 2
√
3�, (S1)

a quadratic in 3 = 3D/3E . Hence
√
3 ≷

√
3∗ ≡

√
� ± √� − 5D6E

6E
if 6E ≷ 0. (S2)

We notice that Eq. (S1) requires 5D + 36E > 0. Since �1 < 0,
this implies that 3 ≷ 1 if 6E ≷ 0. Hence �∗2 = 3∗ if 6E > 0,
but �∗2 = 1/3∗ if 6E < 0. Now, if 6E ≷ 0, then | 5D | ≷ |6E |
because �1 < 0 and ? > 0. Equation (3) then follows, since

6E√
� − √� + ? =

√
� + √� + ?

5D
. (S3)

B. Mass-conserving reaction-diffusion systems

Mass-conserving reaction-diffusion systems [S2] have
6(D, E) = − 5 (D, E), and hence 6D = − 5D , 6E = − 5E . The nec-
essary conditions for Turing instability [S1] reduce to the pair
of conditions 5D − 5E < 0 and 5D 5E > 0, i.e. 0 < 5D < 5E
or 5E < 5D < 0. From Eqs. (3) and (4), it then follows that
�∗2 = max {| 5E |/| 5D |, | 5D |/| 5E |} = '.

C. Derivation of Eq. (5)

Let � = [−',−1] ∪ [1, ']. Equation (3) shows that �∗2 is
continuous on �4, so attains its maximumvalue on that domain.

Since ? > 0 and � > 0, @ ≡ − 5E6D > 0, so that � + ? = @.
Now �∗2 only depends on 5E , 6D through @, and, by direct
computation from Eq. (3),

m�∗2
m@

=
�∗2√

� (� + ?)
> 0. (S4)

Hence �∗2 increases with @, so ( 5E , 6D) = ±(',−') at the
maximum.
Now assume that | 5D | > |6E |. Since �1 < 0 and | 5D | > |6E |,

it follows that 5D < 0 and 6E > 0. Then

m�∗2
m 5D

=

√
� + √@
6E
√
�

> 0,
m�∗2
m6E

= −
(√
� + √@)3

63
E

√
�

< 0, (S5)

and so ( 5D , 6E ) = (1,−1) at the maximum. If | 5D | 6 |6E |, we
similarly find that ( 5D , 6E ) = (−1, 1) at the maximum. These
parameters have range ', and substituting these values into
Eq. (3) yields Eq. (5).

D. Calculation of PPP(J∗2 < D) for D 6 X

There are 48 ways of assigning values ±1 and ±' to two
of the entries 5D , 5E , 6D , 6E of J. Integrating the conditions
for Turing instability of the remaining entries in each of these
cases using Mathematica (Wolfram, Inc.) gives the area of
parameter space in which a Turing instability arises,
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©«
� > 0, �1 < 0

? > 0
max |J| = '
min |J| = 1

ª®®®¬ dJ = 12(' − 1)2, (S6)

where we use the shorthand dJ = d 5D d 5E d6D d6E . To analyze
the condition �∗2 < ', we note that the expression for �∗2 in
Eq. (3) shows that we may swap 5D , 6E and 5E , 6D . Hence the
48 cases reduce to 4 cases (corresponding to the entries ±1 or
±' being on the the same or on different diagonals):

(1) | 5D | = ', |6E | = 1; (2) | 5E | = ', |6D | = 1;
(3) | 5D | = ', | 5E | = 1; (4) | 5D | = 1, | 5E | = '.

Moreover, since @ > 0, wemay take 5E > 0 and 6D < 0without
loss of generality. We now discuss these cases separately.

(1) �1 < 0 implies 5D = −', 6E = 1, and so

�∗2 =
(√
@ +

√
@ − '

)2
> '. (S7)
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(2) 5D6E = −' since @ > 0, so � = 5D6E + '.

(3) 5D = −' because �1 < 0. Now ?, @ > 0, and so
0 < � = −' |6E | − |6D | < 0. This is a contradiction.

(4) 5D = 1 as �1 < 0. Since 6E 6 −1, it follows that

�∗2 =
(√
−6D' +

√
−6D' − 6E

)2
> '. (S8)

In this way, �∗2 < ' quantifies the diffusive threshold in a
natural way. In particular, �∗2 < ' is only possible in case (2).
Since � > 0, we require 5D6E +' > 0 in that case. Now �1 < 0
and ? > 0, so 1 < 5D < −'/6E or 1 < 6E < −'/ 5D depending
on 5D > 0, 6E < 0 or 5D < 0, 6E > 0. Assume without loss
of generality that | 5D | > |6E |. Then 5D < 0, 6E > 0 as �1 < 0.
Moreover, using Eq. (3), �∗2 = ' if and only if 6E = 2 + 5D/'.
From Eqs. (S5), �∗2 decreases as 6E increases. Hence

�∗2 < ' ⇐⇒ 2 + 5D/' < 6E 6 −'/ 5D and 5D + 6E < 0,
(S9)

using the conditions derived previously. Note that −'/ 5D < '
and 2 + 5D/' > 1 for −' < 5D < −1. If | 5D | < |6E |, 5D , 6E
are swapped in these conditions. Moreover, since @ > 0, case
(2) corresponds to 4 of the 48 cases. Hence we obtain, again
using Mathematica,
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(S10)

Equations (S6) and (S10) imply

P
(
�∗2 < '

)
=
' [(' + 1) log ' − 2(' − 1)]

3(' − 1)2 (' + 1) . (S11)

In particular, P
(
�∗2 < '

)
= $ (log '/') � 1 for ' � 1. This

statement expresses the existence of the diffusive threshold
mathematically.

From a more physical point of view, as discussed in our Let-
ter, it is more natural to consider the probability P

(
�∗2 < D

)
,

for some constantD > 1. Since “small” values ' 6 D require
fine-tuning of the reaction kinetics, we restrict to D 6 ', so
that �∗2 < D is only possible in case (2) above. We consider
again the case 6E > 0, 5D < 0. Similarly to the derivation of
conditions (S9), we find

�∗2 < D ⇐⇒ 6E >

√
'

D
, − '

6E
6 5D < D6E − 2

√
D',

and 5D + 6E < 0. (S12)

In particular,

− '
6E
=max
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−',− '

6E

}
6 5D < min

{
−1,−6E ,D6E−2

√
D'

}
,

(S13a)

in which, since 6E > 1,

min
{
−1,−6E ,D6E−2

√
D'

}
=

 −6E if 6E >
2
√
D'

D + 1
;

D6E−2
√
D' otherwise.

(S13b)

We notice that
√
' > 2

√
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√
'/D sinceD > 1, and

also that D6E − 2
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√
'
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but −6E/−'/6E ⇐⇒ 6E <
√
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Hence [S3]
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for ' > D, and, as above, we conclude that, for ' > D,

P
(
�∗2 < D

)
=

'

3(' − 1)2
[
logD − 2(D − 1)

D + 1

]
. (S15)

E. Nondimensionalization

We close by remarking on the (absence of) nondimension-
alization of the reaction system. Indeed, up to rescaling time,
one among 5D , 5E , 6D , 6E can be set equal to ±1. Moreover,
one more parameter can be set equal to ±1 by rescaling D, E
differently. However, if we made those choices, we could no
longer sample from a fixed interval.

II. SEMIANALYTIC METHOD FOR T = 3

A. Derivation of the semianalytic method

1. Preliminary observations

Before deriving the semianalytic method, we need to make
two preliminary observations.
First, the necessary and sufficient (Routh–Hurwitz) con-

ditions for the homogeneous system to be stable include
�1 ≡ tr J < 0 and � ≡ det J < 0 [S1]. By definition, J

(
:2∗

)
has one zero eigenvalue. The other two eigenvalues are either
real or two complex conjugates _, _∗. In the second case, they
are both stable (i.e. have negative real parts) since

2Re(_) = 0 + _ + _∗ = tr J
(
:2
∗
)
= �1 − :2

∗ tr D < �1 < 0.
(S16)
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Hence Eqs. (7) are not unstable to an oscillatory (Turing–
Hopf) instability at (3∗D , 3∗E ), so, by minimality of (3∗D , 3∗E ),
the system destabilizes to a Turing instability there.

Moreover, since J , viewed as a polynomial in :2∗ , has lead-
ing coefficient −3D3E and constant term J (0) = � < 0, the
double root  (3D , 3E ) varies continuously with 3D , 3E and
cannot change sign on a branch of Δ(3D , 3E ) = 0 in the posi-
tive (3D , 3E ) quadrant.

2. Reduction of problem (9) to polynomial equations

The discriminant of J , viewed as a polynomial in the two
variables 3D , 3E , is

Δ(3D , 3E ) =
4∑
<=0

4∑
==0

X<=3
<
D 3

=
E , (S17)

where X00 = X10 = X01 = X34 = X43 = X44 = 0 and (com-
plicated) expressions for the 19 non-zero coefficients can be
found in terms of the entries of J using Mathematica (Wol-
fram, Inc.).

The second remark above implies that, at a local minimum
of �3 (3D , 3E ) on Δ(3D , 3E ) = 0, one of the following occurs:

(i) Δ(3D , 3E ) = 0 is tangent to a contour of �3 (3D , 3E );
(ii) Δ(3D , 3E ) intersects a vertex of a contour of �3 (3D , 3E );
(iii) Δ(3D , 3E ) is singular.
The contours of �3 (3D , 3E ) are drawn in Fig. 2(a) of our Letter
and show that tangency to a contour in case (i) requires

d3D = 0 or d3E = 0 or d3E/d3D = 3E/3D . (S18)

Since Δ(3D , 3E ) = 0, the chain rule reads

0 = dΔ =
mΔ

m3D
d3D + mΔ

m3E
d3E . (S19)

Hence there are two subcases:

(a)
mΔ

m3E
= 0 or

mΔ

m3D
= 0;

(b) 3D
mΔ

m3D
+ 3E mΔ

m3E
= 0.

In subcase (a), Δ viewed as a polynomial in 3E or 3D has a
double root, and so its discriminant [S4] must vanish. On
removing zero roots, this discriminant of a discriminant is
found to be a polynomial of degree 20 in 3D or 3E , respec-
tively; complicated expressions for its coefficients in terms of
the non-zero coefficients X<= in Eq. (S17) are obtained using
Mathematica. Similarly, in subcase (b), the resultant [S4]
of Δ and 3DmΔ/m3D + 3EmΔ/m3E , viewed as polynomials in
3D or 3E must vanish. This resultant is another polynomial of
degree 20 in 3E or 3D .

Next, in case (ii), 3D = 1 or 3E = 1 or 3D = 3E [Fig. 2(a)],
which reduces Δ to three different polynomials in the single
variable 3E , 3D , or 3 = 3D = 3E , respectively. These polyno-
mials have degree 6.

Finally, in case (iii), we note that, at a singular point,
Δ = mΔ/m3D = mΔ/m3E = 0, and so we are back in case (i),
subcase (a).
Thus, we have reduced finding candidates for local min-

ima in (9) to solving polynomial equations: this defines our
semianalytic approach. The global minimum is found among
those local minima with  (3D , 3E ) > 0; in case (i), the roots
only correspond to local minima if additionally 3D , 3E > 1 or
3D , 3E < 1 in subcase (a) and 3D < 1 < 3E or 3E < 1 < 3D in
subcase (b) [Fig. 2(a)].

3. Extension to binary systems with # > 3

For binary systems, the diagonal entries of D take two dif-
ferent values, 31, 32 only. Up to rescaling space, 31 = 1 and
32 = 3, which turns the condition Δ(D) = 0 into 2#−1 − 1
different polynomial equations in the single variable 3, cor-
responding to the different combinatorial ways of assigning
diffusivities 31, 32 to the # species (in such a way that not all
species have the same diffusivity). Determining the minimum
value �∗# of �# = max {3, 1/3} for these binary systems is
thus reduced, again, to solving polynomial equations.

The argument we used above to show that coexistence of
Turing and Turing–Hopf instabilities is not possible for # = 3
does not, however, carry over to # > 3. Numerically, it turns
out, however, that systems in which Turing and Turing–Hopf
instabilities coexist are rare. We therefore treat these systems
in the same way as we treat systems for which the numerics
fail (as discussed below).

B. Numerical implementation

Implementing the semi-analytical approach for # = 3 and
its extension to binary systems with 4 6 # 6 6 numerically
takes some care as the coefficients of the polynomials that
arise can range over many orders of magnitude. Our python3
implementation therefore uses the mpmath library for variable
precision arithmetic [S5].

To determine the positive real roots of the polynomials
that arise in the semi-analytical approach, we complement
the Durand–Kerner complex root finding implemented in the
mpmath library [S5]with a test based on Sturm’s theorem [S4],
to ensure that all positive real roots are found. Those systems in
which root finding fails—either because the Durand–Kerner
algorithm fails to converge or because it finds an incorrect
number of positive real roots—are discarded, but included in
error estimates where reported.

C. Numerical samples

Table S1 gives the number of random Turing unstable sys-
tems from which distributions, averages, and probabilities
were estimated for each ' ∈ {2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20}.
For # = 3, we ran both a search for general, non-binary

systems and a (larger but numerically less expensive) search
for binary systems only. Since the first search only yielded
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TABLE S1. Number of random Turing unstable systems used to
estimate distributions, averages, and probabilities for the different
values of # , and corresponding figures.

# Type max)a Figuresb

# = 2 non-binary 107 Figs. 1, S1
# = 3 non-binary 104

# = 3 binary 105 Figs. 2, 4, S1
# = 4 binary 105 Figs. 3, 4, S1
# = 5 binary 2 · 104 Figs. 3, 4, S1
# = 6 binary 2 · 103 Figs. 3, 4, S1

a Maximum number of computed Turing unstable systems.
b Figures (if any) in which results are shown.

binary global minima (as stated in our Letter), we used the
results of the second, larger search for Figs. 3 and 4.

III. WAVENUMBER STATISTICS

In this Section, we discuss the wavenumber :∗# at which a
Turing instability first arises at �# = �∗# . In particular, as
discussed in our Letter, we must ask whether a Turing insta-
bility is “observable at the system size”. This observability
requires the lengthscale 1/:∗# of the linear instability to be
(a) smaller than the system size ! and (b) larger than !/ℓ, for
some scale difference ℓ > 1. We are thus led to consider the
probability P( < :∗# < ℓ ), where  = 1/!.

It is instructive to start by considering the case # = 2. For
the reaction-diffusion system in Eq. (1), a Turing instability
arises for �2 = �

∗
2 at a wavenumber :∗2 = (�/3D3E )1/4 [S1].

We stress that this value depends on 3D , 3E not only through
their ratio 3 = 3D/3E . To absorb the dependence on the
dimensional system scale, it is natural to consider

^2 (ℓ) = max
 

{
P

(
 < :∗2 < ℓ 

)}
, (S20a)

as the maximal probability of a Turing instability being ob-
servable at some inverse system scale  over a fixed scale
difference ℓ. We denote by  2 (ℓ) the corresponding maximiz-
ing inverse system size.

For # > 2, we correspondingly ask: what is the probability
of a Turing instability being observable at this inverse system
size? We therefore define

^# (ℓ) = P
(
 2 (ℓ) < :∗# < ℓ 2 (ℓ)

)
for # > 2. (S20b)

Figure S1 plots ^# (ℓ) against # , for fixed values of ' and
ℓ, but the qualitative behaviour is independent of ' and ℓ.
We notice that ^# (ℓ) increases slightly with # . If we restrict
the analysis to those Turing unstable systems with �∗# 6 D,
the probability is reduced somewhat for # > 2 compared to
the case # = 2. This merely reflects the “fine-tuning prob-
lem”: the wavenumber is strongly constrained for those very
rare systems that have a “small” diffusive threshold at # = 2.
Moreover, the majority of the Turing instabilities at # > 2
do arise at physical wavenumbers, so we can extend the ob-
servations in Figs. 2(d) and 3(c) to note that random kinetic

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

binary

all Turing unstable systems
Turing unstable systems
with 𝐷∗

𝑁 <D

𝑁

𝜅𝑁 (ℓ)

FIG. S1. Wavenumber statistics. Probability ^# (ℓ) of a Turing
instability being “observable” at a scale difference ℓ plotted against
#; see text for further explanation. Larger markers: ^# (ℓ) estimated
from all Turing unstable systems; smaller markers: ^# (ℓ) estimated
from only those Turing unstable systems with �∗# < D. Parameter
values: ' = 10, ℓ = 10, D = 5. Asymmetric error bars again
correspond to 95% confidence intervals larger than the plot markers,
corrected for systems for which the numerics failed.

Jacobians are still more likely to be unstable to an observable
Turing instability with small diffusive threshold for # > 2 than
for # = 2.

IV. DIFFUSION OF “SLOW” SPECIES

In the notation of Eq. (12) of our Letter, Ref. [S6] shows
that Turing instability at 3 = 0 requires J22 to be stable (i.e.
all its eigenvalues to have negative real part): if it is not,
instabilities arise at arbitrarily small and therefore unphysical
lengthscales. In particular, det J22 ≠ 0 and J22 is invertible.
Now, using another result of Ref. [S6],

det
(
J − :2D

)
= det J22 det

(
j − :2I

)
, (S21)

where j = J11 − J12J−1
22 J21. Hence a Turing instability occurs

at 3 = 0 only if j has a positive real eigenvalue, as claimed in
our Letter.
This also implies that a Turing instability at 3 = 0 requires

= > 2 “fast” diffusers. Clearly, = = 0 is not possible. If
= = 1, then Eq. (S21) yields det

(
J − :2D

)
= det J22

(
9 − :2) ,

where 9 = J11 − J12J−1
22 J21 is now a scalar. Using this re-

sult for : = 0 shows that 9 det J22 = det J. It follows that
det

(
J − :2D

)
= det J− :2 det J22. Now J is stable (for stability

of the homogeneous steady state is a necessary condition for
Turing instability), while J22 is stable by the above. Hence
sign det J = (−1)# and sign det J22 = (−1)#−= = −(−1)# .
This shows that det J − :2 det J22 ≠ 0, and so = ≠ 1.

V. THE ASYMPTOTIC DIFFUSIVE THRESHOLD

Let J = $ (1) be a Turing unstable kinetic Jacobian, with
an eigenvalue _ destabilizing at nearly equal diffusivities, so
that D = I + d with d = >(1). The following claim extends an
argument of Ref. [S7]:

Claim. J has a defective zero eigenspace.
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Proof. Because J − :2I has a stable eigenvalue _ − :2 and
−:2d � J − :2I, the corresponding eigenvalue of

J − :2D =
(
J − :2I

) − :2d

can only have positive real part if _− :2 = >(1) i.e. if _ = >(1)
and :2 = >(1) since Re(_) < 0. Hence J and J − :2I have a
zero eigenvalue at leading order. Additionally, the eigenvalue
correction from −:2d = >

(
:2) must be $

(
:2) at least, which

occurs if and only if the (leading-order) zero eigenspaces of
J − :2I and J are defective [S8]; this final implication is dis-
cussed in more detail in Ref. [S9]. �

The generic case is therefore J = J0 + $ (Y), where Y � 1
and J0 has a defective double zero eigenvalue.

Claim. d & $
(√
Y
)
; in particular, D − I � J − J0.

Proof. Since J0 has a defective double zero eigenvalue, J has
two $ (√Y) eigenvalues [S8], assumed to be stable (i.e. to
have negative real parts). With : = $ (Y^ ), d = $

(
YX

)
,

destabilizing one of these requires, using the proof of the first
claim above, −:2d & $ (Y) and −:2I . $ (√Y), i.e. 2^ + X 6 1
and ^ > 1/4. Hence X 6 1/2. This proves the claim. �

SUPPLEMENTAL CODE

The online Supplemental Material also includes excerpts
from the python3 code that we have written to implement the
semianalytic approach for # > 3.
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