
Dr H. Fawzi

Mathematical Tripos Part II: Michaelmas Term 2021

Numerical Analysis – Lecture 18
Approach 4.20 (Minimization of quadratic functions) For solving Ax = b with a positive defi-
nite matrixA > 0, we consider iterative methods based on an optimization formulation. Consider
the convex quadratic function

F (x) := 1
2
〈x, Ax〉 − 〈b,x〉 (4.5)

where 〈u,v〉 = uT v is the Euclidean inner product. Note that the global minimizer of F is x∗ =
A−1b. Indeed

F (x∗ + h)− F (x∗) = 〈h, Ax∗ − b〉+ 1
2
〈h, Ah〉 ≥ 0

for any h. Observe that F can also be written as

F (x) = 1
2
‖x∗ − x‖2A + constant

where ‖y‖A := 〈y, Ay〉1/2 =
√
yTAy is the A-norm of A. (The constant in the above formulation

is a term that does not depend on x, so it is irrelevant for the purpose of minimizing F , the
constant is 1

2
bTA−1b.)

Gradient/Steepest descent The gradient descent method for minimizing F has iterates

x(k+1) = x(k) − αk∇F (x(k))

where∇F (x(k)) is the gradient of F at x(k), and αk > 0 is the step size. For our quadratic function,
it is easy to verify that ∇F (x(k)) = Ax(k) − b = −r(k) (where r(k) is the residual introduced in
previous lectures). There are multiple ways to choose the step size αk:

Constant step-size αk = α. In this case the iteration takes the form

x(k+1) = x(k) − α(Ax(k) − b) = (I − αA)x(k) + αb

which is nothing but a Jacobi-like iteration with D = α−1I (we say Jacobi-like because the di-
agonal of A is not necessarily equal to α−1I). We know from previous lectures that the method
converges iff

ρ(I − αA) < 1 ⇐⇒ |1− αλi| < 1 ∀λi eigenvalues of A ⇐⇒ 0 < α < 2/ρ(A).

For example, assume the eigenvalues of A are all in [l, L] where 0 < l < L. Then one can choose
α = 1/L, and in this case the convergence rate is given by ρ(I − L−1A) = 1 − l/L, i.e., the error
‖x∗ − x(k)‖ decays like (1− l/L)k. The quantity L/l ≥ 1 is known as the condition number of A.
We see that, as the condition number grows, the convergence rate becomes worse and worse.

Exact line search. Another way to choose the step size αk is using line search. Here αk is
chosen so that it achieves the smallest possible value of F along the search direction, i.e., αk =

argminα>0 F (x
(k) + αd(k)) where d(k) is the search direction, equal to the negative gradient. Be-

cause our function is quadratic, one can get a closed form expression for the optimal α.

Lemma 4.21 Let F be the function defined in (4.5). Let x(k) ∈ Rn and d ∈ Rn be a search direction.
Then

argmin
α
F (x(k) + αd) =

〈r(k),d〉
〈d, Ad〉

. (4.6)

Proof. The function F (x(k) + αd) = F (x(k))− α〈r(k),d〉+ α2/2〈d, Ad〉 is quadratic in the single
variable α. The minimum is attained at α s.t. −〈r(k),d〉 + α〈d, Ad〉 = 0 which gives the desired
formula. �
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The gradient descent method with exact line search thus takes the form

x(k+1) = x(k) +
‖r(k)‖22
‖r(k)‖2A

r(k),

where we used the fact that the gradient direction is d = −∇F (x(k)) = r(k). It can be shown that
the speed of convergence of the gradient descent with exact line search is, like with the constant
step size, ≈ (1 − l/L)k where 0 < l < L are the smallest and largest eigenvalues of A. The figure
below (left) shows an example of the gradient descent method with exact line search applied to a
two-dimensional quadratic function F . Note the zig-zag behaviour of the iterates.

Conjugate directions Let’s revisit equation (4.6) for a general direction d (i.e., not necessarily
equal to the negative gradient). Observe that 〈r(k),d〉 = 〈e(k),d〉A since r(k) = b−Ax(k) = Ae(k).
Then, for a general search direction d with an exact line search, the iterate takes the form x(k+1) =

x(k) + 〈e
(k),d〉A
〈d,d〉A

d, and so in terms of the error e(k+1) this is

e(k+1) = e(k) − 〈e
(k),d〉A
〈d,d〉A

d. (4.7)

Observe that this is nothing but a projection of e(k) onto the hyperplane that is A-orthogonal to d;
i.e., we have 〈e(k+1),d〉A = 0.

Definition 4.22 (Conjugate directions) The vectors u,v ∈ Rn are conjugate with respect to a sym-
metric positive definite matrix A if they are nonzero and A-orthogonal: 〈u,v〉A := 〈u, Av〉 = 0.

The observation above allows us to prove the following important result.

Theorem 4.23 Let d(0),d(1), . . . ,d(n−1) be n−1 pairwise conjugate directions, and consider the sequence
of iterates

x(k+1) = x(k) + αkd
(k), αk =

〈r(k),d(k)〉
〈d(k), Ad(k)〉

.

Let r(k) = b−Ax(k) be the residual. Then for each k = 1, . . . , n, r(k) is orthogonal to span{d(0), . . . ,d(k−1)}.
In particular r(n) = 0.

Proof. From the recurrence (4.7), we easily see by induction that e(k) = x∗−x(k) is A-orthogonal
to the subspace span{d(0), . . . ,d(k−1)}, i.e., for i < k, 〈e(k), Ad(i)〉 = 0. Since A is symmetric, and
Ae(k) = r(k) we get the desired orthogonality relation. �
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So, if a sequence (d(k)) of conjugate directions is at hands, we have an iterative procedure with
good approximation properties. In the conjugate gradient method, the (A-orthogonal) basis of
conjugate directions is constructed byA-orthogonalization of the sequence {r0, Ar0, A2r0, ..., A

n−1r0}
with r0 = b−Ax0. This is done in the way similar to orthogonalization of the monomial sequence
{1, x, x2, ..., xn−1} using a recurrence relation.
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