
Topics in Convex Optimisation (Michaelmas 2019) Lecturer: Hamza Fawzi

6 Proximal gradient methods

Motivation: constrained optimization Consider the problem of minimizing a convex function
f(x) on a convex set C. To do this the projected gradient descent iterates are as follows: starting
from any x0 ∈ C proceed

xk+1 = PC(xk − tk∇f(xk)) (1)

where PC(x) = argmin {‖x− y‖2 : y ∈ C} is the Euclidean projection on C. One can adapt the
convergence proof of the gradient method to show that (1) converges to minx∈C f(x) at the rate
O(1/k). See Exercise sheet 1.

Optimization problems with a splitting structure In this lecture we consider a general
class of optimization problems where the objective function f(x) “splits” into two parts f(x) =
g(x) + h(x) where g(x) is convex, smooth and L-Lipschitz, and h(x) is convex nonsmooth but
“simple” (in a way that will be clear later). So we want to solve

min
x∈Rn

f(x) = g(x) + h(x). (2)

Examples:

• If h is the indicator function of a convex set C defined as

h(x) =

{
0 if x ∈ C
+∞ else

then problem (2) is equivalent to minimizing g(x) on C.

• Optimization problems of the form (2) are very common in statistics where g(x) is a “data
fidelity” term (e.g., g(x) = ‖Ax − b‖22 for a linear model with a squared loss) and h(x) is a
“regularization” term (e.g., g(x) = ‖x‖1 to promote sparsity).

The proximal mapping Given a convex function h : D → R define the proximal operator
associated to h by

proxh(x) = argmin
u∈D

{
h(u) +

1

2
‖u− x‖22

}
.

The map proxh is well defined because the function u 7→ h(x) + 1
2‖u− x‖

2
2 (for fixed x) is strongly

convex, and thus has a unique minimum.

Remark 1. When h is the indicator function of convex set C, then proxh(x) is the Euclidean
projection of x on C.

Computing proxh is itself a convex optimization problem. However for some “simple” functions
h one can compute proxh(x) analytically. (See below for some examples.) We will need the following
proposition concerning proxh(x):

Proposition 6.1. We have u = proxh(x) iff x− u ∈ ∂h(u), where ∂h(u) is the subdifferential of f
at u.
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Proof. One can verify that u is a minimizer of a convex function F iff 0 ∈ ∂F (u). Also one can
check that ∂(F1 +F2)(u) = ∂F1(u)+∂F2(u) where the latter is the Minkowski addition of sets (i.e.,
A+B = {a+ b : a ∈ A, b ∈ B}).

Applying these two facts we get: u = proxh(x) iff the zero vector is in the subdifferential of
h+ 1

2‖ ·−x‖
2
2. The second term is smooth and its gradient at a point u is u−x. Thus u = proxh(x)

iff 0 ∈ ∂h(u) + (u− x) i.e., x− u ∈ ∂h(u).

Proximal gradient method The proximal gradient method to solve (2) proceeds as follows.
Starting from any x0 ∈ Rn, iterate:

xk+1 = proxtkh (xk − tk∇g(xk)) (3)

where tk > 0 are the step sizes. Unrolling the definition of prox this means

xk+1 = argmin
u∈Rn

{
h(u) +

1

2tk
‖xk − tk∇g(xk)− u‖22

}
= argmin

u∈Rn

{
g(xk) +∇g(xk)

Tu+
1

2tk
‖u− xk‖22 + h(u)

}
The term g(xk) +∇g(xk)

Tu+ 1
2tk
‖u− xk‖22 is a quadratic model for g(x) centered at x = xk. Note

that when h is the indicator function of convex set C, then iterates (3) correspond to projected
gradient descent (1).

Convergence proof of proximal gradient method is very similar to gradient method. We sketch
the proof now.

Theorem 6.1. Assume g : Rn → R is convex L-smooth (i.e., ∇g is L-Lipschitz) and h is convex.
For constant step size tk = t ∈ (0, 1/L] the iterations of (3) satisfy f(xk)− f∗ ≤ 1

2kt‖x0 − x
∗‖22.

Proof. For any x, let x̃ = x−t∇g(x) and x+ = proxth(x̃). Using L-smoothness of g and t ∈ (0, 1/L]
we have (same as with the gradient method)

g(x+) ≤ g(x) +∇g(x)T (x+ − x) +
L

2
‖x+ − x‖22.

Now we use that ∇g(x) = −1
t (x̃− x) = −1

t (x̃− x
+ + x+ − x), and 0 < t ≤ 1/L to get

g(x+) ≤ g(x)− 1

2t
‖x+ − x‖22 +

1

t
(x̃− x+)T (x− x+). (4)

For any fixed z, convexity of g tells us that g(x) ≤ g(z) + ∇g(x)T (x − z). Thus continuing from
(4) we get

g(x+)− g(z) ≤ ∇g(x)T (x− z)− 1

2t
‖x+ − x‖22 +

1

t
(x̃− x+)T (x− x+)

(a)
= −1

t
(x̃− x+ + x+ − x)T (x− z)− 1

2t
‖x+ − x‖22 +

1

t
(x̃− x+)T (x− x+)

= − 1

2t

[
‖x+ − x‖22 + 2(x+ − x)T (x− z)

]
+

1

t
(x̃− x+)T (z − x+)

(b)
= − 1

2t

[
‖x+ − z‖22 − ‖x− z‖22

]
+

1

t
(x̃− x+)T (z − x+)

(5)

where in (a) we used the fact that ∇g(x) = −1
t (x̃− x) = −1

t (x̃− x
+ + x+ − x) and in (b) we used

completion of squares. Since x+ = proxth(x̃) we know from Proposition 6.1 that x̃−x+ ∈ t∂h(x+),
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i.e., 1
t (x̃−x

+) ∈ ∂h(x+). It thus follows, by convexity of h, that h(z) ≥ h(x+)+ 1
t (x̃−x

+)T (z−x+).
Adding h(x+)− h(z) to each side of the inequality in (5) and using the last inequality gives us

f(x+)− f(z) ≤ − 1

2t

[
‖x+ − z‖22 − ‖x− z‖22

]
. (6)

Note that if we set z = x, inequality (6) tells us that the value of f decreases at each step, i.e.,
f(x+) < f(x). To finish the proof we set z = x∗ in (6) and use a telescoping sum (see end of proof
of convergence of gradient method).

Fast proximal gradient method There is a fast version of the proximal gradient method that
converges in O(1/k2). The algorithm is very similar to what we saw in last lecture; the only
difference is the proximal operator:{

y = xk + βk(xk − xk−1)
xk+1 = proxtkh (y − tk∇g(y)) .

(7)

One can adapt the proof of the fast gradient method to show that (7) (with e.g., βk = (k−1)/(k+2))
has a convergence rate of O(1/k2).

Regression with `1 regularization (Lasso, compressed sensing, ...) Consider the problem

min
x∈Rn

‖Ax− b‖22 + λ‖x‖1. (8)

where A ∈ Rm×n and b ∈ Rm. The ‖x‖1 term in the objective promotes sparsity in the solution
x∗. Problem (8) fits (2) with g(x) = ‖Ax− b‖22 and h(x) = λ‖x‖1. The proximal operator of ‖x‖1
has a closed-form expression, as follows (exercise!):

(proxt‖·‖1(x))i =


xi − t if xi ≥ t
0 if xi ∈ [−t, t]
xi + t if xi ≤ −t.

(9)

It is known as the soft-thresholding (or also shrinkage thresholding) operator. The proximal gradient
method applied to (8) is called the iterative shrinkage thresholding algorithm (ISTA) and takes the
form

xk+1 = Sλt(xk − 2tAT (Axk − b))

where Sλt is the soft-thresholding operator (9) with parameter λt. The fast version is known as
FISTA [BT09].
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