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Numerical Analysis – Lecture 19

Conjugate gradient method The conjugate gradient method is the method of conjugate direc-
tions (Theorem 4.23 from previous lecture) where the directions d(i) are chosen so that they A-
orthogonalize the residuals, i.e., the d(i) satisfy

span(d(0), . . . ,d(k−1)) = span(r(0), . . . , r(k−1)) (4.8)

for every iteration k, in addition to being pairwise A-orthogonal. This can be achieved by setting
d(0) = r(0) and applying the Gram-Schmidt step at each iteration

d(k+1) = r(k+1) −
∑
i≤k

〈r(k+1),d(i)〉A
〈d(i),d(i)〉A

d(i). (4.9)

Because of our particular choice of d(k), the equation above simplifies dramatically and the terms
i ≤ k − 1 in the summation above happen to be zero! This is the key point of the CG method.
Let’s prove this. Recall that the iterates are defined by x(k+1) = x(k)+αkd

(k) so that the residuals
satisfy r(k+1) = r(k) − αkAd(k). It is easy then to see by induction, using the property (4.8) that

span{d(i)}k−1
i=0 = span{r(i)}k−1

i=0 = span{r(0), Ar(0), . . . , Ak−1r(0)} =: Kk(A, r
(0)),

where Km(A,v) = span{Aiv}m−1
i=0 is the m’th Krylov subspace of A wrt v. The result of Theorem

4.23 tells us that r(k+1) is orthogonal to Kk+1(A, r
(0)). Now for i < k, we have d(i) ∈ Kk(A, r

(0))

and so Ad(i) ∈ Kk+1(A, r
(0)). This implies that 〈r(k+1), Ad(i)〉 = 0 for i < k, and shows that the

terms i < k in Equation (4.9) are equal to zero.
The conjugate gradient algorithm can thus be summarized in the following: Set d(0) = r(0) =

b−Ax(0) and iterate, for k ≥ 0:
x(k+1) = x(k) + αkd

(k) αk =
〈r(k),d(k)〉
〈d(k), Ad(k)〉

d(k+1) = r(k+1) + βkd
(k) βk = −〈r

(k+1), Ad(k)〉
〈d(k), Ad(k)〉

(4.10)

where r(k) stands for b − Ax(k). We can summarize the properties of the Conjugate Gradient
Method in the following theorem.

Theorem 4.26 (Properties of CGM) For every m ≥ 0, the conjugate gradient method has the following
properties.

(1) The linear space spanned by the residuals {r(i)} is the same as the linear space spanned by the
conjugate directions {d(i)} and it coincides with the space spanned by {Air(0)}:

span{r(i)}mi=0 = span{d(i)}mi=0 = span{Air(0)}mi=0 .

(2) The residuals satisfy the orthogonality conditions: 〈r(m), r(i)〉 = 〈r(m),d(i)〉 = 0 for i < m .
(3) The directions are conjugate (A-orthogonal): 〈d(m),d(i)〉A = 〈d(m), Ad(i)〉 = 0 for i < m .

Using these properties we can simplify the expressions for αk and βk. Indeed, using the second
equation in (4.10), and the fact that r(k) ⊥ d(k−1), we have

〈r(k),d(k)〉 = 〈r(k), r(k)〉 = ‖r(k)‖22 (4.11)
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which shows that

αk =
‖r(k)‖22

〈d(k), Ad(k)〉
> 0.

Also, we can write:

βk = −〈r
(k+1), Ad(k)〉
〈d(k), Ad(k)〉

(a)
= −〈r

(k+1), r(k+1) − r(k)〉
〈d(k), r(k+1) − r(k)〉

(b)
=
‖r(k+1)‖2

〈d(k), r(k)〉
(c)
=
‖r(k+1)‖2

‖r(k)‖2
> 0 .

where we used in (a) the fact that Ad(k) is a multiple of r(k+1) − r(k), and in (b) orthogonality of
r(k+1) to both r(k),d(k) (Theorem 4.26(2)), and in (c) we used (4.11).

The complete conjugate gradient method can thus be written as follows:

Algorithm 4.27 (Standard form of the conjugate gradient method) –

(1) Set k = 0, x(0) = 0, r(0) = b, and d(0) = r(0);
(2) Calculate the matrix-vector product v(k) = Ad(k) and αk = ‖r(k)‖2/〈d(k),v(k)〉 > 0;

(3) Apply the formulae x(k+1) = x(k) + αkd
(k) and r(k+1) = r(k) − αkv(k);

(4) Stop if ‖r(k+1)‖ is acceptably small;

(5) Set d(k+1) = r(k+1) + βkd
(k), where βk = ‖r(k+1)‖2/‖r(k)‖2 > 0;

(6) Increase k → k + 1 and go back to (2).

The total work is dominated by the number of iterations, multiplied by the time it takes to
compute v(k) = Ad(k). Thus the conjugate gradient algorithm is highly suitable when most of the
elements of A are zero, i.e. when A is sparse.

Finite termination We have already seen that the method of conjugate directions (Theorem 4.23
in previous lecture) terminates after at most n steps. We restate this result in the special case of
the conjugate gradient method.

Corollary 4.28 (A termination property) If the conjugate gradient method is applied in exact arith-
metic, then, for any x(0) ∈ Rn, termination occurs after at most n iterations. More precisely, termination
occurs after at most s iterations, where s = dim span{Air0}n−1

i=0 (which can be smaller than n).

Proof. Assertion (2) of Theorem 4.26 states that residuals (r(k))k≥0 form a sequence of mutually
orthogonal vectors in Rn, therefore at most n of them can be nonzero. Since they also belong to
the space span{Air0}n−1

i=0 , their number is bounded by the dimension of that space. �
We can bound the dimension of the Krylov subspace span{Air0}n−1

i=0 using the number of
distinct eigenvalues of A.

Theorem 4.29 (Number of iterations in CGM) Let A > 0, and let s be the number of its distinct
eigenvalues. Then, for any v,

dimKm(A,v) ≤ s ∀m. (4.12)

Hence, for any A > 0, the number of iterations of the CGM for solving Ax = b is bounded by the number
of distinct eigenvalues of A.

Proof. Inequality (4.12) is true not just for positive definite A > 0, but for any A with n linearly
independent eigenvectors (ui). Indeed, in that case one can expand v =

∑n
i=1 aiui, and then

group together eigenvectors with the same eigenvalues: for each λν we set wν =
∑mν
k=1 aikuik if

Auik = λνuik . Then
v =

∑s
ν=1 cνwν , cν ∈ {0, 1} ,

hence Aiv =
∑s
ν=1 cνλ

i
νwν , thus for any m we get Km(A,v) ⊆ span{w1,w2, . . . ,ws}, and that

proves (4.12). By Corollary 4.28, the number of iteration in CGM is bounded by dimKm(A, r(0)),
hence the final conclusion. �

Remark 4.30 Theorem 4.29 shows that, unlike other iterative schemes, the conjugate gradient
method is both iterative and direct: each iteration produces a reasonable approximation to the
exact solution, and the exact solution itself will be recovered after n iterations at most.
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Convergence One can prove a more quantitative version of Theorem (4.29).

Theorem 4.31 Let A be symmetric positive definite. After k iterations of the conjugate gradient method,
the error e(k) = x∗ − x(k) satisfies

‖e(k)‖A = min
Pk
‖Pk(A)e(0)‖A

where the minimization is over all polynomials Pk of degree ≤ k that satisfy Pk(0) = 1.

Proof. We know from Lecture 18 (Equation (4.7) applied recursively) that e(k) is obtained from
e(0) by projecting out (in the inner product 〈·, ·〉A) the components d(0), . . . ,d(k−1). This means
that

‖e(k)‖A = min
v
‖e(0) − v‖A

where the minimization is over all v ∈ span(d(0), . . . ,d(k−1)). For the conjugate gradient method,
this subspace is the same as span(r(0), . . . , Ak−1r(0)), and since r(0) = Ae(0), this means that any
such v can be written as v =

∑k
i=1 ciA

ie(0). Let Pk(t) = 1−
∑k
i=1 cit

i we get the desired equality.

Remark 4.32 If A has s distinct eigenvalues λ1, . . . , λs > 0, then with Ps(t) =
∏s
i=1(1− t/λi) we have

degPs = s, Ps(0) = 1, and and Ps(A) = 0. Thus this shows that the CG method terminates after s
iterations.
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