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The primary electroviscous effect in a suspension of 
spheres with thin double layers 
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(Received 9 September 1982) 

We study the primary electroviscous effect in a suspension of spheres when the double 
layer thickness K - ~  is small compared with the particle radius a. The case of a 1-1 
symmetric electrolyte is examined using the methods of Dukhin 6 coworkers (1974), 
whilst the asymmetric electrolyte is studied along lines similar to those of O’Brien 
(1983). Sherwood’s (1980) asymptotic results for high surface potentials and high 
Hartmann numbers are extended and complemented. 

1. Introduction 
A charged particle suspended in an electrolyte attracts a cloud of counter ions. 

Motion of the surrounding fluid distorts this cloud, and the resulting stress in a 
suspension of such particles differs from that in a suspension of uncharged particles. 
This ‘primary electroviscous effect’ has been studied by Booth (1950), Russel (1978) 
and Lever (1979) for small potentials e l  4 kT,  where y is the electric potential a t  the 
surface of the particle, e is the electronic charge and kT the Boltzmann temperature. 
They also assumed that the fluid motion around the sphere was changed only slightly 
by the presence of the charge cloud, i.e. that the electric Hartmann number 
H = p e / w k T p ,  is small, where E and pa are the dielectric constant and viscosity of 
the suspending fluid (which we shall take to be water), and w is a typical ionic 
mobility. 

Sherwood (1980) removed both these restrictions for charged spheres in a 1-1 
electrolyte and obtained numerical and some asymptotic results, while Watterson & 
White (1981) independently studied the case of high potentials in more general 
electrolytes. Here we restrict ourselves to a charge cloud that is thin compared with 
the radius a of the sphere, and obtain analytic results by a boundary-layer method 
similar to that of Dukhin and coworkers (reviewed by Dukhin & Derjaguin (1974) 
and O’Brien (1983)). 

We first review in $ 2 the governing equations and the one-dimensional equilibrium 
charge cloud on a flat boundary. The local forms of the potential and ion densities 
inside the deformed charge cloud are then found in $3  in terms of some unknown 
constants nt and 4; which occur in the quadrupole fields outside the thin charge 
cloud. After calculating in $4 the fluid motion inside the charge cloud, we derive in 
$ 5  linear equations for these unknown constants by balancing the ion fluxes 
integrated across the charge cloud. These linear relations are examined in $96-8 in 
the special cases of low Hartmann number, low potential and high potential 
respectively. 
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2. The equilibrium charge cloud 

number density ni and valence zi. The charge density p is therefore 
We assume that the suspending electrolyte contains I species of ion, each with 

p = ZnVe.  
i 

The electric potential q5 satisfies Poisson’s equation 

P VZq5 = - ;, 

where q5 = y at the particle surface r = a, and q5+0 far from the particle. Thus we 
are identifying the particle surface as the slipping plane, a t  which fluid motion occurs, 
and neglecting any internal structure of the Stern layer, etc. The ions move under 
the influence of electric and thermodynamic forces with velocity 

vi = u + 3( - e z V $  - k!ZV log ni), 

where u is the fluid velocity and oi the mobility of the ith species of ion. We assume 
that the ions are not taking part in reactions. They therefore satisfy the conservation 
equation 

ani 5 + V *  (nivi) = 0. 

When u = 0 the charge cloud is in thermal equilibrium (denoted by a subscript 0). 
The ionic number density n$ is given by the Boltzmann distribution 

- eziq50 
nb = n5 exp (7) , 

where 
I 

6 - 1  
Z n& zie = 0 

for electrical neutrality of the solution away from any charged particles. Inserting 
this number density into Poisson’s equation gives the Poisson-Boltzmann equation 

Restricting ourselves to the one-dimensional case of a plane double layer, we can 
integrate this to obtain 

i e r g y  = k T Z n L ( e x p ( 7 )  - eziq50 - 1 ) .  

i 

The thickness of the double layer is measured by the Debye length 

and we shall assume throughout that this is small compared with the particle radius 
a. The one-dimensional Poisson-Boltzmann equation can be solved analytically for 
a symmetric electrolyte. When z1 = - z 2  = 1 the potential is given by 

eq50 A + e-9 exp- = ~ 

2kT A-e-7’ 
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where 7 = ( r -a )  K is distance from the charged surface, non-dimensionalized by K - ~ .  

A is chosen to satisfy the boundary condition # = 5 on 7 = 0:  

eh+l  A = -  
e h - l '  

2kT' 
where h = -  ec  

There are similar results for symmetric electrolytes and arbitrary z, but no analytic 
solution is available for the general asymmetric electrolyte. In this case, when the 
potential is small (as at the outer edge of the charge cloud, or if ec  < IcT) we may 
linearize the Poisson-Boltzmann equation and obtain 

#o cc e-7. 

At high surface potentials the counter-ion with the highest valency, say zI, will be 
more dense than any other ion close to the surface, and thus 

Integrating 

#o - s l o g ( e x p ( g )  ezr +K,(r-a)), 

where K ; ~  is a Debye length based on the Ith species 

e2zr2nL 
KT = - 

2skT ' 

This holds only at high potentials, and only in the inner part of the double layer where 

Note that 2'6 < 0. 

3. The deformed charge cloud 
In  steady state the number densities of the ions in the deformed cloud satisfy the 

conservation equation 
V*[niu-ui(ezinnaV#+kTVnt)] = 0. 

We follow Booth (1950) and assume that the cloud is only slightly deformed from 
equilibrium, i.e. that the PBclet number P,  measuring the ratio of convection to 
Brownian diffusion of the ions. is small : 

We can therefore expand the number densities and potential as 

nt = n$+ni+ ..., 
4 = #0+#1+..., 

where n!, are O(P) .  The perturbations satisfy 

J V  * (ezi(nfV#, + nkV#,) + kTVn!) = u * Vn$, 

sVZ#, = -C ezini, 
i 
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where we have assumed an incompressible fluid V *U = 0. Vorticity merely rotates the 
particle together with its surrounding charge cloud. We therefore assume that the 
imposed fluid motion takes the form u = E * x and look for perturbations in the form 
of quadrupoles. Outside the double layer 

$, = 0, n$ = n$, 

and hence 

where &*nf = 0. 
a 

Inside the double layer the perturbed ion density nf is given, at leading order, by 
the radial flux balance 

where we have applied the boundary condition that there should be zero flux of ions 
into the particle surface. Thus we are neglecting any structure or relaxation of the 
Stern layer. Fluid motion has been assumed negligible, which is justified as normal 
velocities will be O(utc)-' smaller than any tangential velocities. We can integrate 
the flux balance to yield, within the double layer, 

where n$( + ) and q51( + ) are values just outside the double layer: 

n f ( + )  = n f x * E * x ,  = q5:x.E.x. 

This merely represents a Boltzmann distribution 

after ignoring terms O ( P ) .  The perturbed potential 41 satisfies Poisson's equation 

with solution d$ 
$1 = A(+)+ $f, 

X n:( + ) (exp ( - ezt$,/kT) - 1) 
f= B2+ - dr . :s' E n$(exp ( - ezi$,/kT) - 1 )  

where 

a t  

B, is a constant of integration which depends on the boundary condition applied at 
the surface (e.g. constant charge, constant potential or some more complicated 
relaxation condition). However, B2 only enters the analysis at O ( P )  and need not 
be specified here. In  the case of a 1-1 electrolyte 

n f ( + )  = nl (+) ,  n$ = n,, nf = n: say, i = 1 , 2 ,  
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whilst for a general electrolyte a t  high potential 

1 ( r - a ) n : ( + )  
f " B 2 + 2  nf ,  

in the inner part of the double layer. 

34 1 

4. Motion of fluid within the charge cloud 
We assume the particle to be sufficiently small for the Stokes equations to hold: 

v p  = y0V2u-pV$, 

where p is the pressure and pV$ is the electric force acting on the fluid. At leading 
order within the thin charge cloud there is no motion perpendicular to the particle 
surface and we obtain the perturbed pressure balance 

_ -  W O  a$, ar - - P I F - P O F ~  
which integrates to give 

The tangential component of the Stokes equations becomes 

The second term integrates to give a contribution to utan of 

For a 1-1 electrolyte the first term becomes 

kTn: (eeQolkT + e=e+olkT - 2), 

which integrates to yield a contribution 

More generally we cannot perform this integration, but at high potentials, considering 
only the dominant I ions in the inner part of the double layer, we obtain contributions 

Beyond the charge cloud the fluid velocity takes the form 

We match this with the velocity in the double layer, allowing a small slip but 
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negligible O(UK)-' normal velocity a t  the sphere surface, giving, within the double 
layer, 

for a 1-1 electrolyte, 

for a general electrolyte a t  high potential. 

Matching also gives R=+(vP- l ) ,  s = - a  2 + 2  %a s 9 

where v , + v ~  as v-too. 

Now S is the stresslet term (Batchelor 19701, and so the viscosity of a dilute 
suspension of charged spheres with volume fraction @ is 

p =/%uo(l-s@) =po(l+@(%-@F)). 

5. The flux balance in the deformed double layer 
The constants n: and q5: must now be determined. Integrating the equations for 

the perturbed ion number densities through the double layer, we obtain the 
integrated flux equation 

where dl stands for the double layer, dl+ for just outside the double layer and V, 
is the tangential differential operator. To obtain the above flux balance we have used 
the results V, q50 = 0 everywhere, a$,/& = n: - n& = 0 outside the double layer, and 
we have applied the zero flux boundary condition on r = a. 

The first term in the flux balance represents the convection of ions. Since V * u = 0 
and n$ = n2, outside the double layer, 

JdlV*untdr = V,* utan(nk-n&)dr. 

For a 1-1 electrolyte we can perform the integrals exactly. We assume that the 
particle is charged positively and obtain, for the negative counter-ions, 

Jd l  

and for the positive ions 
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For a general electrolyte at  high potentials we can evaluate the integral for the 
dominant Z counter-ions, obtaining 

The corresponding integral for other ions cannot, however, be evaluated, because it 
is not necessarily dominated by the innermost part of the double layer where q50 is 
known. 

Because the co-ions are excluded from the double layer, their contribution to the 
next integral, which represents motion of the ions under electric forces and diffusion, 
is O(aK)-l small and can be neglected. At high potentials, though, the large number 
density of the counter-ions compensates for the thinness of the double layer, and we 
find for the negative ions of a 1-1 electrolyte 

V,*o- ldl ( - eniV, + kTVny) dr = - 12x E .  x o - ~ - ~ ~ - ' ( k T n :  - n, 4: e )  (eh - l),  

whilst for a general electrolyte at high potentials the flux of the important Zth species 
is 

- 6 ~  ' E .  xw'a-2Ki1(kTnr+n', q5:ez1)e-eZ1C12kT. 

The final terms of the integral flux equation represent the motion of ions due to 
thermal diffusion and electric forces into the outer, quadrupole region of the deformed 
charge cloud, and are - 3x * E x w k '  ( e z k &  q5: + kTnf). 

We can now substitute these fluxes into the integral flux equation. Looking first 
at  the exact case of a 1-1 electrolyte, the negative ions give 

-6nm 10 A kTe 
--(-log- - 44:- (h-eh + 1 )  

U2K a K  A-1 POe 

-8n~~(eh-l-310g--log-))+-(kTn~-en,q5~)(eh-l) kT A A 12w- 
P O K  A-1 A+l  a 2 K  

w -  
a 

= -3(kTn:-en,q5:)-. 

The flux balance for the positive ions is 

A w+ 
-log -)) = - 3(kTn: -en, $:) -. A 

A-1 a 
kT (e-. - 1 - 3 log - 

A+1 
- 8n: - 

PO K 2  

Similarly, the flux balance for the Zth ions in the general electrolyte at high potentials 
is 
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It is easiest to study these equations for 9: and nf by examining first the 1-1 
electrolyte in two limiting cases, corresponding to low Hartmann numbers with 
arbitrary potentials, and to arbitrary Hartmann numbers a t  small potentiaIs. We 
then consider the general electrolyte a t  high potentials. 

6. Low Hartmann numbers and arbitrary potentials 
If 

are small, then w, is small compared with the unperturbed motion of the fluid. We 
can neglect the convection fluxes due to the perturbed flow, and the governing 
equations become, for a 1 - 1 electrolyte, 

-log __ - 
UK 

20n, A - w-(kTn: -en, q5:) (1 + 
a 2 ~ '  A - 1  

- w + (kTn: + en, 4:). 20n, A 
=log= - 

But v? = ,u;'(2$:ce- 8C2n:kT ( log- A - 1  A +lo+)) . A + 1  

+ (kTn: + en, #:) log 
=-((kTnf-en,#:) - 8  log- A 

Po K2 A - 1  

Hence the electrical contribution to the viscosity is 

Sherwood (1980) expressed this contribution in the form 

where I was obtained by a numerical solution of the governing equations. Comparing 
these expressions, we see that, when w +  = w -  = w we would expect 

and in figure 1 we compare the two sides of this expression. When UK = 100 the 
maximum predicted by this analysis is too high by 10 o/o. At UK = lo3 the analytic 
and numerical curves coincide. 

At  low potentials the tangential motion of the ions in the double layer due to 
diffusion and electric forces is negligible, and convection of ions in the double layer 
is balanced by the fluxes into and out of the outer quadrupole cloud. As the potential 
increases, so the density of counter-ions becomes large. At first the tangential 
diffusion and electric fluxes remain negligible and convection of the more numerous 
counter-ions is unchanged in order of magnitude because the ions are confined to the 
inner part of the double layer where the fluid flow is small. At higher potentials the 
tangential diffusion and electric fluxes become very large, and in order that the fluxes 
balance, the tangential driving force K (kTn:-en, 6:) becomes small, resulting in 
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1.5 

eSlkT 

FIGURE 1.  Electrical contribution to the intrinsic viscosity aa a function of c, at small Hartmann 
numbers. Comparison of full numerical results (Sherwood 1980) with analytic results obtained here 
(shown broken). The curves coincide when a K  = los. 

a small contribution of the counter-ions to the electroviscous effect. The co-ions, 
meanwhile, are present only in the outer part of the double layer, where the potential 
saturates as c+ with far-field form 4kTe-' exp (-7). We observe that their 
contribution to the electroviscous effect similarly saturates. At intermediate potentials 
it is small compared with effects due to the counter-ions, while at very high potentials 
the counter-ion contribution decays, leaving only that of the co-ions. 

Note that 

- + - for small 6. - - 5c 
( a ~ ) ~  kT (w' w:) 

- 

Thus our assumption of small g5: and n: requires 

H =  E p  61, 
wkT,uo UK 

with similar restrictions at high potentials. H is the Hartmann number, measuring 
the ratio of electric to viscous stresses within the fluid. When UK is large our 
assumption H 6 1 is reasonable. For more general UK it  is not obvious that we can 
make this restriction. However, Sherwood (1980) showed that only small errors are 
introduced by making this approximation a t  typical Hartmann numbers. I n  57 we 
study the effect of the Hartmann number on our analytic results, taking 5 small for 
convenience, and compare with previous numerical results. 
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7. Arbitrary Hartmann numbers at low potentials 
When the potential is low the flux balances for a 1-1 electrolyte yield 

n 10h 4$:kTh2e 
kTn: -en, 4: = + (- + 

w aK U K  Foe 

kTn:+en,$: = -(- 10h + 4$:kTh2e 

u+aK a K  Foe  

Hence 
- 5c 

" = ukT(aK)2 ( 1  + H )  ' 

where 2w-1 = @-)-I+  ( w + ) - ' .  

A t  high Hartmann numbers 9: adjusts so that the flux of each type of ion advected 
by the unperturbed flow is balanced by the flux advected by the flow forced by the 
restoring electric field. The slip caused by the perturbed flow is 

and the electrical contribution to the viscosity is therefore 

15p0 @H 
aK(1+ H )  ' 

We have assumed that the potential and ion number densities in the double layer 
are locally in equilibrium, matching with the quadrupole field 4:. There will be 
additional variations within the cloud, O(aK)-' smaller, which we have neglected. 
These will not decrease with $:, so there is a risk that they become important when 
$f is small. Hence the analysis is restricted to H Q aK. 

In figure 2 we show our analytic result for the intrinsic viscosity 15H/a~(  1 + H ) ,  
together with numerical calculations for aK = 500 (Sherwood 1980). Our analysis 
does indeed break down at H - aK. At this value the electric stresses are so strong 
that fluid adjacent to the particle can hardly move, and Sherwood's asymptotic 
analysis takes over. 

8. The general electrolyte 

of ion when the potential is high: 
In the general case we can only obtain the flux balance for the dominant Ith species 

kTnf - - 5ec/a2e2z'2w' 
2 

U K I  

in which the parameter EkT 

occurs naturally as a Hartmann number based on the ions. If we assume that 

n',$:+ - - 
ez' 

1 + - (1 + 2% e d h ,  

x =  
pu0 e2z12wI 
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t 

H 

FIQURE 2. Electrical contribution to the intrinsic viscosity, at low potentials, as a function of the 
Hartmann number H. N, full numerical results. A,  analytic results of this paper. B, Booth's (1950) 
results for small Hartmann number. C ,  Sherwood's asymptotic results for H S- 1. UK = 500. 

w;l = 4npaI, where a, is the radius of an ion, and that the potential 
of the ion is 

at the surface 

z'e 
$ z = 4 X s a , '  

then 

The electrical contribution to the viscosity at high potentials is 

vw - 30p0 @%(z'h)2 (a~I)- l  
+Po @J - aK,+ (2+4%) e-z'h . 

The dependence on the Hartmann number 2' is similar to that obtained a t  low 
potentials. As a function of the surface potential, the contribution to the viscosity - 

has a maximum at 

and the factor 2' causes the maximum to vary (roughly) as z i 2  when ~ K I  is held 
constant. Similar behaviour, at constant a ~ ,  is observed in the full numerical solutions 
of Watterson & White (1981). We note finally that at very high potentials our 
expression tends to zero. We have, however, completely ignored the small contribution 
of the co-ions, which becomes dominant in this limit. 
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