
Topics in Convex Optimisation (Michaelmas 2019) Lecturer: Hamza Fawzi

16 Linear programming, second-order cone programming, semidef-
inite programming

In this lecture we look at applications of the path-following method seen in the previous lecture.
The purpose is to demonstrate that one can construct self-concordant barrier functions for convex
sets Q with some particular structure. Recall that, for a closed bounded convex set Q, we say that
F is a self-concordant barrier for Q if F is self-concordant with dom(F ) = int(Q), epi(F ) is closed,
and θF = maxx∈dom(F ) λF (x)2 <∞.

16.1 Linear programming

A linear program is an optimization problem of the form

min
x∈Rn

cTx s.t. Ax ≤ b (1)

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm and the inequality Ax ≤ b is understood componentwise, i.e.,
aTi x ≤ bi for all i = 1, . . . ,m, where aT1 , . . . , a

T
m are the rows of A. The feasible set

Q = {x ∈ Rn : Ax ≤ b} (2)

is a polyhedron. We can solve (1) using the path-following method described in the previous lecture.
This is based on the following:

Theorem 16.1. Let Q = {x ∈ Rn : Ax ≤ b}. Assuming Q is bounded, the function F defined by
F (x) = −

∑m
i=1 log(bi − aTi x) is a self-concordant barrier for Q with parameter θF ≤ m.

Proof. Note that F (x) = f(b− Ax) where f(y) = −
∑m

i=1 log(yi) for y ∈ Rm
++. We know that f is

self-concordant (Exercise sheet 3, q7), and furthermore it is easy to check that θf = m (in fact, for
any y ∈ Rm

++ we have λf (y)2 = m). Since Q is bounded, A is injective, i.e., ker(A) = {0}. It thus
follows that F is self-concordant and that θF ≤ θf = m (see Exercise sheet 3, q6).

Thus the path-following method allows us to compute an ε-approximate value to (1) using
≈
√
m log(m/ε) total number of Newton iterations, assuming an initial point on the central path

is given.

Remark. Note that each Newton iteration of the path-following method for (1) costs ≈ n2m float-
ing point iterations. Indeed: each Newton iteration requires the computation of the Newton step
∇2Ft(x)−1∇Ft(x). Since Ft(x) = tcTx−

∑m
i=1 log(bi − aTi x), the Hessian of Ft is given by

∇2Ft(x) = AT diag

(
1

(bi − aTi x)2

)
i=1,...,m

A.

Computing ∇2Ft(x) takes ≈ n2m floating point operations since A is n × m; and computing
∇2Ft(x)−1 will take ≈ n3 operations. Since m > n (since A is injective) the cost is dominated
by forming ∇2Ft(x).

It follows that the total number of floating point operations of the path-following method for the
linear program (1) is ≈ n2m1.5 log(m/ε).

1



Applications of linear programming We give some examples of problems that can be formu-
lated using linear programming:

1. Let A ∈ Rm×n, b ∈ Rm and consider the problem of minimizing ‖Ax− b‖∞ over x ∈ Rn. This
a nonsmooth convex minimization problem that can be solved, e.g., using the subgradient
method. We show here that it can be formulated as a linear program. Indeed, we have

min
x∈Rn

‖Ax− b‖∞ = min
x∈Rn,t∈R

t s.t. ‖Ax− b‖∞ ≤ t

= min
x∈Rn,t∈R

t s.t. − t ≤ aTi x− bi ≤ t ∀i = 1, . . . ,m.

The latter is a linear program with n+1 variables and 2m inequality constraints. For moderate
values of n,m solving the linear program is preferable over the subgradient method as it easily
gives us a high-precision solution. For large (huge) values of n,m where the complexity of
linear programming is prohibitive, one must rely on first-order methods (e.g., subgradient
method).

2. Consider now the problem of minimizing ‖Ax− b‖1 over x ∈ Rn. Using similar ideas as above
one can formulate this problem as a linear program. Indeed we have

min
x∈Rn

‖Ax− b‖1 = min
x∈Rn,t∈Rm

m∑
i=1

ti s.t. |(Ax− b)i| ≤ ti ∀i = 1, . . . ,m

= min
x∈Rn,t∈Rm

m∑
i=1

ti s.t. − ti ≤ aTi x− bi ≤ ti ∀i = 1, . . . ,m.

This is a linear program with n+m variables and 2m inequality constraints.

3. A linear program in standard form is an optimization problem of the form

min
x∈Rn

cTx s.t. Ax = b, x ≥ 0 (3)

where x ≥ 0 means xi ≥ 0 for all i = 1, . . . , n. Clearly (3) can be put in the form (1) since
the constraint Ax = b can be rewritten as Ax ≤ b and −Ax ≤ −b. Conversely any LP in
inequality form can be written as (3). It suffices to introduce a slack variable s = b−Ax, and
to note that any x ∈ Rn can be written as x = x+ − x− with x+, x− ≥ 0. At the end we get:

min
x∈Rn

{
cTx : Ax ≤ b

}
= min

x+∈Rn

x−∈Rn

s∈Rm

cT (x+ − x−)

s.t. A(x+ − x−) + s = b
x+, x−, s ≥ 0.

The right-hand side is of the form (3).

16.2 Second-order cone program

A second-order cone program (SOCP) is an optimization problem of the form

min
x∈Rn

cTx s.t. ‖Aix+ bi‖2 ≤ dTi x+ ei ∀i = 1, . . . ,m (4)

2



where c ∈ Rn and Ai ∈ Rli×n, bi ∈ Rli , di ∈ Rn and ei ∈ R for each i = 1, . . . ,m. (The li are
arbitrary integers for i = 1, . . . ,m.) Linear programming is a special case of (4) when Ai = 0 and
bi = 0. Assuming that Q =

{
x ∈ Rn : ‖Aix+ bi‖2 ≤ dTi x+ ei ∀i = 1, . . . ,m

}
is bounded, one can

show that the function

F (x) = −
m∑
i=1

log
(
(dTi x+ ei)

2 − ‖Aix+ bi‖22
)

is a self-concordant barrier for Q with θF ≤ 2m. This can be used to solve problem (4) with
path-following methods.

Applications of second-order cone programming A typical application of second-order cone
programming is regularized least-squares. Consider the problem

min
x∈Rn

‖Ax− b‖2 + λ‖Dx‖1 (5)

where λ ≥ 0, A ∈ Rm×n, b ∈ Rm, D ∈ Rp×n. It is not hard to see that this problem can be
formulated as a second-order cone problem. Indeed (5) can be rewritten as:

min
x∈Rn

t∈R,s∈Rp

t+ λ
∑p

i=1 si

s.t. ‖Ax− b‖2 ≤ t
−si ≤ (Dx)i ≤ si ∀i = 1, . . . , p

which is a second-order cone program.

16.3 Semidefinite programming

Let Sn be the vector space of n×n real symmetric matrices. A matrix A ∈ Sn is positive semidefinite
(psd) if all its eigenvalues are nonnegative, or, equivalently, if xTAx ≥ 0 for all x ∈ Rn. Let Sn

+ ⊂ Sn

denote the convex set of positive semidefinite matrices. Given A ∈ Sn we use the abbreviation A � 0
to indicate that A is psd. Also if A,B ∈ Sn we write A � B if A−B � 0. The trace inner product
on Sn is defined by

〈A,B〉 = Tr(AB) =
∑

1≤i,j≤n
AijBij .

A semidefinite program is an optimization problem of the form

min
x∈Rn

cTx s.t. A0 + x1A1 + · · ·+ xnAn � 0, (6)

where c ∈ Rn, and A0, . . . , An ∈ Sm. Note that the linear program (1) is a special case of (6) when
A0, . . . , An are diagonal (more precisely, A0 = diag(b), and Ai = −diag(αi) where αi is the i’th
column of A.) It can be shown that second-order cone programs can also be put in the form (6).
As such, semidefinite programming generalizes linear, and second-order cone programming.

Assuming Q = {x ∈ Rn : A0 + x1A1 + · · ·+ xnAn � 0} is bounded, one can show that the func-
tion

F (x) = − log det(A0 + x1A1 + · · ·+ xnAn)

is a self-concordant barrier for Q with parameter θF ≤ m. As such, path-following methods can be
used to solve semidefinite programs.

3



Applications of semidefinite programming

• Eigenvalue minimization: Let A(x) = A0 + x1A1 + · · · + xnAn be a symmetric matrix that
depends affinely on x ∈ Rn, and consider the optimization problem

min
x∈Rn

λmax(A(x)) (7)

where λmax(A) is the largest eigenvalue of A. Using the fact that λmax(A) ≤ t iff tI −A � 0
we easily see that (7) can be formulated as a semidefinite program:

min
x∈Rn

λmax(A(x)) = min
x∈Rn,t∈R

t s.t. tI −A(x) � 0.

• Operator norm minimization: The operator norm of a matrix A is defined as

‖A‖2 = max
‖x‖2=1

‖Ax‖2.

Let A(x) = A0 + x1A1 + · · ·+ xnAn be a symmetric matrix that depends affinely on x ∈ Rn,
and consider the problem of minimizing the operator norm of A(x):

min
x∈Rn

‖A(x)‖2. (8)

One can formulate this problem as a semidefinite program. Indeed, for a symmetric matrix A
one can show that ‖A‖2 = max {|λi(A)|, i = 1, . . . , n} where λi(A) are the eigenvalues of A.
It follows that ‖A‖2 ≤ t iff −tI � A � tI. Thus problem (8) can be written as a semidefinite
program:

min
x∈Rn

‖A(x)‖2 = min
x∈Rn,t∈R

t s.t. tI −A(x) � 0, tI +A(x) � 0.

See [BDX04] for an application of (8) to find a Markov chain on a graph with the fastest
mixing time.

Many applications of linear/second-order cone/semidefinite programming are provided in the
book [BV04, Chapter 4].

16.4 Software

Implementation of path-following methods for linear/second-order/semidefinite programming are
available online. These implementations use more sophisticated versions of the path-following
method we have seen, but the main idea of following the central path using Newton’s method is
the same. To get started we recommend checking out CVX (http://cvxr.com/cvx/) which gives
a user-friendly interface to these solvers on Matlab (interfaces for Python also exist, check CVXPY
https://www.cvxpy.org/).

References

[BDX04] Stephen Boyd, Persi Diaconis, and Lin Xiao. Fastest mixing markov chain on a graph.
SIAM review, 46(4):667–689, 2004. 4

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University
Press, 2004. 4

4

http://cvxr.com/cvx/
https://www.cvxpy.org/

	Linear programming, second-order cone programming, semidefinite programming
	Linear programming
	Second-order cone program
	Semidefinite programming
	Software


