
Topics in Convex Optimisation (Michaelmas 2019) Lecturer: Hamza Fawzi

Exercise sheet 3

You can return your solutions to questions 1 and 2 to get them marked. If so, please return them
before Thursday 28/11 at 3pm in my pigeonhole. Otherwise you can return them by email to
hf323@cam.ac.uk before Saturday 30/11 midnight.

1. (Mirror maps) Let C ⊂ Rn be a closed convex set and let φ : C → R be strongly convex. To
minimize a convex function f(x) on C we consider the following algorithm:

xk+1 = ∇φ∗(∇φ(xk)− tkgk) (1)

where gk ∈ ∂f(xk) and where φ∗ denotes the conjugate function of φ. Show that (1) is
equivalent to the mirror descent algorithm.

Remark. Mirror descent was proposed originally by Nemirovski and Yudin in the 1980s in
the form (1). The function φ (or rather ∇φ) was called a mirror map because ∇φ maps vector
in Rn to the dual space (Rn)∗, and ∇φ∗ is the inverse map (check that ∇φ∗(∇φ(x)) = x).

2. (Exponentiated gradient descent) We want to minimize a function f on the simplex

∆n =

{
x ∈ Rn : xi ≥ 0 ∀i = 1, . . . , n and

n∑
i=1

xi = 1

}
,

and we know that ‖g‖∞ ≤ G for all g ∈ ∂f(x) for all x ∈ ∆n. We will show that, in this
situation, mirror descent can be better adapted than the projected subgradient descent.

(a) Let φ(x) =
∑n

i=1 xi log xi. Show that the iterates of mirror descent, assuming we start
with x0 ∈ ∆n satisfying (x0)i > 0 for all i = 1, . . . , n, take the form

xk+1 =
xk � e−tkgk

1T (xk � e−tkgk)
(gk ∈ ∂f(xk)), (2)

where x � y = (xiyi)1≤i≤n is the componentwise product and ez = (ezi)1≤i≤n is the
componentwise exponential function. Verify that the iterates belong to ∆n.

(b) Show that φ is 1-strongly convex with respect to the `1 norm.

(c) Show that for any x ∈ ∆n we have Dφ(x‖ 1
n1) ≤ log n where 1 = (1, . . . , 1) ∈ Rn.

(d) Deduce that, with the right choice of step size, and with x0 = 1
n1, the iterates (2) satisfy

fbest,k − f∗ ≤ G
√

logn√
k

.

(e) Work out an upper bound on fbest,k − f∗ if we use the projected subgradient method
(xk+1 = P∆n(xk − tkgk)). Your upper bound should only depend on G, n and k. How
does it compare with the answer in part (d) when n is large?

3. (Newton’s method) Let f : Rn → R be m-strongly convex and L-smooth (i.e., mI � ∇2f(x) �
LI for all x ∈ Rn). Consider Newton’s method with constant step size tk = m/L

x+ = x− m

L
∇2f(x)−1∇f(x).

Show that f(x+)− f(x) ≤ −c‖∇f(x)‖22 for some constant c > 0 that depends only on m and
L that you should specify.
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4. Show that if f is self-concordant, then αf is self-concordant for α ≥ 1.

5. Show that if f1, f2 are self-concordant, then f1 + f2 is self-concordant with dom(f1 + f2) =
dom(f1) ∩ dom(f2).

6. Let f be a self-concordant function with dom(f) ⊂ Rn, and let A ∈ Rn×m an injective linear
map.

(a) Show that g(x) = f(Ax) is self-concordant

(b) Show that maxx∈dom(g) λg(x)2 ≤ maxz∈dom(f) λf (z)2. [Hint: For H � 0, H1/2A(ATHA)−1ATH1/2

is a projector matrix.]

7. Show that f(x) = −
∑n

i=1 log(xi) with dom(f) = Rn++ is self-concordant.

8. (Quadratic convergence of Newton’s method for self-concordant functions) Let f be a self-
concordant function, x ∈ dom(f) such that λ(x) < 1. Let x+ = x − ∇2f(x)−1∇f(x). We
want to prove that

λ(x+) ≤ λ(x)2

(1− λ(x))2
. (3)

For any x ∈ dom(f) we let, for convenience, H(x) = ∇2f(x). Also we let h = x+ − x so that
‖h‖x = λ(x).

(a) Prove that λ(x+) ≤ 1
1−‖h‖x ‖H(x)−1∇f(x+)‖x. In the following parts we will focus on

bounding ‖H(x)−1∇f(x+)‖x.

(b) Show that

‖H(x)−1∇f(x+)‖x ≤
∫ 1

0
‖H(x)−1(H(x+ th)−H(x))h‖xdt

=

∫ 1

0
‖E(t)H(x)1/2h‖2dt

where E(t) = H(x)−1/2(H(x+ th)−H(x))H(x)−1/2.

(c) Using self-concordance of f show that

((1− t‖h‖x)2 − 1)I � E(t) �
(

1

(1− t‖h‖x)2
− 1

)
I.

Deduce that

E(t)2 �
(

1

(1− t‖h‖x)2
− 1

)
I.

(d) Deduce that ‖H(x)−1∇f(x+)‖x ≤ ‖h‖2x
1−‖h‖x . Conclude.
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