Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

5 Subgradients

Many optimization problems that arise in practice involve nonsmooth functions, such as ||z||1, ||| co,
or in general max{ fi(x), ..., fm(z)}. In this lecture we give a brief overview of the tools from convex
analysis needed to study such optimization problems. The main concept we study in this lecture
is that of a subgradient.

Definition 5.1. Let f : R” — R and 2 € dom(f). We say that g is a subgradient of f at z if for
any y € R",
fy) = f(x) + (g, —x) .

The set of all subgradients of f at x is denoted df(z), and is called the subdifferential of f at x.

Remark that z* is a minimizer of f if, and only if, 0 € 9 f(x).
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Figure 1: Subgradients of a convex function.

Clearly if f is convex and differentiable at , then V f(x) is a subgradient of f at . The theorem
below shows that subgradients always exist for convex functions, even if f is not differentiable.

Theorem 5.1. Let f : R* — R be convex. Then

(1) Of (x) is nonempty for all x € int dom(f)

(ii) Of (z) is closed and convex for all x. For x € intdom(f), df(z) is bounded.
(11i) Of (x) is a singleton if, and only if, f is differentiable at x.

Proof. (i) We apply the supporting hyperplane theorem to
epi(f) = {(z,t) ER" xR : f(z) <t} C R™™L,

Since (z, f(z)) € bdepi(f) [here bd C = cl C'\int C is the boundary of C] we can find a supporting
hyperplane, i.e., a vector a = (a!,a?) € R” x R and a scalar b such that <a1,x> +a®f(x) = b and
<a1,y> +a*t > b for all (y,t) € epi(f). Since t can be made arbitrarily large, it must be that
a® > 0. Since = € int dom(f), a® # 0 (if a®> = 0 then we get a supporting hyperplane to dom(f)
at z). Dividing by a? we can assume a® = 1, so that {(a',z) + f(z) = b and (a',y) + f(y) > b for
all y € dom(f), i.e., f(y) > f(x) + (g9,y — =) where g = —a', i.e., g € Of ().



(ii)) of(x) ={g € R": f(y) > f(x) + (g,y — x)} is an intersection of closed halfspaces and so
is closed and convex. If z € int dom(f), then for some € > 0, B(z,¢) C dom(f). If g € df(x),
then by letting h = eg/||g||]2 we have f(xz + h) > f(z) + (g,h) = f(x) + €||g||2 which implies that
||g||2 < %maXyGB(ac,e)(f(y) - f(ZL‘)) < 0.

(iii) If f is differentiable at z, then we know from the results seen in Lecture 2 that Vf(z) €
Of(x). Also if g € Of(x) then for any direction h we have

f(x) +t{(Vf(z),h) 4+ o(t) = f(z +1th) = fz) +t{g, h).

Simplifying, this yields (V f(x) — g, h) > 0. This has to hold for all h, and so necessarily g = V f(z).
We have thus shown that if f is differentiable at x, then 0f(x) = {V f(z)}.
We omit the proof of the converse here (see Exercise sheet 2). O

5.1 Subgradient calculus

If f:R™ — R s a differentiable function, and h(z) = f(Az) where A € R™ ™ then it is immediate
to verify that Vh(z) = A*V f(Ax), where A* is the adjoint (transpose) of A. Also if fi, fo are
two differentiable functions, then V(fi + f2)(z) = Vfi(z) + V fa(x). These relations also hold in
general for the subgradient of convex functions; however the proof is not immediate and relies on
duality theory.

Theorem 5.2. Let f : R” — R be a convex function.

(i) If h(z) = f(Ax), where A € R™™ such that' im(A) N int dom(f) # 0, then Oh(x) =
A*Of(Ax) for all .

(ii) If f1, fo are two convex functions, such that’ intdom fi N intdom fo # 0, then O(f1 +
fo)(x) = Of1(x) + Ofa(x) for all x, where the right-hand side is the Minkowski sum of sets A+ B =
{a+b:ae€Abe B}.

(iii) Let (fo)aca be a finite collection of convex functions, and let f(x) = maxaeca fo(z). Then
for any x € intdom f,

df(z) = conv UaGA(z)afoz(x)' (1)

where A(x) = {a € A: fo(x) = f(x)}, and where conv denotes the convex hull.
More generally, (1) holds if A is a compact set, and fq(x) depends continuously on «.

Proof. (i) The inclusion D is easy to verify: If g € df(Ax), then for any y we have
hy) = f(Ay) = f(Az) + (9, Ay — Az) = f(Az) + (Ag,y — x) = h(z) + (A"g,y — @)

which shows that A*g € Oh(z). The reverse inclusion C is omitted here (see Exercise sheet 2 for a
special case, and see [Rocl5, Theorem 23.9] for the general case).

(ii) Let F : R?" — R defined by F(z1,z2) = fi(z1)+ fa(z2). It easy to check that OF (z1,z2) =
Of1(x1) x Ofa(x2). Let A: R™ — R?" be the linear map Az = (z,z) whose adjoint is A*(x1,22) =
x1 + z2. Then f(z) = F(x,z) = F(Ax) and so, by (i), 0f(z) = A*0OF (Ax) = 0f1(z) + 0f2(x).

(iii) The inclusion D is easy to check. We omit the proof of the reverse inclusion. (See [HUL13,
VI1.4.4, p.266], see also Exercise sheet 2 for a special case). ]

For more on subgradients, and subdifferentials, see [SB18|.

HIf f is polyhedral (i.e., epi(f) is a convex set defined using a finite number of linear inequalities), this assumption
can be relaxed to im(A) Ndom(f) # 0.

2If f1 is polyhedral (i.e., epi(f1) is a convex set defined using a finite number of linear inequalities), this assumption
can be relaxed to dom f1 Nintdom f> # (. If f5 is also polyhedral, then we just need dom f1 N dom f5 # (.
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