Topics in Convex Optimisation (Michaelmas 2019) Lecturer: Hamza Fawzi

16 Linear programming, second-order cone programming, semidef-
inite programming

In this lecture we look at applications of the path-following method seen in the previous lecture.
The purpose is to demonstrate that one can construct self-concordant barrier functions for convex
sets @ with some particular structure. Recall that, for a closed bounded convex set ), we say that
F is a self-concordant barrier for Q if F is self-concordant with dom(F) = int(Q), epi(F) is closed,
and 0p = max,cqom(r) Ar(z)? < oo.

16.1 Linear programming

A linear program is an optimization problem of the form

min ¢z st. Az <b (1)
rER?

where ¢ € R, A € R™*™ b € R™ and the inequality Az < b is understood componentwise, i.e.,

al'z <b; for alli =1,...,m, where af ..., al are the rows of A. The feasible set
Q={reR": Az <b} (2)

is a polyhedron. We can solve (1) using the path-following method described in the previous lecture.
This is based on the following:

Theorem 16.1. Let Q = {x € R": Az < b}. Assuming Q is bounded, the function F defined by
F(z) ==Y log(b; — al'x) is a self-concordant barrier for Q with parameter O < m.

Proof. Note that F'(z) = f(b— Az) where f(y) = —> " log(y;) for y € R}, . We know that f is
self-concordant (Exercise sheet 3, q7), and furthermore it is easy to check that 8y = m (in fact, for
any y € R, we have A\f(y)> = m). Since @ is bounded, A is injective, i.e., ker(A) = {0}. It thus
follows that F' is self-concordant and that 0y < 6y = m (see Exercise sheet 3, ¢6). O

Thus the path-following method allows us to compute an e-approximate value to (1) using
~ y/mlog(m/e€) total number of Newton iterations, assuming an initial point on the central path
is given.

Remark. Note that each Newton iteration of the path-following method for (1) costs ~ n?m float-
ing point iterations. Indeed: each Newton iteration requires the computation of the Newton step
V2F(2) 'V EF(z). Since Fy(z) =tcTx — S 1" log(b; — al x), the Hessian of F is given by

)
—_— A.
(bi — af z)? i=1,...,m

3]

V2Fi(z) = AT diag <

Computing V?Fy(z) takes =~ n?m floating point operations since A is n x m; and computing
V2F(x)~! will take ~ n® operations. Since m > n (since A is injective) the cost is dominated
by forming V2 Fy(z).

It follows that the total number of floating point operations of the path-following method for the
linear program (1) is ~ n?m!®log(m/e).



Applications of linear programming We give some examples of problems that can be formu-
lated using linear programming:

1. Let A € R™*™ b € R™ and consider the problem of minimizing || Az — b||s over z € R™. This
a nonsmooth convex minimization problem that can be solved, e.g., using the subgradient
method. We show here that it can be formulated as a linear program. Indeed, we have

min  ||Az —blloc = min ¢t st. Az — bl <t
z€RM z€R™ teR
= min ¢ s.t. —tﬁaiTx—biSt Vi=1,...,m.
zER™ tER

The latter is a linear program with n+1 variables and 2m inequality constraints. For moderate
values of n, m solving the linear program is preferable over the subgradient method as it easily
gives us a high-precision solution. For large (huge) values of n,m where the complexity of
linear programming is prohibitive, one must rely on first-order methods (e.g., subgradient
method).

2. Consider now the problem of minimizing ||Az —b||; over z € R™. Using similar ideas as above
one can formulate this problem as a linear program. Indeed we have

m
min HAx—lezzeRr%it%Rm z;t st. [(Az—b)| <t;Yi=1,...,m
1=
m
:reRIE,itIéRm thi s.t. —tiga;frx—bigtiw:l,...,m.
1=

This is a linear program with n 4+ m variables and 2m inequality constraints.

3. A linear program in standard form is an optimization problem of the form

min ¢z st. Az=0b x>0 (3)
TERM
where > 0 means z; > 0 for all i = 1,...,n. Clearly (3) can be put in the form (1) since

the constraint Az = b can be rewritten as Az < b and —Ax < —b. Conversely any LP in
inequality form can be written as (3). It suffices to introduce a slack variable s = b — Az, and
to note that any x € R" can be written as # = 27 — 2~ with 27,2~ > 0. At the end we get:

min {CT:L' D Az <b} = min  ¢’(zT —27)
zeR? zTeRn

z~ eR™

seR™

st. AT —a27)+s=0b

The right-hand side is of the form (3).

16.2 Second-order cone program

A second-order cone program (SOCP) is an optimization problem of the form

m%gn e st |Ax+bla <dlz+e Yi=1,...,m (4)
zeR™



where ¢ € R” and A; € Ri*™ b; € Rl d; € R® and ¢; € R for each i = 1,...,m. (The I; are
arbitrary integers for ¢ = 1,...,m.) Linear programming is a special case of (4) when A; = 0 and
b; = 0. Assuming that Q = {x ER™: ||Aiw +billa < dlfz+e Vi=1,... ,m} is bounded, one can
show that the function

F(z) = =) log ((d =z +e;)® — [[Aiz + bi3)
=1

is a self-concordant barrier for @) with p < 2m. This can be used to solve problem (4) with
path-following methods.

Applications of second-order cone programming A typical application of second-order cone
programming is regularized least-squares. Consider the problem

min  [[Az —b|2 + A||Dz|: (5)
TER?

where A > 0, A € R™"™ b € R™ D € RP*" 1t is not hard to see that this problem can be
formulated as a second-order cone problem. Indeed (5) can be rewritten as:

min - EHAYE s
tER,s€RP
s.t. |Az —b||2 <t

—SiS(DZ‘)Z’SSiV’L’:L...,p

which is a second-order cone program.

16.3 Semidefinite programming

Let S™ be the vector space of nxn real symmetric matrices. A matrix A € S™ is positive semidefinite
(psd) if all its eigenvalues are nonnegative, or, equivalently, if 2T Az > 0 for all z € R™. Let St cs”
denote the convex set of positive semidefinite matrices. Given A € S™ we use the abbreviation A > 0
to indicate that A is psd. Also if A, B € S™ we write A > B if A— B = 0. The trace inner product
on S" is defined by

<A,B> = TI‘(AB) = Z Al‘jBij.

1<ij<n

A semidefinite program is an optimization problem of the form

xnel]% Iz st. Ag+z1A1+ -+ x4, =0, (6)
where ¢ € R, and Ay, ..., A, € S™. Note that the linear program (1) is a special case of (6) when
Ay, ..., A, are diagonal (more precisely, Ag = diag(b), and A; = — diag(«;) where «; is the ¢’th
column of A.) It can be shown that second-order cone programs can also be put in the form (6).
As such, semidefinite programming generalizes linear, and second-order cone programming.

Assuming Q = {z € R" : Ay + 2141 + --- + x, A, = 0} is bounded, one can show that the func-
tion

F(x) = —logdet(Ap + 141 + -+ - + 2, Ap)

is a self-concordant barrier for () with parameter 0 < m. As such, path-following methods can be
used to solve semidefinite programs.



Applications of semidefinite programming

e Eigenvalue minimization: Let A(z) = Ao + x141 + - -+ + z, A, be a symmetric matrix that
depends affinely on z € R", and consider the optimization problem

;EE% AmaXCA(x)) (7)

where Amax(A) is the largest eigenvalue of A. Using the fact that A\pax(A) < tiff t1 — A >0
we easily see that (7) can be formulated as a semidefinite program:

in Amax(A4 = i t st tI —A(xz) = 0.
;211&1711 ax(A()) xelrkgll,rtleR i (z) =

e Operator norm minimization: The operator norm of a matrix A is defined as

[All2 = max [[Azl];.
[[zfl2=1
Let A(z) = Ap+ 2141 + -+ - + 2, A, be a symmetric matrix that depends affinely on = € R™,
and consider the problem of minimizing the operator norm of A(x):
i A . 8
min [ A()]l2 (8)
One can formulate this problem as a semidefinite program. Indeed, for a symmetric matrix A
one can show that ||A]2 = max {|A\;(A)],i =1,...,n} where \;(A) are the eigenvalues of A.
It follows that ||A||2 < ¢ iff =t < A < ¢I. Thus problem (8) can be written as a semidefinite
program:
min ||A(z)lls = min ¢ s.t. t1 — A(z) = 0, tI 4+ A(z) = 0.
reR™ zeR™ teR
See [BDX04] for an application of (8) to find a Markov chain on a graph with the fastest
mixing time.

Many applications of linear/second-order cone/semidefinite programming are provided in the
book [BV04, Chapter 4].

16.4 Software

Implementation of path-following methods for linear/second-order/semidefinite programming are
available online. These implementations use more sophisticated versions of the path-following
method we have seen, but the main idea of following the central path using Newton’s method is
the same. To get started we recommend checking out CVX (http://cvxr.com/cvx/) which gives
a user-friendly interface to these solvers on Matlab (interfaces for Python also exist, check CVXPY
https://www.cvxpy.org/).
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