Mathematical Tripos Part II: Michaelmas Term 2021

Numerical Analysis – Lecture 14

Method 3.23 (The spectral method for evolutionary PDEs) We consider the problem

$$\begin{cases} \frac{\partial u(x,t)}{\partial t} = \mathcal{L}u(x,t), & x \in [-1,1], \quad t \ge 0, \\ u(x,0) = g(x), & x \in [-1,1], \end{cases}$$
(3.20)

with appropriate boundary conditions on $\{-1,1\} \times \mathbb{R}_+$ and where \mathcal{L} is a linear operator (acting on x), e.g., a differential operator. We want to solve this problem by the method of lines (semi-discretization), using a spectral method for the approximation of u and its derivatives in the spatial variable x. Then, in a general spectral method, we seek solutions $u_N(x,t)$ with

$$u_N(x,t) = \sum_{\#\{n\}=N} c_n(t) \varphi_n(x),$$
(3.21)

where $c_n(t)$ are expansion coefficients and φ_n are basis functions chosen according to the specific structure of (3.20). For example, we may take

1) the *Fourier expansion* with $c_n(t) = \hat{u}_n(t)$, $\varphi_n(x) = e^{i\pi nx}$ for periodic boundary conditions,

2) a polynomial expansion such as the *Chebyshev expansion* with $c_n(t) = \breve{u}_n(t)$, $\varphi_n(x) = T_n(x)$ for other boundary conditions.

The spectral approximation in space (3.21) results into a $N \times N$ system of ODEs for the expansion coefficients $\{c_n(t)\}$:

$$c' = Bc, \qquad (3.22)$$

where $B \in \mathbb{R}^{N \times N}$, and $c = \{c_n(t)\} \in \mathbb{R}^N$. We can solve it with standard ODE solvers (Euler, Crank-Nikolson, etc.) which as we have seen are approximations to the matrix exponent in the exact solution $c(t) = e^{tB}c(0)$.

Example 3.24 (The diffusion equation) Consider the diffusion equation for a function u = u(x, t),

$$\begin{cases} u_t = u_{xx}, & (x,t) \in [-1,1] \times \mathbb{R}_+, \\ u(x,0) = g(x), & x \in [-1,1]. \end{cases}$$
(3.23)

with the periodic boundary conditions u(-1,t) = u(1,t), $u_x(-1,t) = u_x(1,t)$, and standard normalisation $\int_{-1}^{1} u(x,t) dx = 0$, both imposed for all values $t \ge 0$.

For each *t*, we approximate u(x, t) by its *N*-th order partial Fourier sum in *x*,

$$u(x,t) \approx u_N(x,t) = \sum_{n \in \Gamma_N} \hat{u}_n(t) e^{i\pi nx}, \qquad \Gamma_N := \{-N/2 + 1, ..., N/2\}$$

Then, from (3.23), we see that each coefficient \hat{u}_n fulfills the ODE

$$\widehat{u}_n'(t) = -\pi^2 n^2 \widehat{u}_n(t) \,. \qquad n \in \Gamma_N \tag{3.24}$$

Its exact solution is $\hat{u}_n(t) = e^{-\pi^2 n^2 t} \hat{g}_n$ for $n \neq 0$ and we set $\hat{u}_0(t) = 0$ due to the normalisation condition, so that

$$u_N(x,t) = \sum_{n \in \Gamma_N} \widehat{g}_n \,\mathrm{e}^{-\pi^2 n^2 t} \,\mathrm{e}^{i\pi n x} \,,$$

which is the exact solution truncated to N terms.

Here, we were able to find the exact solution without solving ODE numerically due to the special structure of the Laplacian. However, for more general PDE we will need a numerical method, and thus the issue of stability arises, so we consider this issue on that simplified example.

Analysis 3.25 (Stability analysis) The system (3.24) has the form

$$\widehat{\boldsymbol{u}}' = B\widehat{\boldsymbol{u}}, \qquad B = \operatorname{diag}\left\{-\pi^2 n^2\right\}, \quad n \in \Gamma_N,$$

and we note that (a) all the eigenvalues of *B* are negative, and that (b) they consist of the eigenvalues $\lambda_n^{(2)}$ of the second order differentiation operator, with $\max |\lambda_n^{(2)}| = (\frac{N}{2})^2$.

If we approximate this system with the Euler method:

$$\widehat{\boldsymbol{u}}^{k+1} = (I + \tau B)\widehat{\boldsymbol{u}}^k, \qquad \tau := \Delta t,$$

then we see that, for stability condition $||I+\tau B|| \leq 1$, we need to scale teh time step $\tau = \Delta t \sim N^{-2}$.

Note that, for the Crank-Nikolson scheme, since the spectrum of *B* is negative, we get stability for any time step $\tau > 0$.

For general linear operator \mathcal{L} in (3.20) with constant coefficients, the matix B is again diagonal (hence normal), and provided that it spectrum is negative, for stability we must scale the time step $\tau \sim N^{-m}$, where m is the maximal order of differentiation.

The scaling $\tau \sim N^{-2}$ may seem similar to the scaling $k \sim h^2$ in difference methods which we viewed as a disadvantage, however in spectral methods we can take N, the order of partial Fourier or Chebyshev sums to achieve a good appoximation, rather small. (We may still need to choose τ small enough to get a desired accuracy.)

Example 3.26 (The diffusion equation with non-constant coefficient) We want to solve the diffusion equation with a non-constant coefficient a(x) > 0 for a function u = u(x, t)

$$\begin{cases} u_t = (a(x)u_x)_x, & (x,t) \in [-1,1] \times \mathbb{R}_+, \\ u(x,0) = g(x), & x \in [-1,1], \end{cases}$$
(3.25)

with boundary and normalization conditions as before. Approximating u by its partial Fourier sum results in the following system of ODEs for the coefficients \hat{u}_n

$$\widehat{u}'_n(t) = -\pi^2 \sum_{m \in \Gamma_N} mn \, \widehat{a}_{n-m} \, \widehat{u}_m(t), \qquad n \in \Gamma_N \, .$$

For the discretization in time we may apply the Euler method, this gives

$$\widehat{u}_n^{k+1} = \widehat{u}_n^k - \tau \, \pi^2 \sum_{m \in \Gamma_N} mn \, \widehat{a}_{n-m} \, \widehat{u}_m^k \,, \qquad \tau = \Delta t \,,$$

or in the vector form

$$\widehat{\boldsymbol{u}}^{k+1} = (I + \tau B)\widehat{\boldsymbol{u}}^k,$$

where $B = (b_{m,n}) = (-\pi^2 m n \hat{a}_{n-m})$. For stability of Euler method, we again need $||I + \tau B|| \le 1$, but analysis here is less straightforward.

Matlab demo: See the online documentation Using Chebyshev Spectral Methods at http://www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/chebyshev/chebyshev.html for a simple example of how boundary conditions can be installed.