Topics in Convex Optimisation (Michaelmas 2019) Lecturer: Hamza Fawzi

3 Gradient method

In this lecture we are interested in minimizing a smooth convex function f on R":

f* = min f(x).

TeR™
We assume minimum is finite and attained at some z*. The gradient method we study has the
form: Starting with any xg € R", iterate:
Tpy1 = T — 4V f(2)

where t; is the step size. See below for strategies to choose t,. We now state a convergence result
for the gradient method.

Theorem 3.1 (Convergence of gradient method). Assuming f is convex and has L-Lipschitz con-
tinuous gradient (wrt || - |2 norm), and assuming the step size is constant with t, =t € (0,1/L],
we have f(zy) — f* < 5il|wo — x*||3 for all k > 1.

The theorem tells us that to reach accuracy e, it suffices to run the gradient method for &k =
llzo—2*]13 1

2t €’

Proof. For any x € R™ we denote 27 = z — tV f(x). By Lipschitz property of V f we know that

f@) < @) + V@) @t - 2) + Zat - a3
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Now since Vf(z) = —3(2 — z) we get
fla®) < fz) = Zlla® — 23 + Slla™ — 2|3
(1)
L
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where in the last inequality we used the fact that 0 < ¢ < 1/L. Inequality (1) already tells us that
the gradient method with 0 < ¢t < 1/L is a descent method, i.e., the value of f decreases at each
iteration.

Our goal is to analyze the accuracy f(zp) — f* as the algorithm progresses. Convexity of f
immediately tells us that f(z) — f* < Vf(x)?(x — 2*). We combine this with inequality (1) above
to understand how f(z™) — f* evolves:

f@®) = < fle) = /20 a* — 2] - f*
< Vi@) (@ —2") = 1/20) ]2 — 3
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where in the last equality we used the fact that Vf(z) = —(1/t)(x* — ). Using the identity ||al|3 —
2aTb = [|a—bl|3—||b]|3 note that the right-hand side above is equal to — 2 [[lz* — 2*||3 — ||l — z*||3].
We have thus proved for any :
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We sum this inequality for ¢ = 0,...,k — 1 to get

k—1
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Now since the function value decreases at each step we have f(xy) < f(x;y1) foralli=0,...,k—1

and so
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Remark 1. Nowhere in the proof did we actually use that x* is a minimizer of f, and f* is the
minimum value! In fact, the proof gives an upper bound on f(xy)— f(u) for any choice of u € R™.
It’s just that f(xp) — f(u) is not necessarily nonnegative so the theorem in this case only tells us
that, “in the limit”, f(xy) — f(u) will become < 0.

Line search In practice, we don’t usually keep the step size ¢ constant, but we operate a so-called
line search. There are two main strategies for line search:

e Exact line search: at iteration k, search for the value of ¢ > 0 that minimizes f(xy —tV f(z)).
This is a one-dimensional minimization problem. Finding the exact minimum can be expen-
sive, and so often it is enough to use:

e Backtracking line search: starting from large enough t < t we keep t < St for some 0 < § < 1
until we satisfy a “sufficient-decrease” condition (typically called Armijo condition)

Flay =tV f(ar)) < flar) — atl|V f ()3

where « is a chosen constant € (0,1), say « = 1/2. Note that taking o = 0 just asks for a ¢
that decreases the value of f.

Analysis for strongly convex functions For strongly convex functions, the gradient method
has a linear convergence rate.

Theorem 3.2. Assume f is convexr and has L-Lipschitz continuous gradient, and is m-strongly
convex with m > 0. Then gradient method with constant step size t = 2/(m + L) produces iterates
(zr) that satisfy

1— k
ool < (155) looa'le and fo) -1 <
where Kk =m/L € (0,1].

Theorem above tells us that if we want to reach accuracy € on f(xy) — f*, it suffices to run the
gradient method for k g % log (%) iterations.

Proof. We are going to assume that f is twice differentiable for convenience (there are proofs that
do not require this assumption). Also note that the bound on f(zx) — f* in (2) follows directly
from the bound on ||z — z*||2 since, by our smoothness assumption on f we have

L L
flay) = f(z*) < V@) (@, —2%) + 3 Il = '3 = 3 Il = 3.



We thus focus on proving the bound on ||z — z*||2. By Taylor formula applied to V f we know that

1
Vi(z) = V() +/O V(2" + alz — o)) (@ — 2%)da.

Recalling that t = 2 — tV f(z), it thus follows that
27 = a2 = (I = tM) (2 — &")|ly < I — tM]|a[|l> — 2"

where M = fol V2f(z* + a(z — z%))da is a symmetric matrix. It suffices now to analyze the
eigenvalues of I —tM. We know that the eigenvalues of M are all between [m, L] by our assumption
on f. Thus the eigenvalues of I —tM are all in [1 —¢L,1 — tm] and the spectral norm of I —tM is

v =max {|1 — tL|,|1 — tm|}. The best choice of ¢ is when 1 —tL = —(1 — tm) which gives t = mLJrL

k
and then v = i;—% = i—z where k = m/L. It then follows that ||z —x*||2 < (ﬁ—i) lxo—x*|]o. O
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