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Numerical Analysis – Lecture 20

Convergence of CG The following theorem gives an important characterization of the CG method.

Theorem 4.33 Let A be symmetric positive definite. After k iterations of the conjugate gradient method,
the error e(k) = x∗ − x(k) satisfies

‖e(k)‖A = min
Pk

‖Pk(A)e(0)‖A

where the minimization is over all polynomials Pk of degree ≤ k that satisfy Pk(0) = 1.

Proof. We know from Lecture 18 (Equation (4.7) applied recursively) that e(k) is obtained from
e(0) by projecting out the components d(0), . . . ,d(k−1) (in the inner product 〈·, ·〉A). This means
that

‖e(k)‖A = min
v
‖e(0) − v‖A

where the minimization is over all v ∈ span(d(0), . . . ,d(k−1)). For the conjugate gradient method,
this subspace is the same as span(r(0), . . . , Ak−1r(0)), and since r(0) = Ae(0), this means that any
such v can be written as v =

∑k
i=1 ciA

ie(0), i.e., e(0) − v = Pk(A)e
(0) with Pk(t) = 1 −

∑k
i=1 cit

i

is a degree k polynomial with Pk(0) = 1. �

Remark 4.34 If A has s distinct eigenvalues λ1, . . . , λs > 0, then with Ps(t) =
∏s
i=1(1− t/λi) we have

degPs = s, Ps(0) = 1, and Ps(A) = 0. Thus this shows that the CG method terminates after s iterations,
recovering the result of Theorem 4.29.

Corollary 4.35 Let A be symmetric positive definite, and assume that all its eigenvalues lie in [l, L] where
0 < l < L. Then after k iterations of the conjugate gradient method, the error e(k) = x∗ − x(k) satisfies

‖e(k)‖A ≤ 2ρk‖e(0)‖A ≤ 2(1−
√
l/L)k‖e(0)‖A, ρ =

√
L−
√
l√

L+
√
l
< 1.

Proof. First note that for any polynomial Pk we have

‖Pk(A)e(0)‖A ≤
(

max
λ∈spec(A)

|Pk(λ)|
)
‖e(0)‖A

where spec(A) is the set of eigenvalues of A (its spectrum). To see why, let w1, . . . ,wn be an
orthogonal basis of eigenvectors of A such that e(0) =

∑
iwi. Since the wi are eigenvectors of A,

they are also pairwise orthogonal wrt A-inner product, and so ‖e(0)‖2A =
∑
i ‖wi‖2A. In addition

Pk(A)e
(0) =

∑
i Pk(λi)wi and so

‖Pk(A)e(0)‖2A = ‖
∑
i

Pk(λi)wi‖2A =
∑
i

|Pk(λi)|2‖wi‖2A

≤
(

max
λ∈spec(A)

|Pk(λ)|2
)
‖e(0)‖2A

as desired.
We know that the eigenvalues of A are all in [l, L], so we consider the problem of finding the

polynomial Pk of degree k, such that Pk(0) = 1, and that minimizes the value

max
x∈[l,L]

|Pk(x)|.

This problem has a classical solution Pk = T ∗k , where T ∗k is the Chebyshev polynomial on the in-
terval [l, L], which is obtained by dilation and translation of the standard Chebyshev polynomial
Tk given on the interval [−1, 1], namely

Pk(x) = Tk

(
2
L− x
L− l

− 1

)/
Tk

(
L+ l

L− l

)
.
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This polynomial satisfies Pk(0) = 1, and since |Tk(t)| ≤ 1 for all t ∈ [−1, 1], we have

|Pk(x)| ≤
∣∣∣∣Tk (L+ l

L− l

)∣∣∣∣−1 = |Tk (1 + 2η)|−1 , η = l/(L− l),

for all x ∈ [l, L]. Using the inequality

Tk(t) ≥
1

2

(
t+
√
t2 − 1

)k
valid for all |t| ≥ 1, one can show that |Tk(1+2η)| ≤

(√
L−
√
l√

L+
√
l

)k
, which gives the desired result. �

For a symmetric positive definite matrix A, let κ(A) = λmax(A)
λmin(A) > 1 be its condition number. We

saw that the convergence rate of the steepest descent method is ≈ (1 − 1
κ(A)

)k, whereas the CG

method achieves the better rate of
(
1− 1√

κ(A)

)k
.

Remark 4.36 The condition number defined above can be written as κ(A) = ‖A‖2‖A−1‖2 where ‖ · ‖2 is
the operator norm of A. This quantity measures the sensitivity of the matrix inverse operation, in a relative
error sense. Let φ(A) = A−1 be the matrix inverse operation, and consider a perturbation Ã = A + H .
The relative sensitivity is defined as:

‖φ(Ã)− φ(A)‖2/‖φ(A)‖2
‖Ã−A‖2/‖A‖2

=
output relative error
input relative error

.

One can show that for H small, this quantity is bounded above by κ(A).

Preconditioning In Ax = b, we change variables, x = PT x̂, where P is a nonsingular n × n
matrix, and multiply both sides with P . Thus, instead ofAx = b, we are solving the linear system

PAPT x̂ = Pb ⇔ Âx̂ = b̂ . (4.11)

Note that symmetry and positive definiteness of A imply that Â = PAPT is also symmetric and
positive definite since 〈Ây,y〉 = 〈PAPTy,y〉 = 〈APTy, PTy〉 > 0. Therefore, we can apply con-
jugate gradients to the new system. This results in the solution x̂, hence x = PT x̂. This procedure
is called the preconditioned conjugate gradient method and the matrix P is called the preconditioner.

The main idea of preconditioning is to pick P in (4.11) so that κ(Â) is much smaller than κ(A),
thus accelerating convergence. Ideally, one would like to choose P so that PAPT = I , however
this amounts to inverting A! Instead, we look for an approximation S of A that is easy to invert,
or Cholesky-factorize. If we let S = LLT this Cholesky factorization, and take P = L−1, then
PAPT = L−1AL−T which is similar to S−1A ≈ I . Possible choices of S include:

Example 4.37 1) The simplest choice of S is D = diagA, then P = D−1/2 in (4.11).
2) Another possibility is to choose S as a band matrix with small bandwidth. For example,

solving the Poisson equation with the five-point formula, we may take S to be the tridiagonal
part of A.

Example 4.38 Consider the tridiagonal system Ax = b, and let S be defined by:

A =


2 −1
−1 2

. . .
. . . . . . −1
−1 2

 , S =


1 −1
−1 2

. . .
. . . . . . −1
−1 2

 = LLT , with L =


1

−1 1
. . . . . .
−1 1

 .
The matrix S coincides with A except at the (1, 1)-entry. This matrix S happens to have a simple
Cholesky factorization S = LLT . Using P = L−1, we note that PAPT has only two distinct
eigenvalues, and so the CG method converges in two iterations. To see why, note that A = S +
e1e

T
1 , so that

S−1A = I + ueT1 ,

a rank-1 perturbation of the identity matrix, with all eigenvalues but one equal 1 (the remaining
one equal 1 + u1).
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Matlab demo: Download the Matlab GUI for Preconditioning of Conjugate Gradient from https:
//www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/precond/precond.html. Run
the GUI to solve different systems of linear equations, trying different preconditioners P . You can
select from some preset preconditioners but can propose your own customised preconditioners
as well. What does preconditioning do to the spectrum of the system matrix?
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