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Numerical Analysis – Lecture 5

2 Partial differential equations of evolution

Definition 2.1 (Stability in the context of time-stepping methods for PDEs of evolution) A numerical
method for a PDE of evolution is stable if (for zero boundary conditions) it produces a uniformly bounded
approximation of the solution in any bounded interval of the form 0 ≤ t ≤ T when h → 0 and the gen-
eralized Courant number µ = k/hr, with r being the maximum degree of the differential operator, is
constant.

This definition is relevant not just for the diffusion equation but for every PDE of evolution which is
well-posed, i.e. such that its exact solution depends (in a compact time interval) in a uniformly bounded
manner on the initial conditions. Thus, “stability” is nothing but the statement that well-posedness is
retained under discretization, uniformly for h→ 0. Most PDEs of practical interest are well-posed.

Theorem 2.2 (The Lax equivalence theorem) Suppose that the underlying PDE is well-posed and that it is
solved by a numerical method with an error of O(hp+r), p ≥ 1, where r is the maximum degree of the differential
operator. Then stability⇔ convergence.

Method 2.3 (Analysis of stability) Suppose that a numerical method (with zero boundary conditions)
can be written in the form

un+1
h = Ahu

n
h,

where unh ∈ RM are vectors, Ah ∈ RM×M is a matrix, and h = 1
M+1 . Then unh = (Ah)nu0

h, and

‖unh‖ = ‖(Ah)nu0
h‖ ≤ ‖(Ah)n‖ · ‖u0

h‖ ≤ ‖Ah‖n · ‖u0
h‖ ,

for any vector norm ‖ · ‖ and the induced matrix norm ‖A‖ = sup
‖Ax‖
‖x‖ . If we define stability as preserv-

ing the boundedness of unh with respect to the norm ‖ · ‖, then, from the inequality above,

‖Ah‖ ≤ 1 as h→ 0 ⇒ the method is stable.

In the proof of Theorem 2.2, we used the infinity norm

‖u‖∞ = max
i=1,...,M

|ui|.

It can be easily shown that the corresponding induced norm for a matrix A ∈ RM×M is given by:

‖A‖∞→∞ := sup
x

‖Ax‖∞
‖x‖∞ = max

i=1,...,M

M∑
j=1

|Aij |.

Another common of choice of norm is the averaged Euclidean length, namely, ‖u‖h := [h
∑M
i=1 |ui|2]1/2.

The reason for the factor h1/2 is to ensure that, because of the convergence of Riemann sums, we obtain

‖u‖h :=
[
h
∑M
i=1 |ui|2

]1/2
→
[∫ 1

0
|u(x)|2dx

]1/2
=: ‖u‖L2 (h→ 0),

The induced matrix norm in this case is the spectral norm (or the operator norm) and is denoted ‖A‖2:1

‖A‖2 := sup
x

‖Ax‖2
‖x‖2 .

1Note that ‖Ax‖h/‖x‖h = ‖Ax‖2/‖x‖2 where ‖x‖2 = (
∑

i |xi|2)1/2 is the usual Euclidean norm
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The spectral norm of A is equal to the largest singular value of A. Equivalently, we can write ‖A‖2 =
[ρ(AAT )]1/2 where ρ is the spectral radius:

ρ(M) := max {|λ| : λ eigenvalue of M} .

For certain matrices, such as normal matrices, one can show that ‖A‖2 = ρ(A).

Definition 2.4 (Normal matrices) A complex matrix A ∈ CM×M is normal if it commutes with its conju-
gate transpose, i.e., AĀT = ĀTA.

Examples of real normal matrices include symmetric matrices (A = AT ) and skew-symmetric matrices
(A = −AT ). Any normal matrix A can be diagonalized in an orthonormal basis, i.e., A = QDQT where
Q unitary, QQ̄T = Q̄TQ = I , and D is diagonal. Note however that the diagonal elements Dii are not
necessarily real!

Proposition 2.5 If A is normal, then ‖A‖2 = ρ(A).

Proof. Let u be any vector. We can expand it in the basis of the orthonormal eigenvectors u =
∑n
i=1 aiqi .

Then Au =
∑n
i=1 λiaiqi, and since qi are orthonormal, we obtain

‖A‖2 := sup
u

‖Au‖2
‖u‖2

= sup
ai

{
∑n
i=1 |λiai|2}1/2

{
∑n
i=1 |ai|2}1/2

= |λmax| .

Example 2.6 (Stability of (2.2)) We can analyze the stability of (2.2) using the eigenvalue methods just
described. The recurrence (2.2) can be written as:

un+1
m = unm + µ

(
unm−1 − 2unm + unm+1

)
, m = 1...M ,

in the matrix form

un+1
h = Ahu

n
h, Ah = I + µA∗, A∗ =


−2 1

1
. . .

. . .
. . .

. . . 1
1 −2


M×M

.

Here A∗ is Toeplitz, symmetric, tridiagonal (TST), with λ`(A∗) = −4 sin2 π`h
2 , hence λ`(Ah) = 1 −

4µ sin2 π`h
2 , so that its spectrum lies within the interval [λM , λ1] = [1 − 4µ cos2 πh2 , 1 − 4µ sin2 πh

2 ]. Since
Ah is symmetric, we have

‖Ah‖2 = ρ(Ah) =

{
|1− 4µ sin2 πh

2
| ≤ 1 , µ ≤ 1

2
,

|1− 4µ cos2 πh
2
| > 1, µ > 1

2
(h ≤ hµ) .

We distinguish between two cases.
1) µ ≤ 1

2 : ‖un‖ ≤ ‖A‖ · ‖un−1‖ ≤ · · · ≤ ‖A‖n‖u0‖ ≤ ‖u0‖ as n→∞, for every u0.

2) µ > 1
2 : Choose u0 as the eigenvector corresponding to the largest (in modulus)

eigenvalue, |λ| > 1. Then un = λnu0, becoming unbounded as n→∞.

10


