Topics in Convex Optimisation (Michaelmas 2019) Lecturer: Hamza Fawzi

7 Subgradient method

Motivation In the last lecture we looked at the proximal (fast) gradient method to minimize
nonsmooth convex functions of the form f(x) = g(z) + h(z) where g(x) is smooth and h(x) has a
simple prox function. Even though such structure appears in many applications, there still remains
problems that do not have such form. For example consider the problem of minimizing || Az — b1
over x € R".

In this lecture we will look at a simple algorithm to minimize any nonsmooth convex function

f(@).

Subgradient method Let f be a convex, possibly nonsmooth, function on R". The subgradient
method to minimize f(z) works as follows. Choose zg € R™ and iterate, for k > 0:

Thy1 = T — LpGk

where gi € 0f(xy) is a subgradient of f at z; and ¢, > 0 is the step size.
Note: A negative subgradient is not necessarily a descent direction, i.e., it is possible that
flx —tg) > f(x) for all t > 0 (small enough). For example take f(x) = |x| on the real line, then

g=—-1€0f(0).
Convergence analysis of subgradient method:
|41 — 213 = llew — trg — =*[I3
= llox — (13 — 2tngy (on — 2*) + 17 llgx 3 (1)
< llaw — 2*[13 + tllgrll3 + 2t0(f* — f (=)

where in the last line we used the fact that gp € Jf(xr). Applying this inequality recursively to
lzx — 2*||3, we get at the end:
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which after rearranging, and using ||xx,1 — *||3 > 0, gives us
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Let foest,x = min{f(xo),..., f(zx)}. Then since t; > 0 we get
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We now distinguish cases depending on how ¢, evolves.
Note that if f is G-Lipschitz then |/g;||2 < G for all i (see Exercise sheet 2).



e Constant step size: If {, =t and f is G-Lipschitz then we get

lwo — 2*[I3 | G*t

fbest,k_f>k < Q(k—l-l)t 9 (4)

In this case we do not guarantee convergence: we only guarantee that fyes r will be at most
G*t/2 sub-optimal, in the limit k — oo.

Assume that k is fixed a priori (i.e., we have a certain number of iterations that we are going
to run). What is the choice of ¢ that minimizes the right-hand side of (4)? The choice of
t is the one that will make the two terms equal, namely ||zg — z*[|3/(k + 1) = G*¢, i.e.,
t = |lxo — 2*||2/(GVk + 1) and the corresponding bound we get is with this choice of ¢ is
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< Gllzo — 9U*||2.

fbest,k - f = \/m

e Diminishing square-summable step size: If (¢;) are chosen so that > ¢; — oo but Y 2 < oo
then we get convergence, i.e., fhest,k — f* — 0. Example: ¢; = 1/(i 4+ 1). Note however that

convergence is very slow because in this case Zf:() t; ~ In(k), and so convergence will be like

1/In(k).

e Step size t; — 0 but > ¢t; — oo. In this case also we get convergence. For example if
ti =1/4i+ 1, then Zg t; ~ vk and Z’g t? =~ In(k). So we get a convergence like In(k)/Vk.

Optimality of subgradient method One can show that the convergence rate of 1/ Vk is the
best possible one can get on the class of nonsmooth convex Lipschitz functions. More precisely, fix
k, G, and R > 0. For any algorithm where the k’th iterate satisfies

T} € To + span{gi, ..., gk}

where g; € 0f(x;) and zg is the starting point, there is a convex function f that is G-Lipschitz on
{z : ||z — xo|l2 < R} such that after k iterations of the algorithm we have

GR
k+1

fbest,k - f* i

See Exercise sheet 2 for a proof.
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