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Numerical Analysis – Lecture 14
Method 3.23 (The spectral method for evolutionary PDEs) We consider the problem

∂u(x, t)

∂t
= Lu(x, t), x ∈ [−1, 1], t ≥ 0 ,

u(x, 0) = g(x), x ∈ [−1, 1],
(3.20)

with appropriate boundary conditions on {−1, 1} × R+ and where L is a linear operator (act-
ing on x), e.g., a differential operator. We want to solve this problem by the method of lines
(semi-discretization), using a spectral method for the approximation of u and its derivatives in
the spatial variable x. Then, in a general spectral method, we seek solutions uN (x, t) with

uN (x, t) =
∑

#{n}=N

cn(t)ϕn(x), (3.21)

where cn(t) are expansion coefficients and ϕn are basis functions chosen according to the specific
structure of (3.20). For example, we may take

1) the Fourier expansion with cn(t) = ûn(t), ϕn(x) = eiπnx for periodic boundary conditions,
2) a polynomial expansion such as the Chebyshev expansion with cn(t) = ŭn(t), ϕn(x) = Tn(x)

for other boundary conditions.
The spectral approximation in space (3.21) results into a N×N system of ODEs for the expan-

sion coefficients {cn(t)}:
c′ = Bc , (3.22)

where B ∈ RN×N , and c = {cn(t)} ∈ RN . We can solve it with standard ODE solvers (Euler,
Crank-Nikolson, etc.) which as we have seen are approximations to the matrix exponent in the
exact solution c(t) = etBc(0).

Example 3.24 (The diffusion equation) Consider the diffusion equation for a function u = u(x, t),{
ut = uxx, (x, t) ∈ [−1, 1]× R+ ,

u(x, 0) = g(x), x ∈ [−1, 1] .
(3.23)

with the periodic boundary conditions u(−1, t) = u(1, t), ux(−1, t) = ux(1, t), and standard nor-
malisation

∫ 1

−1
u(x, t) dx = 0, both imposed for all values t ≥ 0.

For each t, we approximate u(x, t) by its N -th order partial Fourier sum in x,

u(x, t) ≈ uN (x, t) =
∑
n∈ΓN

ûn(t) eiπnx , ΓN := {−N/2+1, ..., N/2} .

Then, from (3.23), we see that each coefficient ûn fulfills the ODE

û′n(t) = −π2n2ûn(t) . n ∈ ΓN (3.24)

Its exact solution is ûn(t) = e−π
2n2t ĝn for n 6= 0 and we set û0(t) = 0 due to the normalisation

condition, so that
uN (x, t) =

∑
n∈ΓN

ĝn e−π
2n2t eiπnx ,

which is the exact solution truncated to N terms.
Here, we were able to find the exact solution without solving ODE numerically due to the

special structure of the Laplacian. However, for more general PDE we will need a numerical
method, and thus the issue of stability arises, so we consider this issue on that simplified example.
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Analysis 3.25 (Stability analysis) The system (3.24) has the form

û′ = Bû , B = diag {−π2n2} , n ∈ ΓN ,

and we note that (a) all the eigenvalues of B are negative, and that (b) they consist of the eigen-
values λ(2)

n of the second order differentiation operator, with max |λ(2)
n | = (N2 )2.

If we approximate this system with the Euler method:

ûk+1 = (I + τB)ûk, τ := ∆t,

then we see that, for stability condition ‖I+τB‖ ≤ 1, we need to scale teh time step τ = ∆t ∼ N−2.
Note that, for the Crank-Nikolson scheme, since the spectrum ofB is negative, we get stability

for any time step τ > 0.
For general linear operator L in (3.20) with constant coefficients, the matix B is again diagonal

(hence normal), and provided that it spectrum is negative, for stability we must scale the time
step τ ∼ N−m, where m is the maximal order of differentiation.

The scaling τ ∼ N−2 may seem similar to the scaling k ∼ h2 in difference methods which
we viewed as a disadvantage, however in spectral methods we can take N , the order of partial
Fourier or Chebyshev sums to achieve a good appoximation, rather small. (We may still need to
choose τ small enough to get a desired accuracy.)

Example 3.26 (The diffusion equation with non-constant coefficient) We want to solve the dif-
fusion equation with a non-constant coefficient a(x) > 0 for a function u = u(x, t){

ut = (a(x)ux)x, (x, t) ∈ [−1, 1]× R+ ,

u(x, 0) = g(x), x ∈ [−1, 1] ,
(3.25)

with boundary and normalization conditions as before. Approximating u by its partial Fourier
sum results in the following system of ODEs for the coefficients ûn

û′n(t) = −π2
∑
m∈ΓN

mn ân−m ûm(t), n ∈ ΓN .

For the discretization in time we may apply the Euler method, this gives

ûk+1
n = ûkn − τ π2

∑
m∈ΓN

mn ân−m û
k
m , τ = ∆t ,

or in the vector form
ûk+1 = (I + τB)ûk,

where B = (bm,n) = (−π2mn ân−m). For stability of Euler method, we again need ‖I + τB‖ ≤ 1,
but analysis here is less straightforward.

Matlab demo: See the online documentation Using Chebyshev Spectral Methods at http://www.
damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/chebyshev/chebyshev.html for a
simple example of how boundary conditions can be installed.
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