
Part III. The rheology of suspensions

May 12, 2014

Microstructural studies for rheology

I To calculate the flow of complex fluids, need governing

equations,

I in particular, the constitutive equation relating stress to flow

and its history.

I Either ‘ad hoc’, such as Oldroyd-B differential equation and

BKZ integral equation,

I Or look at microstructure for highly idealised systems and

derive their constitutive equations.

I Most will be suspensions of small particles in Newtonian

viscous solvent.
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Separation of length scales

Essential
Micro `� L Macro

Micro = particle 1µm Macro = flow, 1cm

I Micro and Macro time scales similar

I Need ` small for small micro-Reynolds number

Re` = ργ`2

µ � 1,

otherwise possible macro-flow boundary layers 6� `

But macro-Reynolds number ReL = ργL2

µ can be large

I If ` ≮ L, then non-local rheology

Two-scale problem `� L

I Solve microstructure – tough, must idealise

I Extract macro-observables – easy

Here: suspension of particles in Newtonian viscous solvent

1. Macro→micro connection

I Particles passively move with macro-flow u

I Particles actively rotate, deform & interact with

macro-shear ∇u

both needing Re` � 1.

2. Micro→macro connection

Macro = continuum = average/smear-out micro details

E.g. average over representative volume V with `� V 1/3 � L

σ =
1

V

∫
V
σ dV

Also ensemble averaging and homogenisation

To be used in averaged = macro momentum equation

ρ

[
∂u

∂t
+ u · ∇u

]
= ∇ · σ + F

NB micro-Reynolds stresses (ρu)′u′ small for Re` � 1.



Reduction for suspension with Newtonian viscous solvent

Write: σ = −pI + 2µe + σ+

with pressure p, viscosity µ, strain-rate e,
and σ+ non-zero only inside particles.

Average: σ = −pI + 2µe + σ+

with

σ+ =
1

V

∫
V
σ+ dV = n

〈∫
particle

σ+ dV

〉
types of particle

with n number of particles per unit volume

Reduction for suspension with Newtonian viscous solvent 2

Inside rigid particles e = 0, so σ+ = σ.

Also σij = ∂k(σikxj)− xj∂kσik , so ignoring gravity ∂kσik = 0,∫
particle

σ+ dV =

∫
particle

σ ·n x dA

so only need σ on surface of particle. (Detailed cases soon.)

Hence

σ = −pI + 2µe + n

∫
particle

σ ·n x dA

Homogenisation: asymptotics for `� L

Easier transport problem to exhibit method

∇ · k · ∇T = Q

with k & Q varying on macroscale x and microscale ξ = x/ε,

Multiscale asymptotic expansion

T (x ; ε) ∼ T0(x , ξ) + εT1(x , ξ) + ε2T2(x , ξ)

Homogenisation 2

ε−2:

∂ξk∂ξT0 = 0

i.e. T0 = T (x)

Thus T varies only slowly at leading order, with microscale making
small perturbations.



Homogenisation 3

ε−1:
∂ξk∂ξT1 = −∂ξk∂xT0

Solution T1 is linear in forcing ∂xT0, details depending on k(ξ):

T1(x , ξ) = A(ξ)∂xT0

Homogenisation 4

ε0:
∂ξk∂ξT2 = Q − ∂xk∂xT0 − ∂ξk∂xT1 − ∂xk∂ξT1

Secularity: 〈RHS〉 = 0 else T2 = O(ξ2) which contradicts
asymptoticity. (Periodicity not necessary.) Hence

0 = 〈Q〉 − ∂x〈k〉∂xT0 − ∂x〈k
∂A

∂ξ
〉∂xT0

Hence macro description

∇k∗∇T = Q∗ with k∗ =

〈
k + k

∂A

∂ξ

〉
and Q∗ = 〈Q〉

Homogenisation 5

NB: Leading order T0 uniform at microlevel, with therefore no
local heat transport

NB: Micro problem forced by ∇T0. Need to solve

∇ · k∇ · Tmicro = 0

Tmicro → x · ∇T0

Solution
Tmicro = (x + εA)∇T0

Hence heat flux

〈q〉 = 〈k∇Tmicro〉 = 〈k + εk∇A〉∇T0
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Einstein viscosity

Simplest, so can show all details.

Highly idealised – many generalisations

I Spheres – no orientation problems

I Rigid – no deformation problems

I Dilute and Inert – no interactions problems

Micro problem

I Isolated rigid sphere

I force-free and couple-free

I in a general linear shearing flow ∇U
I Stokes flow

Stokes problem for Einstein viscosity

∇ · u = 0 in r > a

0 = −∇p + µ∇2u in r > a

u = V + ω ∧ x on r = a with V , ω consts

u→ U + x · ∇U as r →∞

F =

∫
r=a

σ ·n dA = 0, G =

∫
r=a

x ∧ σ ·n dA = 0

Split general linear shearing flow ∇U into symmetric strain-rate E
and antisymmetric vorticity Ω, i.e.

x · ∇U = E · x + Ω ∧ x

NB: Stokes problem is linear and instantaneous

Solution of Stokes problem for Einstein viscosity

F = 0 gives V = U i.e. translates with macro flow

G = 0 gives ω = Ω i.e. rotates with macro flow

Then

u = U + E · x + Ω ∧ x− E · xa
5

r5
− x

5(x · E · x)

2r2

(
a3

r3
− a5

r5

)
p = −5µ

(x · E · x)a3

r5

Evaluate viscous stress on particle

σ ·n
∣∣
r=a

=
5µ

2a
E · x

Evaluate particle contribution to macro/average stress∫
particle

σ ·n x dA = 5µE
4π

3
a3



Result for Einstein viscosity (1905)

σ = −pI + 2µE + 5µEφ with volume fraction φ = n
4π

3
a3

Hence effective viscosity

µ∗ = µ

(
1 +

5

2
φ

)

I Result independent of type of flow – shear, extensional

I Result independent of particle size – OK polydisperse

I Einstein used another averaging of dissipation
which would not give normal stresses with σ : E = 0,
which arbitrarily cancelled divergent integrals (hydrodynamics
is long-ranged)
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Rotation of particles – rigid and dilute

Spheroid: axes a, b, b, aspect ratio r = a
b .

rod r > 1 disk r < 1

Direction of axis p(t), unit vector.

Stokes flow by Oberbeck (1876)



Rotation of particles

Microstructural evolution equation

Dp

Dt
= Ω ∧ p + r2−1

r2+1
[E · p− p(p · E · p)]

(Last term to keep p unit, so can discard sometimes.)

Straining less efficient at rotation by r2−1
r2+1

.

Long rods r2−1
r2+1

→ +1 i.e. Upper Convective Derivative
∇
A

Flat disks r2−1
r2+1

→ −1 i.e. Lower Convective Derivative
4
A

Micro→macro link: stress

σ = −pI + 2µE + 2µφ [A(p · E · p)pp + B(pp · E + E · pp) + CE]

with A,B,C material constants depending on shape but not size

A B C

r →∞ r2

2(ln 2r− 3
2
)

6 ln 2r−11
r2

2

r → 0 10
3πr − 8

3πr
8

3πr

Rotation in uni-axial straining

U = E (x ,−1
2y ,−

1
2z)

rotates to

Aligns with stretching direction → maximum dissipation

rotates to

Aligns with inflow direction → maximum dissipation

Effective extensional viscosity for rods

µ∗ext = µ

(
1 + φ

r2

3(ln 2r − 1.5)

)
Large at φ� 1 if r � 1. Now φ = 4π

3 ab2 and r = a
b , so

µ∗ext = µ

(
1 +

4πna3

9(ln 2r − 1.5)

)
so same as sphere of radius a its largest dimension(except for
factor 1.2(ln 2r − 1.5)).
Hence 5ppm of PEO can have a big effect in drag reduction.

Dilute requires na3 � 1, but extension by Batchelor to semi-dilute
φ� 1� φr2

µ∗ext = µ

(
1 +

4πna3

9 lnφ−1/2

)



Effective extensional viscosity for disks

µ∗ext = µ

(
1 + φ

10

3πr

)
= µ

(
1 +

10nb3

9

)
where for disks b is the largest dimension

(always the largest for Stokes flow).

No semi-dilute theory, yet.

Behaviour in simple shear

U = (γy , 0, 0)

rotates to

Rotates to flow direction → minimum dissipation

rotates to

Rotates to lie in flow → minimum dissipation

Both Tumble: flip in 1/γ, then align for r/γ (δθ = 1/r with
θ̇ = γ/r2)

Effective shear viscosity

Jeffery orbits (1922)

φ̇ = γ
r2+1

(r2 cos2 φ+ sin2 φ)

θ̇ = γ(r2−1)
4(r2+1)

sin 2θ sin 2φ

Solution with orbit constant C .

tanφ = r tanωt, ω = γr
r2+1

, tan θ = Cr(r2 cos2 φ+ sin2 φ)−1/2

Effective shear viscosity Leal & H (1971)

µ∗shear = µ

(
1 + φ

{
0.32r/ ln r rods

3.1 disks

)

numerical coefficients depend on distribution across orbits, C .

Remarks

Alignment gives µ∗shear � µ∗ext

and this material anisotropy will lead to anisotropy of macro flow.

Important to Turbulent Drag Reduction

Three measures of concentration of rods
φr2

.
= na3 for µ∗ext

φr
.

= na2b for µ∗shear

φ
.

= nab2 for permeability



Brownian rotations – for stress relaxation

Rotary diffusivity Drot =
kT

8πµa3
for spheres,

kT

/
8πµa2

3(ln 2r − 1.5)
rods, kT

/
8
3µb

3 disks

(NB largest dimension, again)
After flow is switched off, particles randomise orientation in time
1/6D ∼ 1 second for 1µm in water.

State of alignment: probability density P(p, t) in orientation space
= unit sphere |p| = 1. Fokker-Plank equation

∂P

∂t
+∇·(ṗP) = Drot∇2P

ṗ(p) earlier deterministic.

Average stress over distribution P

Averaged stress

σ = −pI + 2µE + 2µφ[AE : 〈pppp〉
+ B(E ·〈pp〉+ 〈pp〉·E ) + CE + FDrot〈pp〉]

Last FDrot term is entropic stress.
Extra material constant F = 3r2/(ln 2r − 0.5) for rods and 12/πr
for disks.

with averaging: 〈pp〉 =

∫
|p|=1

ppP dp

Solve Fokker-Plank: numerical, weak and strong Brownian
rotations

Extensional and shear viscosities

µext

1/3

4/15

ϕr^2/ln r

µ

E/D

X

6

ext

Small
strain-hardening

l Orientation effects
µshear

γ/D6 r^3

4 ϕr^2/15ln r

0.32ϕ

r^2/2ln r (D/γ) 1/3ϕ

r/ln r

Large
shear-thinning

Also N1 > 0,
N2 small < 0.

The closure problem

I Second moment of Fokker-Plank equation

D

Dt
〈pp〉 − Ω·〈pp〉〈pp〉·Ω

= r2−1
r2+1

[E ·〈pp〉+ 〈pp〉·E − 2〈pppp〉 : E ]−6Drot

[
〈pp〉 − 1

3 I
]

Hence this and stress need 〈pppp〉, so an infinite hierarchy.

I Simple ‘ad hoc’ closure

〈pppp〉 : E = 〈pp〉〈pp〉 : E

I Better: correct in weak and strong limits

〈pppp〉 : E = 1
5

[
6〈pp〉·E ·〈pp〉 − 〈pp〉〈pp〉 :E − 2I (〈pp〉2 :E − 〈pp〉 :E )

]
I New idea Brownian fields: simulate many random walks in

orientation space for each point of the complex flow.
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Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

I Dilute – single drop, volume 4π
3 a3

I T = surface tension (in rheology σ and γ not possible)

I Newtonian viscous drop µint, solvent µext

Rupture if µext >
T
Ea (normally)

time−→ time−→

Irreversible reduction is size to a∗ = T/µextE , as coalescence very
slow.

Rupture in shear flow

T

µextEa

µint

µext

Experiments: de Bruijn (1989) (=own), Grace (1982)

Theories: Barthes-Biesel (1972), Rallison (1981), Hinch & Acrivos (1980)



Rupture difficult if µint � µext

Too slippery. Become long and thin. Rupture if

µextE >
T

a

{
0.54 (µext/µint)

2/3 simple shear

0.14 (µext/µint)
1/6 extension

but tip-streaming with mobile surfactants (makes rigid end-cap)

µextE >
T

a
0.56

Rupture difficult is simple shear if µint > 3µext

I If internal very viscous ( µint � µext),
I then rotates with vorticity,
I rotating with vorticity, sees alternative stretching and

compression,
I hence deforms little.

I If internal fairly viscous (µint & 3µext),
I then deforms more,
I if deformed, rotates more slowly in stretching quadrant,
I if more deformed, rotates more slowly, so deforms even more,

etc etc

I until can rupture when µint ≤ 3µext

Theoretical studies: small deformations

Small ellipsoidal deformation

r = a (1 + x·A(t)·x + higher orders)

Stokes flow with help of computerised algebra manipulator

DA

Dt
− Ω·A + A·Ω = 2k1E + k5(A·E + E·A) + . . .

− T
µexta

(k2A + k6(A·A) + . . . )

σ = −pI + 2µextE + 2µextφ
[
k3E + k7(A·E + E·A) + . . .

− T
µexta

(k4A + k8(A·A) + . . .
]

with kn depending on viscosity ratio, k1 inefficiency of rotating by
straining λ = µint/µext

k1 = 5
2(2λ+3) , k2 = 40(λ+1)

(2λ+3)(19λ+16)

k3 = 5(λ−1)
3(2λ+3) , k4 = 4

2λ+3

Theoretical studies: small deformations 2

Equilibrium shapes before rupture
extension shear

internal circulation,
tank-treading

Rheology before rupture
Small strain-hardening, small shear-thinning, N1 > 0, N2 < 0.
Repeated rupture leaves µ∗ ∼= constant. Einstein: independent of
size of particle, just depends on φ.

Form of constitutive equation

d

dt
(state) & σ linear in E &

T

µexta



Numerical studies: boundary integral method

σxy

deformation angle

N1, N2

Different λ. No rupture for λ = 5 (*)

Flexible thread – deformable microstructure

Position x(s, t), arclength s, tension T (s, t)

ẋ = x·∇U + T ′x′ + 1
2Tx′′

with T ′′ − 1
2(x′′)2T = −x′ ·∇U·x′ and T = 0 at ends

Snap straight
H 76

Electrical double layer on isolated sphere

– another deformable microstructure

I Charged colloidal particle.

I Solvent ions dissociate,

I forming neutralising cloud around particle.

I Screening distance Debye κ−1, with κ2 = Σiniz
2
i e

2/εkT .

I In flow, cloud distorts a little

I −→ very small change in Einstein 5
2 .
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Hydrodynamic interactions for rigid spheres

Hydrodynamic: difficult long-ranged
Rigid spheres : two bad ideas

Dilute – between pairs (mostly)

Reversible (spheres + Stokes flow) → return to original streamlines

But minimum separation is 1
2 10−4 radius → sensitive to roughness

(typically 1%) when do not return to original streamlines.

Summing dilute interactions

Divergent integral from ∇u ∼ 1

r3
Need renormalisation: Batchelor or mean-field hierarchy.

µ∗ = µ
[
1 + 2.5φ+ 6.0φ2

]
I 6.0 for strong Brownian motion

I 7.6 for strong extensional flow

I ∼= 5 for strong shear flow, depends on distribution on closed
orbits

Small strain-hardening, small shear-thinning

Test of Batchelor φ2 result

µ∗ = µ
[
1 + 2.5φ+ 6.0φ2

]

slope 6.0
Einstein 2.5→

Russel, Saville, Schowalter 1989



Experiments – concentrated

Effective viscosities in shear flow

← µ0

µ∞ →

µ0

µ∞

µa3γ/kT φ

Russel, Saville, Schowalter 1989

Stokesian Dynamics

– (mostly) pairwise additive hydrodynamics

Jamming/locking – clusters across the compressive quadrant

Brady & Bossis (1985)

Fragile clusters if include soft repulsion or Brownian motion

Stokesian Dynamics 2

Effective viscosity in shear flow

Foss & Brady (2000)

‘Stokesian Dynamics’ Brady & Bossis
Ann. Rev. Fluid Mech. (1988)

Electrical double-layer interactions

Interaction distance r∗:

6µµaγr∗ =
εζ2a2κ

r∗
e−κ(r∗−2a)

µ∗ = µ

(
1 + 2.5φ+ 2.8φ2

( r∗
a

)5)
( r∗
a

)5
= velocity γr∗

× force distance r∗

× volume φ
( r∗
a

)3

φ2 coefficient as function of r∗
a



Experiments – concentrated

Stress as function of shear-rate at different pH.
Suspension of 0.33µm aluminium particles at φ = 0.3

Ducerf (Grenoble PhD 1992)

Note yield stress very sensitive to pH

Interactions – van der Waals

Attraction → aggregation
→ gel (conc) or suspension of flocs (dilute)

Possible model of size of flocs R

I Number of particles in floc N =

(
R

a

)d

, d = 2.3?

I Volume fraction of flocs φfloc = φ

(
R

a

)3

I Collision between two flocs

I Hydro force 6πµRγR = Bond force Fb× number of
bonds N a

R

I Hence φfloc = φ
Fb

6πµa2γ

I So strong shear-thinning and yields stress φFb/a
2.

Breakdown of structure in rheology µ(γ)

Interactions – fibres

Cannot pack with random orientation if

φr > 1

leads to spontaneous alignment, nematic phase transition

Note extensional viscosity ∝ φr2 can be big while random,
but shear viscosity ∝ φr is only big if aligned.

Disk not random if φ1
r > 1.

Interactions – drops

I No jamming/locking of drops (cf rigid spheres)

I small deformation avoid geometric frustration
I slippery particle, no co-rotation problems

I Faster flow → more deformed → wider gaps in collisions

I Deformed shape has lower collision cross-section

so ‘dilute’ at φ = 0.3, blood works!



Numerical studies: boundary integral method

φ = 0.3, Ca = µextγa/T = 0.3 λ = 1, γt = 10,
12 drops, each 320 triangles.

Numerical studies: boundary integral method 3

σxy

deformation angle

N1, N2

λ = 1, different φ = 0, 0.1, 0.2, 0.3. Effectively dilute at φ = 0.3.

Numerical studies: boundary integral method 4

Reduced cross-section for collisions

into flow
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Bead-and-Spring model of isolated polymer chain

– simplest, only gross distortion, Kuhn & Kuhn 1945, Kramers 1946

R

κ

a

Ε

I Flow distortion = Stokes drag = 6πµa(R ·∇U − Ṙ)
a = 1

6bN
0.5 → N0.6

I Resisted by entropic spring force = κR, κ = 3kT
Nb2

Hence

Ṙ = R ·∇U − 1
2τ R with τ = 0.8kT/µ(N1/2b)3

Bead-and-Spring model of isolated polymer chain 2

I Adding Brownian motion of the beads: A = 〈RR〉

∇
A ≡ DA

Dt
− A·∇U −∇UT ·A = −1

τ

(
A− Nb2

3
I

)
σ = −pI + 2µE + nκA

with n number of chains per unit volume.

– Oldroyd-B constitutive equation with UCD time derivative
∇
A

Rheological properties

Shear

I µ = constant, N1 ∝ γ2, N2 = 0.

I Distortion xy : aγτ × a

Extension

I µ

Eτ
0.5 !

I Distortion ∝ e(2E−
1
τ
)t

I For TDR: small shear and large extensional viscosities



Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56
with pre-averaged hydrodynamics

2. (boring) Polydisperse molecular weights

3. (important) Finite extensibility – to stop infinite growth

∝ e(2E−
1
τ
)t

I Nonlinear spring force – inverse Langevin law

F (R) =
kT

b
L−1

(
R

Nb

)
with L(x) = coth x − 1

x

I F.E.N.E approximation

F (R) =
kT

Nb2
R

1− R2/L2
with fully extended length L = Nb

I FENE-P closure〈
RR/(1− R2/L2)

〉
= 〈RR〉 /(1− 〈R2〉/L2)

but “molecular individualism”

FENE-P constitutive equation

∇
A = −1

τ

L2

L2 − traceA

(
A− a2

3
I

)
σ = −pI + 2µE + nκ

L2

L2 − traceA
A

µext

Eτ

1 + naL2

More refinements

4. Nonlinear bead friction
Hydrodynamic drag increase with size 6πµ(a→ R)

µext = 1 + nL3 and hysteresis

5. Rotation of the beads – simple shear not so simple

Couple balance

Afine
∇
A −→ non-affine

◦
A− traceA

3 + traceA
(A·E + E ·A)

inefficiency of straining

One more refinement

6. Dissipative stress – nonlinear internal modes
Simulations show growing stretched segments

segment length ∝ R2

L
, number ∝ L2

R2
, dissipation ∝ R4

L

σ = −pI + 2µ

(
1 + n

(traceA)2

L

)
E + nκ

L2

L2 − traceA
A

Good for contraction flows



Unravelling a polymer chain in an extensional flow

Simulation of chain with N = 100 in uni-axial straining motion at
strains Et = 0.8, 1.6, 2.4.

I Growing stretched segments

I Two ends not on opposite sides

Simplified 1D ‘kinks’ model

I t = 0: 1D random walk, N steps of ±1

I t > 0: floppy inextensible string in u = Ex

I arclengths satisfy

ṡi = 1
4E (−si+1 + 2si − si−1)

I Large gobble small

Kinks model 2

Number of segments n(t)
Distribution of lengths `(t)
scaled by e2Et

Scalings {
n` = N
√
n` = R =

√
NeEt

−→

{
n = Ne−2Et

` = e2Et

H 94

Evidence of a dissipative stress

Original data of Sridhar, Tirtaatmadja, Nguyen & Gupta 1991 plotted
as viscosity as function of time

Replotted a function of strain = strain-rate×time



Improved algorithms for Brownian simulations

1. Mid-point time-stepping avoids evaluating ∇·D
Keep random force fixed in time-step, but vary friction

2. Replace very stiff (fast) bonds with rigid + correction
potential

−kT∇ ln
√

detM−1 with M−1 ab =
∑

i beads

m−1i

∂ga

∂xi
· ∂g

b

∂xi

where rigid constraints are ga(x1, . . . , xN) = 0 and stiff spring
energy 1

2 |∇g
a|2

3. Stress by subtraction of large ∆t−1/2 term with zero average

1
2(xn + xn+1)f n −→ 1

2∆xnf n

Grassia, Nitsche & H 95

Relaxation of fully stretched chain

Long times - Rouse relaxation

0.01

0.1

1

10

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

(s
tr

es
s-

fin
al

 s
tr

es
s)

/n

t/n^2

Stress relaxation: Decay of [1,1] stress component vs t: Long times

σ/N vs t/N2 (Rouse)

Short times finite
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Stress relaxation: Decay of [1,1] stress component vs t: Intermed. times

Intermediate times
σ ∼ kTN2t−1/2

Constitutive equation – options

∇
A = − 1

hτ
f (A− I )

σ = −pI + 2µE + Gf A

I Oldroyd B f = 1

I FENE-P f = L2/(L2 − traceA)

I Nonlinear bead friction h =
√

traceA/3

I New form of stress

σ = −pI + 2µE + 2µd(A : E )A + G
√

traceAA

I Last term for finite stress when fully stretched
I µd term (∝ N−1/2) for enhanced dissipation

Good for positive pressure drops and large upstream vortices
in contraction flows.

Reptation model of De Gennes 1971 – often reformulated

Chain moves in tube defined by topological constraints from other
chains.
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*

Chain disengages from tube by diffusing along its length

τD =
L2

D = kT/6πµL
∝ M3

Modulus G = nkT −→ µ∗ = GτD ∝ M3 (expts M3.4)



Diffusion out of tube

At later time:

*

*

*

*

*

*
*

**

*

*

*

*

*

*

Fraction of original tube surviving∑
n

1

n2
e−n

2t/τD

Diffusion gives linear viscoelasticity G ′ ∝ ω1/2

Doi-Edwards rheology 1978

Deformation of the tube by a shear flow.
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Unit segments of the tube u aligned by flow:

u −→ Au with Finger tensor A

Stress

σ(t) = n

∫ ∞
0

∑
p

1

p2
e−p

2s/τD Nsegements
3kT

a
a

〈
A∗u A∗u

|A∗u|2

〉
ds

surving tube segment tension

with relative deformation A∗ = A(t)A−1(t − s).
A BKZ integral constitutive equation
Problem maximum in shear stress

Refinements

1. Chain retraction

deform → retract →

Chain returns in Rouse time to natural length −→ loss of
segments

2. Chain fluctuations

3. Other chains reptate → release topological constraints
“Double reptation” of Des Cloiseaux 1990. bimodal blends
2 & 3 give µ ∝ M3.4

4. Advected constraint release Marrucci 1996

1
τD
−→ 1

τD
+ β∇u : 〈uu〉

5. Flow changes tube volume or cross-section

Chain trapped in a fast shearing lattice

Lattice for other chains

more shear →

central section pulling chain out of arms → high dissipative stresses

Ianniruberto, Marrucci & H 98



Branched polymers – typical in industry

Very difficult to pull branches into central tube
µ ∝ exp(Marm/Mentangle)
Pom-Pom model of Tom McLeish and Ron Larson 1999

σ = gλ2S

Orientation: S = B/traceB
∇
B = − 1

τO
(B− I)

Stretch: λ̇ = ∇u : S− 1
τS

(λ− 1) while λ < λmax

with τO = τarm(MC/ME )3 and τS = τarm(MC/ME )2 and

τarm ∼= exp(Marm/ME ) where MC = Mcrossbar and ME = Mentanglement.

Test of Pom-Pom model – Blackwell 2002

Fit: Linear Viscoelastic data and Steady Uni-axial Extension.
Predict: Transient Shear and Transient Normal Stress

IUPAC-A data Müntedt & Laun (1979)

Polymers
Polymers

Bead-and-spring model
Refinements
FENE-P constitutive equation
Unravelling a polymer chain
Kinks model
Brownian simulations

Entangled polymers
rheology
Refinements
pom-pom

Other microstructural studies

I Electro- and Magneto- -rheological fluids

I Associating polymers

I Surfactants - micells

I Aging materials

I GENERIC

I Modelling ‘Molecular individualism’ and closure problems
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