Mathematical Tripos Part II: Michaelmas Term 2021

Numerical Analysis – Lecture 23

QR iteration with shifts In the last lecture we introduced simultaneous iteration as a generalization of the power method to multiple orthogonal vectors. When the number of such vectors is p=n (the dimension of the space), we saw that simultaneous iteration in fact can also be seen as a generalization of inverse iteration. More precisely, we saw that if $X^{(k)}$ is the sequence of orthogonal matrices produced by simultaneous iteration, then

$$X_1^{(k)} = \frac{A^k X_1^{(0)}}{\|A^k X_1^{(0)}\|_2} \quad \text{and} \quad X_n^{(k)} = \frac{A^{-k} X_n^{(0)}}{\|A^{-k} X_1^{(0)}\|_2}.$$

We know from Lecture 21 that the convergence of inverse iteration can be significantly improved if we update the shift *s* at each iteration, such as in the Rayleigh Quotient Iteration. This motivates us to consider the following shifted version of simultaneous iteration.

SHIFTED SIMULTANEOUS ITERATION

Let $X^{(0)} = I$

For $k = 0, 1, 2, \dots$

- Compute shift s_k (eg $s_k = (X_n^{(k)})^T A X_n^{(k)}$)
- $\bullet \ Y = (A s_k I)X^{(k)}$
- $\bullet \ [X^{(k+1)}, R] = \operatorname{qr}(Y)$

As mentioned in the previous lecture, this algorithm can be rewritten in terms of the matrices $A^{(k)} = (X^{(k)})^T A X^{(k)}$ instead of $X^{(k)}$.

SHIFTED QR ITERATION

Let $A^{(0)} = A$

For $k = 0, 1, 2, \dots$

- Compute shift s_k (e.g., $s_k = A_{nn}^{(k)}$)
- $[Q,R] = \operatorname{qr}(A^{(k)} s_k I)$
- $A^{(k+1)} = Q^T A^{(k)} Q = RQ + s \iota I$

One can prove the formal equivalence between these two algorithms in exactly the same way it was done in Lecture 22, via induction. Note that the matrix $X^{(k)}$ in simultaneous iteration can be obtained as the product of the orthogonal matrices Q in the QR iteration.

Using the shifting strategy above, we expect the last row of $X^{(k)}$ to converge very quickly to an eigenvector of A; equivalently, this means that the last row of $A^{(k)} = (X^{(k)})^T A X^{(k)}$ converges very quickly to the vector $(0, \ldots, 0, \lambda)$ where λ is an eigenvalue of A. Once we have convergence, the matrix $A^{(k)}$ becomes block diagonal, i.e., it can be written as

$$A^{(k)} = \begin{bmatrix} 0 \\ \hat{A} & \vdots \\ 0 & 0 \\ 0 \dots & 0 \lambda \end{bmatrix}.$$

In this case, we need only focus on the matrix \hat{A} which is of size $(n-1) \times (n-1)$. This is the idea of *deflation*, and leads us to the following algorithm. We use the convenient Matlab-style notations 1:k for the set $\{1,\ldots,k\}$, and M[I,J] to be the submatrix with row indices I and column indices J.

QR ITERATION WITH SHIFTS AND DEFLATION

Input: symmetric matrix A_0

Initialize $A = A_0$ (upon termination, A will hold the eigenvalues of A_0)

Initialize $X = I_n$ (upon termination, X will hold the matrix of eigenvectors)

For $j = n, n - 1, \dots, 2$

• While $||A[j,1:j-1]|| \ge \epsilon$ (i.e., while A[j,1:j-1] is "numerically" nonzero)

- Let $s = A_{jj}$ (shift)

 $- [Q, R] = qr(A[1:j, 1:j] - sI_j)$

- $A[1:j,1:j] = RQ + sI_j$

- $X = X \cdot \begin{bmatrix} Q & 0 \\ 0 & I_{n-j} \end{bmatrix}$ (update X)

Upon termination of the algorithm, the matrix A has been reduced to a diagonal matrix containing the eigenvalues, and the matrix X contains the eigenvectors of A_0 , so that $A_0 = XAX^T$.

Remark 5.15 In the above algorithm we always deflate the last row/column of the matrix for simplicity, and because it is the one that generally has the fastest convergence. However in practice it is useful to check for other rows/columns that can also be deflated, i.e., other rows i such that $|A_{ij}| \le \epsilon$ for $j \ne i$.

Reduction to tridiagonal matrices Computing a QR factorization of a $n \times n$ matrix requires $\approx n^3$ floating point operations. If the algorithm above performs a QR factorization for each $j=n,\ldots,2$ then the cost of the algorithm scales like n^4 .

To remedy this high computational cost, one first starts by putting A into tridiagonal form by an orthogonal transformation, before calling the QR iteration algorithm. Recall that a symmetric matrix A is tridiagonal if $A_{ij}=0$ whenever |i-j|>1. There are two reasons why tridiagonal structure is advantageous:

- Computing the QR factorization of a symmetric tridiagonal matrix can be done in O(n) operations, using Givens rotations.
- The QR iterations preserve the tridiagonal structure.

We start by proving the second point:

Proposition 5.16 Assume that A is a $n \times n$ symmetric tridiagonal matrix, and consider one step of shifted QR iteration: $A^+ = RQ + sI$ where [Q, R] = qr(A - sI). Then A^+ is symmetric tridiagonal.

Proof. Since A - sI is tridiagonal, it is easy to verify that $Q_{ij} = 0$ if i > j + 1. It thus follows that $(A^+)_{ij} = (RQ + sI)_{ij} = 0$ if i > j + 1. Since A^+ is symmetric we must also have $(A^+)_{ij} = 0$ if j > i + 1. This means that A^+ is tridiagonal.

Proposition 5.17 The QR factorization of a symmetric tridiagonal matrix A can be computed in O(n) operations using Givens rotations.

Sketch of proof. We apply sequentially Givens rotation matrices $\Omega^{[i,i+1]}$ that annihilate the (i,i+1) entry below the diagonal. After applying n-1 such rotation matrices we arrive at the upper triangular matrix R. Note that applying a single Givens rotation matrix requires a constant number of floating point operations since A is tridiagonal and has only at most 3 nonzero elements per row. Thus the total cost of the algorithm is O(n). Schematically:

$$A = \begin{bmatrix} * * 0 & 0 \\ * * * 0 \\ 0 & * * * \\ 0 & 0 & * \end{bmatrix} \xrightarrow{\Omega^{[1,2]} \times} \begin{bmatrix} \bullet \bullet \bullet 0 \\ \mathbf{0} \bullet \bullet 0 \\ 0 & * * \\ 0 & 0 & * \end{bmatrix} \xrightarrow{\Omega^{[2,3]} \times} \begin{bmatrix} * * * 0 \\ 0 \bullet \bullet \bullet \\ 0 & \mathbf{0} \bullet \bullet \\ 0 & 0 & * \end{bmatrix} \xrightarrow{\Omega^{[3,4]} \times} \begin{bmatrix} * * * 0 \\ 0 * * * \\ 0 & \mathbf{0} \bullet \bullet \\ 0 & \mathbf{0} \bullet \bullet \end{bmatrix} = R$$

The '•' indicate the entries that get modified at each iteration. Note that the resulting upper triangular R satisfies $R_{ij} = 0$ when i < j - 2.

¹Indeed, since the jth column of Q is a linear combination of the columns $1, \ldots, j$ of A - sI, and since A - sI is tridiagonal, we get that $Q_{ij} = 0$ for i > j + 1.