
Topics in Convex Optimisation (Michaelmas 2019) Lecturer: Hamza Fawzi
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1 Conditional-gradient / Frank-Wolfe method

Let C be a compact convex set in Rn, and let f(x) be a smooth (nonlinear) convex function defined
on C. Consider the following algorithm to minimize f on C:

• Initialize: x0 ∈ C

• For k = 0, 1, . . .

• Compute yk = argminx∈C ∇f(xk)
T (x− xk)

• Set xk+1 = (1− γk)xk + γkyk, where γk = 2/(k + 1)

• End For

Let D be the Euclidean diameter of C, defined by D = maxx,y∈C ‖x−y‖2, and L be the Lipschitz
constant for ∇f with respect to the Euclidean norm. Let x∗ = argminx∈C f(x) and f∗ = f(x∗).

(a) Prove that for any integer k we have

f(xk+1)− f∗ ≤ (1− γk)(f(xk)− f∗) +
γ2kLD

2

2
.

(b) Deduce, by induction, that f(xk)− f∗ ≤ 2LD2

k+1 for all k ≥ 0.

2 Lagrangian and KKT conditions

Consider a linearly constrained optimization problem

inf
x∈Rn

f(x) s.t. Ax = b. (1)

We assume that f is smooth and convex, and that the solution to (1) is attained (i.e., the inf is
really a min). Let L be the Lagrangian associated to (1). Show that a sufficient condition for an
x̄ ∈ Rn, satisfying Ax̄ = b, to be optimal is that there exist z̄ such that ∇xL(x̄, z̄) = 0.

Assuming that Slater’s condition holds, show that the condition is also necessary.

3 Duality for linear programming

Consider the linear program
min
x∈Rn

cTx s.t. Ax = b, x ≥ 0 (2)

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm.
(a) By writing problem above as minx∈Rn{cTx + I(x) : Ax = b} where I(x) is the indicator

function of Rn+, derive an explicit formulation of the Lagrange dual of (2) and give sufficient
conditions for the dual problem to have the same optimal value as (2).

(b) Assuming that strong duality holds, and that primal and dual optimal values are finite and
attained, show that necessary and sufficient conditions for x to be an optimal point of (2) is that
there exists z ∈ Rm, s ∈ Rn such that the following conditions hold:

Ax = b, x ≥ 0

c+AT z = s, s ≥ 0

xisi = 0, ∀i = 1, . . . , n.

(3)

(These are the KKT conditions of optimality.)
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4 Network flow optimization

Consider a directed graph with n nodes and m arcs. The network flow problem seeks to find the
optimal way to flow a certain amount G > 0 of goods (water, electricity, shipment, ...) from a source
node s ∈ {1, . . . , n} to a destination node t ∈ {1, . . . , n}, given the following constraints/costs:

• There is flow conservation at each node i ∈ {1, . . . , n} (i.e., ingoing flow must equal outgoing
flow at each node)

• The cost of transferring flow xj on arc j is φj(xj).

Note that flow xj on an arc j can potentially be negative, which means that flow traverses in
reverse direction.

(a) Show that network flow problem can be written as

min
x1,...,xm

m∑
j=1

φj(xj) s.t. Ax = b (4)

where A ∈ Rn×m is a matrix that you should specify, and b ∈ Rn is a vector that you should
specify. [Hint: your matrix A should have exactly two nonzero entries per column].

(b) Write down the Lagrangian dual of (4). Give sufficient conditions for strong duality to hold.

(c) Assuming the φj are strongly convex, write down the gradient method for the dual problem
derived in part (b).

(d) Assuming strong duality holds, show that x ∈ Rm is optimal for (4) iff there exists z ∈ Rn
and y ∈ Rm such that

Ax = b, AT z = y, φ′j(xj) = yj . (5)

[You can use the result of Exercise 2 if you want.] Consider the case where the network is
an electric circuit, xj is electric current, and φj(xj) = Rjx

2
j/2 which means that arc j is a

resistor with resistance Rj . Give a physical interpretation of the variables zi (i = 1, . . . , n)
and of the equations (5).

5 Convergence of Newton’s method

(a) Write down the Newton iterations (with unit step size) to minimize the function f(x) = |x|5/2
where x ∈ R, starting from an initial condition x0 ∈ R. What convergence rate do you get?
How do you reconcile this with the theorem proved in lecture?

(b) Consider Newton’s method applied to the function whose derivative f ′(x) is given by the
graph in Figure 1. Identify the initial points for which Newton’s method (with unit step size)
converges.
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Figure 1: Figure from Polyak’s “Introduction to Optimization”, page 30

6 Newton’s method for linearly constrained problems

Consider the problem

min
x∈Rn

1

2
xTPx+ qTx subject to Ax = b (6)

where P is an n× n real symmetric positive definite matrix, q ∈ Rn, A ∈ Rm×n and b ∈ Rm.

(a) Give a closed form expression for the solution of (6).

(b) Deduce a Newton’s method to solve problems of the form

min
x∈Rn

f(x) subject to Ax = b (7)

where f is a (strongly) convex function.

7 Approximate path-following method

The path-following method we saw in lecture assumes that we compute x∗(t) exactly along points
of the central path. In practice we cannot do this. Consider the following alternative path-following
method:

• Input: t0 > 0, x0 such that λt0(x) ≤ 1/9, ε > 0, θ barrier parameter of s.c. function F .

• Initialize: set t = t0, x = x0, α = 1/4+
√
θ

1/9+
√
θ
.

• While θ/t > ε

• Let t+ = αt.

(*) Let x+ = x− (∇2F (x))−1(t+c+∇Ft+(x)).

• Update x = x+, t = t+.

• End While

Show that for each iteration in the main “While” loop we have: before execution of step (*),
λt+(x) ≤ 1/4 and after execution of step (*) we have λt+(x+) ≤ 1/9.
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8 Path-following method and KKT conditions

Consider the linear program in inequality form

min
x∈Rn

cTx s.t. Ax ≤ b (8)

where A ∈ Rm×n, b ∈ Rm and consider the central path, for t > 0

x∗(t) = argmin
x∈Rn

t cTx −
m∑
i=1

log(bi − aTi x)

associated to the logarithmic barrier function F (x) = −
∑n

i=1 log(bi − aTi x) of Q = {x : Ax ≤ b}.
The dual program of (8) is

max −bT z : c+AT z = 0, z ≥ 0. (9)

For any t > 0, show that the vector z(t) = 1
t

[
1

bi−aTi x∗i (t)

]
i=1,...,m

is feasible for (9). Compute

cTx∗(t) + bT z(t). What does this imply?

9 Second-order cone programming

Consider the regularized least-squares problem

min
x∈Rn

‖Ax− b‖22 + λ‖Dx‖1

where A ∈ Rm×n, D ∈ Rn×n, b ∈ Rm and λ ≥ 0. Show that this problem can be expressed
as a second-order cone program. [Hint: show that, for two real numbers s, t we have s2 ≤ t iff
‖(2s, t− 1)‖2 ≤ t+ 1].

10 LP, SOCP, SDP

Show that linear programming is a special case of semidefinite programming. Show that second-
order cone programming is also a special case of semidefinite programming. [Hint: consider the

constraint
[
t xT
x tIn

]
� 0.]

11 Euclidean distance matrices

A family of
(
n
2

)
numbers (dij)1≤i<j≤n is Euclidean-realizable if there exist k ∈ N and points

x1, . . . , xn ∈ Rk such that dij = ‖xi − xj‖2 for all 1 ≤ i < j ≤ n. Show that one can decide
whether (dij)ij is Euclidean-realizable by solving a semidefinite programming feasibility problem.

12 Sum-of-squares and semidefinite programming

A polynomial p(t) is called a sum of squares if we can write p(t) =
∑

j qj(t)
2 for some other

polynomials qj(t).
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(a) Show that a degree 2d polynomial p(t) =
∑2d

k=0 pkt
k is a sum of squares iff there exists a

symmetric positive semidefinite matrix M of size (d+ 1)× (d+ 1) such that∑
0≤i,j≤d
i+j=k

Mij = pk ∀k = 0, . . . , 2d.

[The rows/columns of matrix M are indexed by 0, 1, . . . , d.]

(b) Consider the problem of finding the monic1 polynomial of degree 2d with smallest sup-norm
on [−1, 1], i.e.,

min ‖p‖∞ s.t. p is monic of degree 2d

where ‖p‖∞ = maxt∈[−1,1] |p(t)|. Show that this problem can be formulated as a semidefinite
program. [Hint: you can use the fact that a polynomial of degree 2d is nonnegative on [−1, 1]
iff it is of the form s1(t) + (1− t2)s2(t) where s1, s2 are sums of squares.]

13 The definition of self-concordant functions (*)

Note: this exercise is more technical, you are advised to work on the exercises above first.
Let f be a C3 (three-times continuously differentiable) convex function such that dom(f) is

open, epi(f) is closed, and ∇2f(x) is positive definite for all x ∈ dom(f). For x ∈ dom(f) we let
‖h‖x =

√
hT∇2f(x)h.

The goal of this exercise is to show that the definition of self-concordance we saw in lecture is
equivalent to another commonly used definition.

(a) Show that if f is self-concordant (according to the definition we saw in lecture), then we have∣∣∣∣ ddt (hT∇2f(x+ tv)h
)∣∣∣∣ ≤ 2‖h‖2x+tv‖v‖x+tv (10)

for all x ∈ dom(f), h, v ∈ Rn and t ∈ R such that x+ tv ∈ dom(f).

Note: by letting v = h and t→ 0 Equation (10) reads

|∇3f(x)[h, h, h]| ≤ 2‖h‖3x (11)

where ∇3f(x) is the third derivative of f , seen as a trilinear form. The equation above is often
taken as the definition of self-concordance. It can be shown, using the theory of trilinear forms,
that (11) is actually equivalent to (10) but we will omit this here.

(b) We now prove that if f satisfies (10), then it is self-concordant (according to the definition
given in lecture). We thus assume that f satisfies (10).

(i) Show that
∣∣∣ ddt ( 1

‖v‖x+tv

)∣∣∣ ≤ 1 for all x ∈ dom(f), v ∈ Rn such that x+ tv ∈ dom(f)

(ii) Deduce that ‖v‖x+tv ≤ ‖v‖x
1−t‖v‖x .

(iii) Conclude.

1A monic polynomial is one whose leading coefficient is equal to 1.
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