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Numerical Analysis – Lecture 12
Method 3.8 (The algebra of Fourier expansions) Let A be the set of all functions f : [−1, 1] → C,
which are analytic in [−1, 1], periodic with period 2, and that can be extended analytically into the complex
plane. Then A is a linear space, i.e., f, g ∈ A and α ∈ C then f + g ∈ A and af ∈ A. In particular,
with f and g expressed in its Fourier series, i.e.,

f(x) =

∞∑
n=−∞

f̂ne
iπnx, g(x) =

∞∑
n=−∞

ĝne
iπnx

we have

f(x) + g(x) =

∞∑
n=−∞

(f̂n + ĝn)e
iπnx, αf(x) =

∞∑
n=−∞

αf̂ne
iπnx (3.3)

and

f(x) · g(x) =
∞∑

n=−∞

( ∞∑
m=−∞

f̂n−mĝm

)
eiπnx =

∞∑
n=−∞

(
f̂ ∗ ĝ

)
n
eiπnx, (3.4)

where ∗ denotes the convolution operator, hence (̂f ·g)n = (f̂ ∗ ĝ)n. Moreover, if f ∈ A then f ′ ∈ A
and

f ′(x) = iπ

∞∑
n=−∞

n · f̂neiπnx. (3.5)

Since {f̂n} decays faster than O(n−p) for any p ∈ N, this provides that all derivatives of f have
rapidly convergent Fourier expansions.

Example 3.9 (Application to differential equations) Consider the two-point boundary value prob-
lem: y = y(x), −1 ≤ x ≤ 1, solves

y′′ + a(x)y′ + b(x)y = f(x), y(−1) = y(1), (3.6)

where a, b, f ∈ A and we seek a periodic solution y ∈ A for (3.6). Substituting y, a, b and f by their
Fourier series and using (3.3)-(3.5) we obtain an infinite dimensional system of linear equations
for the Fourier coefficients ŷn:

−π2n2ŷn + iπ

∞∑
m=−∞

mân−mŷm +

∞∑
m=−∞

b̂n−mŷm = f̂n, n ∈ Z. (3.7)

Since a, b, f ∈ A, their Fourier coefficients decrease rapidly, like O(n−p) for every p ∈ N. Hence,
we can truncate (3.7) into the N -dimensional system

−π2n2ŷn+ iπ

N/2∑
m=−N/2+1

mân−mŷm+

N/2∑
m=−N/2+1

b̂n−mŷm = f̂n, n = −N/2+1, . . . , N/2. (3.8)

Remark 3.10 The matrix of (3.8) is in general dense, but our theory predicts that fairly small
values of N , hence very small matrices, are sufficient for high accuracy. For instance: choosing
a(x) = f(x) = cosπx, b(x) = sin 2πx (which incidentally even leads to a sparse matrix) we get

N = 16 error of size 10−10

N = 22 error of size 10−15 (which is already hitting the accuracy of computer arithmetic )
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Method 3.11 (Computation of Fourier coefficients (DFT)) We have to compute

f̂n =
1

2

∫ 1

−1
f(t)e−iπnt dt, n ∈ Z. (3.9)

For this, suppose we wish to compute the integral on [−1, 1] of a function h ∈ A by means of
the Riemann sums on the uniform partition

∫ 1

−1
h(t) dt ≈ 2

N

N/2∑
k=−N/2+1

h

(
2k

N

)
. (3.10)

This is known as a rectangle rule. We want to know how good this approximation is. Let ωN =
e2πi/N . Then we have

2

N

N/2∑
k=−N/2+1

h

(
2k

N

)
=

2

N

N/2∑
k=−N/2+1

∞∑
n=−∞

ĥne
2πink/N =

2

N

∞∑
n=−∞

ĥn

N/2∑
k=−N/2+1

ωnkN .

Since ωNN = 1 we have

N/2∑
k=−N/2+1

ωnkN = ω
−n(N/2−1)
N

N−1∑
k=0

ωnkN =

{
N, n ≡ 0 (modN),

0, n 6≡ 0 (modN),

and we deduce that
2

N

N/2∑
k=−N/2+1

h

(
2k

N

)
= 2

∞∑
r=−∞

ĥNr .

Hence, the error committed by the Riemann approximation is

eN (h) :=
2

N

N/2∑
k=−N/2+1

h

(
2k

N

)
−
∫ 1

−1
h(t) dt = 2

∞∑
r=−∞

ĥNr − 2ĥ0

= 2

∞∑
r=1

(
ĥNr + ĥ−Nr

)
.

Since h ∈ A, its Fourier coefficients decay at spectral rate, namely ĥNr = O((Nr)−p), and hence
the error of the Riemann sums approximation (3.10) decays spectrally as a function of N ,

eN (h) = O(N−p) ∀p ∈ N .

Going back to the computation of the Fourier coefficients (3.9), we see that we may compute
the integral of h(x) = 1

2f(x)e
−iπnx by means of the Riemann sums, and this gives a spectral

method for calculating the Fourier coefficients of f :

f̂n ≈
1

N

N/2∑
k=−N/2+1

f

(
2k

N

)
ω−nkN , n = −N/2 + 1, . . . , N/2 . (3.11)

Remark 3.12 One can recognise that formula (3.11) is the discrete Fourier transform (DFT) of the
sequence (yk) =

(
f( 2kN )

)
, see previous definition, hence not only have we a spectral rate of con-

vergence, but also a fast algorithm (FFT) of computing the Fourier coefficients.

Problem 3.13 (The Poisson equation) We consider the Poisson equation

∇2u = f, −1 ≤ x, y ≤ 1, (3.12)

where f is analytic and obeys the periodic boundary conditions

f(−1, y) = f(1, y), −1 ≤ y ≤ 1, f(x,−1) = f(x, 1), −1 ≤ x ≤ 1.
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Moreover, we add to (3.12) the following periodic boundary conditions

u(−1, y) = u(1, y), ux(−1, y) = ux(1, y), −1 ≤ y ≤ 1

u(x,−1) = u(x, 1), uy(x,−1) = uy(x, 1), −1 ≤ x ≤ 1.
(3.13)

With these boundary conditions alone, a solution of (3.12) is only defined up to an additive con-
stant. Hence, we add a normalisation condition to fix the constant:∫ 1

−1

∫ 1

−1
u(x, y) dx dy = 0. (3.14)

We have the spectrally convergent Fourier expansion

f(x, y) =

∞∑
k,l=−∞

f̂k,`e
iπ(kx+`y)

and seek the Fourier expansion of u

u(x, y) =

∞∑
k,`=−∞

ûk,`e
iπ(kx+`y).

Since

0 =

∫ 1

−1

∫ 1

−1
u(x, y) dx dy =

∞∑
k,`=−∞

ûk,`

∫ 1

−1

∫ 1

−1
eiπ(kx+`y) dx dy = û0,0,

and

∇2u(x, y) = −π2
∞∑

k,`=−∞

(k2 + `2)ûk,`e
iπ(kx+`y),

together with (3.12), we have ûk,` = −
1

(k2 + `2)π2
f̂k,`, k, ` ∈ Z, (k, `) 6= (0, 0)

û0,0 = 0.

Remark 3.14 Applying a spectral method to the Poisson equation is not representative for its
application to other PDEs. The reason is the special structure of the Poisson equation. In fact,
φk,` = eiπ(kx+`y) are the eigenfunctions of the Laplace operator with

∇2φk,` = −π2(k2 + `2)φk,`,

and they obey periodic boundary conditions.

Problem 3.15 (General second-order linear elliptic PDE) We consider the more general second-
order linear elliptic PDE

∇>(a∇u) = f, −1 ≤ x, y ≤ 1,

with a(x, y) > 0, and a and f periodic. We again impose the periodic boundary conditions (3.13)
and the normalisation condition (3.14). We rewrite

∇>(a∇u) = ∂

∂x
(aux) +

∂

∂y
(auy) = f ,

and use the Fourier expansions

g(x, y) =
∑
k,`∈Z

ĝk,`φk,`(x, y), h(x, y) =
∑
m,n∈Z

ĥm,nφm,n(x, y),
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together with the bivariate versions of (3.4)-(3.5)

(̂g · h)k,` =
∑
m,n∈Z

ĝk−m,`−nĥm,n, (̂gx)k,` = iπk ĝk,` , (̂gy)k,` = iπ` ĝk,` ,

(̂hx)m,n = iπm ĥm,n , (̂hy)m,n = iπn ĥm,n .

This gives

−π2
∑
k,`∈Z

∑
m,n∈Z

(km+ `n) âk−m,`−nûm,nφk,`(x, y) =
∑
k,`∈Z

f̂k,`φk,`(x, y) .

In the next steps, we truncate the expansions to −N/2 + 1 ≤ k, `,m, n ≤ N/2 and impose the
normalisation condition û0,0 = 0. This results in a system of N2 − 1 linear algebraic equations in
the unknowns ûm,n, where m,n = −N/2 + 1...N/2, and (m,n) 6= (0, 0):

N/2∑
m,n=−N/2+1

(km+ `n) âk−m,`−n ûm,n = − 1

π2
f̂k,` , k, ` = −N/2 + 1...N/2 .

Discussion 3.16 (Analyticity and periodicity) The fast convergence of spectral methods rests on
two properties of the underlying problem: analyticity and periodicity. If one is not satisfied the
rate of convergence in general drops to polynomial. However, to a certain extent, we can relax
these two assumptions while still retaining the substantive advantages of Fourier expansions.

• Relaxing analyticity: In general, the speed of convergence of the truncated Fourier series of
a function f depends on the smoothness of the function. In fact, the smoother the function
the faster the truncated series converges, i.e., for f ∈ Cp(−1, 1) we receive an O(N−p) order
of convergence.

Spectral convergence can be recovered, once analyticity is replaced by the requirement that
f ∈ C∞(−1, 1), i.e., f (m)(x) exists for all x ∈ (−1, 1) and m = 0, 1, 2, . . .. Consider, for
instance, f(x) = e−1/(1−x

2). Then, f ∈ C∞(−1, 1) but cannot be extended analytically
because of essential singularities at ±1. Nevertheless, one can show that |f̂n| ∼ O(e−cn

α

),
where c > 0 and α ≈ 0.44. While this is slower than exponential convergence in the analytic
case (cf. Remark 3.7), it is still faster than O(n−m) for any integer m and hence, we have
spectral convergence.

• Relaxing periodicity: Disappointingly, periodicity is necessary for spectral convergence. Once
this condition is dropped, we are back to the setting of Theorem 3.3, i.e., Fourier series
converge asO(N−1) unless f(−1) = f(1). One way around this is to change our set of basis
functions, e.g., to Chebyshev polynomials.
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