Topics in Convex Optimisation (Michaelmas 2019) Lecturer: Hamza Fawzi

1 Introduction
In this course we are interested in solving optimization problems:
min f(x) subjectto ze€ X

where f: R™ — R and X C R". Optimization problems show up in many areas:

Applications of optimization

e Least-squares/classification: Given data points (z1,¥1),. .., (Zn, yn) where x; € RP and y; € R
we want to find w € R? and b € R such that y; = wlz; +b. A common way to find such a

w, b is to solve
n
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Having solved this optimization problem and obtained the optimal w, b, the predicted output
g for a new data point z is § = w! z + b.
If y; € {—1,+1} (classification problem), it is more common to use a logistic loss rather than
a least-squares loss. This leads to the optimization problem
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Having solved this optimization problem and obtained the optimal w,b, the predicted class
g for a new data point T is § = sign(w? Z + b). In nonlinear classification, we have a family
of functions F' = {f, : w € RP} indexed by some real vector w € RP. For example f,, could
be a neural network with weight vector w. The training problem, with a logistic loss, then

becomes .
min lo (1 + e_yifw(’”)) .
weRP beR ZZ; 62
e Geometry: given a cloud of point z1, ..., z, € RP, we want to find the ellipsoid F of minimum

volume that contains the points, i.e., we want to solve
min volume(E) st. z;€ E Vi=1,...,n.

Assuming (for simplicity) that the ellipsoid is centered at the origin, we can write E =
{z eRP:TQ 12 < 1} where () is a p X p real symmetric matrix that is positive definite.
Then the volume of E is proportional to det(Q). Thus our problem can be written as

@ is positive definite
:z:Z-TQ_lxi <1

min det(Q) s.t. {



e Graph theory: given a graph G = (V, E) where E C (‘2/), a stable set of G is a subset S of
vertices that are pairwise nonadjacent, i.e., i,j € S = {i,j} ¢ E. The maximum stable set
problem asks for the largest stable set in a given graph G

max |S| s.t. S stable set.

Such a problem can be reformulated as a constrained optimization over R™ by considering
the characteristic vector x of S:

" 2=x Vi=1,...,n
max Z x; st ! o
zER™ im1 TiT; = 0 V{Z,]} € FE.
The focus of this course will be:

e The role of convexity in optimization

e Algorithms for optimization and their complexity

Optimization on the cube To illustrate some of the concepts in this course consider the problem
of minimizing a function f:R™ — R on [0,1]", i.e., to compute:

= i f(@).

Our goal will be to find a solution with accuracy € > 0:
Find z s.t. f(z) — f* <e. *)

The algorithms have access to f through a black boxr which, given an input x € [0, 1] returns the
value f(z) € R. This is called an zeroth-order oracle model'! The complexity of an algorithm on a
given function f is the number of queries it makes to the oracle. So a general algorithm has the
following form:

1. Query oracle at xg € [0, 1]" to get value fo = f(x0)
2. Query oracle at 27 € [0,1]" (allowed to depend on fy) to get value f; = f(z1)

3. Query oracle at x2 € [0,1]" (allowed to depend on fy, f1) to get value fo = f(x2)

5. Query oracle at xy—1 € [0,1]" (allowed to depend on fy,..., fn—2) to get value fy_1 =

flan-1)
6. Output T based on the gathered information about f

We will consider the class of functions that are L-Lipschitz with respect to £, norm
Fr=A{f:[0,1]" = Rst. |f(z) = fW)] < L|z - yll Yo,y € [0,1]"}

where ||z]|oc = max;=1 . n |zi|. We can prove the following:

LA first-order oracle returns the gradient of f at z, and a second-order oracle returns the Hessian of f at x. We
will see this later...



Proposition 1.1. There is an algorithm that can return an e-accurate minimizer (in the sense of
(*)) of any f € Fr with a number of queries < (LéJ +2)".

Proof. Grid search. We discretize the cube [0, 1]™ using grid points that are equispaced by 2¢/L in
each dimension. Let (z;);=1,.n be the grid points; there are N < (| £] +2)" such grid points (we
include points at coordinate 0 and coordinate 1, hence the +2). Let & be the grid point where the
value of f is smallest, i.e.,
= argmin f(x).
ze{z1,....xN }

We claim that this algorithm achieves the desired accuracy. Indeed, let * be a minimizer of f on
[0,1]™, and let Z be the closest grid point to z* in the fo norm. Since the grid is equispaced by
2¢/L it is not difficult to see that ||x* — Z||oc < €/L. Then we have

f@) =< f@) - f <Lz -2 <€
as desired. ]

The algorithm produced in the previous proposition is not great. For functions of large number
of variables n the algorithm is not at all practical. Can we do better? The answer turns out to be
no, if we want our algorithm to work for all f € Fy.

Proposition 1.2. Assume A is an algorithm that returns an e-accurate minimizer for all f € Fr.
Then there is at least one function f € Fr on which A has does at least > (LéJ )™ — 1 queries.

Proof. Recall that an algorithm A is given by a sequence of query points xg, z1, . . . where each query
point is allowed to depend on the answer received on the previous ones. We are going to simulate
the algorithm on the function f(x) = 0 (the function equal to zero everywhere). On such a function
the algorithm will query certain (fixed) points xg,z1,22,...,2y—1 all in [0,1]" before producing
a point € [0,1]". Let S = {xo,...,zn-1,Z}. We claim that necessarily |S| > (|L/(3¢)|)". Fix
n = 3¢/L and consider diving [0,1]" into small boxes each of size . We have at least [1/n|"
disjoint such boxes. Assuming for contradiction that |S| < (|1/n])", by the pigeonhole principle,
there exists at least one box which does not contain any point from S. Let x* be the center of that
box and define the function

f(x) = min(0, L||z — 2™||cc — nL/2).

Note that f € Fr, it is zero outside the box centered at z* and its minimum is —nL/2 = —3¢/2.
If we run the algorithm on this function f we will get the same output as for the function that
is identically zero (the z € S from above). But this Z is outside the box centered at z* and so
f(&) = 0. This contradicts the assumption that the algorithm achieves e accuracy on all functions

in F1, because f(Z) — f* = 3¢/2 > €. Thus it must be that |S| > |1/n]™ = (L%J)” O

We have thus shown that the following min-max quantity

min max Complexity of A on f
Algorithms A that achieve feFy,

(*) for all functions in Fp,

lies between (£)" and (£ + 2)".
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