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3 Gradient method

In this lecture we are interested in minimizing a smooth convex function f on Rn:

f∗ = min
x∈Rn

f(x).

We assume minimum is finite and attained at some x∗. The gradient method we study has the
form: Starting with any x0 ∈ Rn, iterate:

xk+1 = xk − tk∇f(x)

where tk is the step size. See below for strategies to choose tk. We now state a convergence result
for the gradient method.

Theorem 3.1 (Convergence of gradient method). Assuming f is convex and has L-Lipschitz con-
tinuous gradient (wrt ‖ · ‖2 norm), and assuming the step size is constant with tk = t ∈ (0, 1/L],
we have f(xk)− f∗ ≤ 1

2tk‖x0 − x
∗‖22 for all k ≥ 1.

The theorem tells us that to reach accuracy ε, it suffices to run the gradient method for k =
‖x0−x∗‖22

2t · 1ε .

Proof. For any x ∈ Rn we denote x+ = x− t∇f(x). By Lipschitz property of ∇f we know that

f(x+) ≤ f(x) +∇f(x)T (x+ − x) +
L

2
‖x+ − x‖22.

Now since ∇f(x) = −1
t (x

+ − x) we get

f(x+) ≤ f(x)− 1

t
‖x+ − x‖22 +

L

2
‖x+ − x‖22

= f(x)− 1

t

(
1− Lt

2

)
‖x+ − x‖22 ≤ f(x)− 1

2t
‖x+ − x‖22

(1)

where in the last inequality we used the fact that 0 < t ≤ 1/L. Inequality (1) already tells us that
the gradient method with 0 < t ≤ 1/L is a descent method, i.e., the value of f decreases at each
iteration.

Our goal is to analyze the accuracy f(xk) − f∗ as the algorithm progresses. Convexity of f
immediately tells us that f(x)− f∗ ≤ ∇f(x)T (x− x∗). We combine this with inequality (1) above
to understand how f(x+)− f∗ evolves:

f(x+)− f∗ ≤ f(x)− (1/2t)‖x+ − x‖22 − f∗

≤ ∇f(x)T (x− x∗)− (1/2t)‖x+ − x‖22

= − 1

2t

[
‖x+ − x‖22 − 2(x+ − x)T (x∗ − x)

]
where in the last equality we used the fact that ∇f(x) = −(1/t)(x+−x). Using the identity ‖a‖22−
2aT b = ‖a−b‖22−‖b‖22 note that the right-hand side above is equal to − 1

2t

[
‖x+ − x∗‖22 − ‖x− x∗‖22

]
.

We have thus proved for any i:

f(xi+1)− f∗ ≤
1

2t

[
‖xi − x∗‖22 − ‖xi+1 − x∗‖22

]
.

1



We sum this inequality for i = 0, . . . , k − 1 to get

k−1∑
i=0

(f(xi+1)− f∗) ≤
1

2t

[
‖x0 − x∗‖22 − ‖xk − x∗‖22

]
≤ 1

2t
‖x0 − x∗‖22.

Now since the function value decreases at each step we have f(xk) ≤ f(xi+1) for all i = 0, . . . , k−1
and so

f(xk)− f∗ ≤
1

k

k−1∑
i=0

(f(xi+1)− f∗) ≤
1

2kt
‖x0 − x∗‖22.

Remark 1. Nowhere in the proof did we actually use that x∗ is a minimizer of f , and f∗ is the
minimum value! In fact, the proof gives an upper bound on f(xk)− f(u) for any choice of u ∈ Rn.
It’s just that f(xk) − f(u) is not necessarily nonnegative so the theorem in this case only tells us
that, “in the limit”, f(xk)− f(u) will become ≤ 0.

Line search In practice, we don’t usually keep the step size t constant, but we operate a so-called
line search. There are two main strategies for line search:

• Exact line search: at iteration k, search for the value of t > 0 that minimizes f(xk−t∇f(xk)).
This is a one-dimensional minimization problem. Finding the exact minimum can be expen-
sive, and so often it is enough to use:

• Backtracking line search: starting from large enough t← t̂ we keep t← βt for some 0 < β < 1
until we satisfy a “sufficient-decrease” condition (typically called Armijo condition)

f(xk − t∇f(xk)) ≤ f(xk)− αt‖∇f(xk)‖22

where α is a chosen constant ∈ (0, 1), say α = 1/2. Note that taking α = 0 just asks for a t
that decreases the value of f .

Analysis for strongly convex functions For strongly convex functions, the gradient method
has a linear convergence rate.

Theorem 3.2. Assume f is convex and has L-Lipschitz continuous gradient, and is m-strongly
convex with m > 0. Then gradient method with constant step size t = 2/(m+ L) produces iterates
(xk) that satisfy

‖xk − x∗‖2 ≤
(

1− κ
1 + κ

)k
‖x0 − x∗‖2 and f(xk)− f∗ ≤

L

2

(
1− κ
1 + κ

)2k

‖x0 − x∗‖22 (2)

where κ = m/L ∈ (0, 1].

Theorem above tells us that if we want to reach accuracy ε on f(xk)− f∗, it suffices to run the
gradient method for k ' L

m log
(
1
ε

)
iterations.

Proof. We are going to assume that f is twice differentiable for convenience (there are proofs that
do not require this assumption). Also note that the bound on f(xk) − f∗ in (2) follows directly
from the bound on ‖xk − x∗‖2 since, by our smoothness assumption on f we have

f(xk)− f(x∗) ≤ ∇f(x∗)T (xk − x∗) +
L

2
‖xk − x∗‖22 =

L

2
‖xk − x∗‖22.
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We thus focus on proving the bound on ‖xk−x∗‖2. By Taylor formula applied to ∇f we know that

∇f(x) = ∇f(x∗)︸ ︷︷ ︸
=0

+

∫ 1

0
∇2f(x∗ + α(x− x∗))(x− x∗)dα.

Recalling that x+ = x− t∇f(x), it thus follows that

‖x+ − x∗‖2 = ‖(I − tM)(x− x∗)‖2 ≤ ‖I − tM‖2‖x− x
∗‖2

where M =
∫ 1
0 ∇

2f(x∗ + α(x − x∗))dα is a symmetric matrix. It suffices now to analyze the
eigenvalues of I−tM . We know that the eigenvalues of M are all between [m,L] by our assumption
on f . Thus the eigenvalues of I − tM are all in [1− tL, 1− tm] and the spectral norm of I − tM is
γ = max {|1− tL|, |1− tm|}. The best choice of t is when 1− tL = −(1− tm) which gives t = 2

m+L

and then γ = L−m
L+m = 1−κ

1+κ where κ = m/L. It then follows that ‖xk−x∗‖2 ≤
(
1−κ
1+κ

)k
‖x0−x∗‖2.
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