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Numerical Analysis — Lecture 5

2 Partial differential equations of evolution

Definition 2.1 (Stability in the context of time-stepping methods for PDEs of evolution) A numerical
method for a PDE of evolution is stable if (for zero boundary conditions) it produces a uniformly bounded
approximation of the solution in any bounded interval of the form 0 < ¢t < T when h — 0 and the gen-
eralized Courant number p = k/h", with r being the maximum degree of the differential operator, is
constant.

This definition is relevant not just for the diffusion equation but for every PDE of evolution which is
well-posed, i.e. such that its exact solution depends (in a compact time interval) in a uniformly bounded
manner on the initial conditions. Thus, “stability” is nothing but the statement that well-posedness is
retained under discretization, uniformly for 4 — 0. Most PDEs of practical interest are well-posed.

Theorem 2.2 (The Lax equivalence theorem) Suppose that the underlying PDE is well-posed and that it is
solved by a numerical method with an error of O(hP*"), p > 1, where r is the maximum degree of the differential
operator. Then stability < convergence.

Method 2.3 (Analysis of stability) Suppose that a numerical method (with zero boundary conditions)
can be written in the form

uptt = Apup,
where uj! € RM are vectors, Ay, € RM*M js a matrix, and h = ﬁ Then u}! = (A;)"u), and
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for any vector norm || - || and the induced matrix norm || 4| = sup LA2l] 1¢\ve define stability as preserv-
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ing the boundedness of u} with respect to the norm || - ||, then, from the inequality above,

|Anll <lash—0 = the method is stable.
In the proof of Theorem 2.2, we used the infinity norm

ol =, max, Jul.

It can be easily shown that the corresponding induced norm for a matrix A € RM* ig given by:
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Another common of choice of norm is the averaged Euclidean length, namely, ||u||; := [ Zf\il g ?]1/2.

The reason for the factor h!/2 is to ensure that, because of the convergence of Riemann sums, we obtain
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The induced matrix norm in this case is the spectral norm (or the operator norm) and is denoted || A||2:!

ey AT
[A]l2 == blmlp zll2 -

!Note that || Az||,/||z||n = ||A=z||2/||=|2 where |||z = (3, |z:|?)'/? is the usual Euclidean norm



The spectral norm of A is equal to the largest singular value of A. Equivalently, we can write ||A|; =
[p(AAT)]Y/2 where p is the spectral radius:

p(M) := max {|\| : X eigenvalue of M} .
For certain matrices, such as normal matrices, one can show that || Al|2 = p(A).

Definition 2.4 (Normal matrices) A complex matrix A € C"*M is normal if it commutes with its conju-
gate transpose, i.e.,, AAT = AT A.

Examples of real normal matrices include symmetric matrices (A = A”) and skew-symmetric matrices
(A = —AT). Any normal matrix A can be diagonalized in an orthonormal basis, i.e., A = QDQ* where
@ unitary, QQRT =QTQ =1I,and D is diagonal. Note however that the diagonal elements D;; are not
necessarily real!

Proposition 2.5 If A is normal, then | A|l2 = p(A).

Proof. Let u be any vector. We can expand it in the basis of the orthonormal eigenvectorsu = Y, a;q; .
Then Au = Z?:l Aia;q;, and since g, are orthonormal, we obtain
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Example 2.6 (Stability of (2.2)) We can analyze the stability of (2.2) using the eigenvalue methods just
described. The recurrence (2.2) can be written as:

uptt =l o (ul = 2ul ol ), m=1.M,
in the matrix form
-2 1
wptt = Agup,  An=T+4pA., A= | L0 )
1-2 MxM
Here A, is Toeplitz, symmetric, tridiagonal (TST), with A\¢(A.) = —4 sin? #, hence A\¢(4,) = 1 —
4psin® 8 5o that its spectrum lies within the interval [\, A1) = [1 — 4pcos? 22,1 — 4psin® Z]. Since

Ap, is symmetric, we have

1—4psin® 2| <1, p<
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We distinguish between two cases.
D op<g Jurll < [A]- luHE < < JAI ] < [lu’]fas n = oo, for every uf.
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Choose u® as the eigenvector corresponding to the largest (in modulus)
eigenvalue, || > 1. Then u" = \"u’, becoming unbounded as n — oc.
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