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A large-Reynolds-number asymptotic theory is presented for the problem of a vortex
tube of finite circulation I” subjected to uniform non-axisymmetric irrotational strain,
and aligned along an axis of positive rate of strain. It is shown that at leading order
the vorticity field is determined by a solvability condition at first-order in ¢ = 1/R,.
where R, = I'/v. The first-order problem is solved completely, and contours of
constant rate of energy dissipation are obtained and compared with the family of
contour maps obtained in a previous numerical study of the problem. It is found that
the region of large dissipation does not overlap the region of large enstrophy; in fact,
the dissipation rate is maximal at a distance from the vortex axis at which the
enstrophy has fallen to only 2.8% of its maximum value. The correlation between
enstrophy and dissipation fields is found to be 0.19+ O(e?). The solution reveals that
the stretched vortex can survive for a long time even when two of the principal rates
of strain are positive, provided R, is large enough. The manner in which the theory
may be extended to higher orders in ¢ is indicated. The results are discussed in relation
to the high-vorticity regions (here described as ‘sinews’) observed in many direct
numerical simulations of turbulence.

1. Introduction

One of the most striking features of the structure of turbulence observed in many
numerical simulations (Siggia 1981; Kerr 1985; Hosokawa & Yamamoto 1989, 1990;
She, Jackson & Orszag 1990; Ruetsch & Maxey 1991; Vincent & Meneguzzi 1991;
Douady, Couder & Brachet 1991; Kida & Ohkitani 1992; Jiménez ef al. 1993; Kida
1993) is the emergence of high-vorticity regions concentrated in tube-like structures
which occupy a relatively small fraction (~ 1%) of the total volume, but which
account for a much larger fraction (typically 10-20%) of the viscous dissipation of
turbulent energy (Hosokawa & Yamamoto 1989).1 The tubes have a length of the
order of the integral scale of the turbulence, and a cross-sectional radius somewhere
between the inner Kolmogorov scale and the Taylor microscale (Tennekes 1968;
Vincent & Meneguzzi 1991), and are generally interpreted as vortex tubes which are
stretched and concentrated, in a manner analogous to the familiar Burgers vortex, by
the local straining associated with the turbulence field. The radius of the Burgers vortex
subjected to a stretching rate v is & ~ (v/y)3, and if y is a typical turbulence strain rate,
then ¢ is of the order of the inner Kolmogorov scale.

1 These percentages depend on the threshold that is used to define ‘high vorticity’. If this threshold
is lowered, then both the volume fraction and the fraction of dissipation increase.
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Vortices have been described as the ‘sinews’ of fluid motion (Kiichemann 1965;
Saffman & Baker 1979), a term that now seems particularly apt for the above
concentrated vortex tubes. Just as sinews serve to connect a muscle with a bone or
other structure, so the concentrated vortices of turbulence serve to connect large eddies
of much weaker vorticity; and just as sinews can take the stress and strain of muscular
effort, so the concentrated vortices can accommodate the stress associated with the low
pressure in their cores and the strain imposed by relative motion of the eddies into
which they must merge at their ends. Thus the term ‘sinews of turbulence’ seems well-
chosen to describe these high vorticity regions;T hence the title of this paper.

The idea that the dissipative structures of turbulence may be well represented by a
random distribution of strained vortex sheets or tubes goes back to Townsend (1951)
(see the discussion in Batchelor 1953, §7.4). Suppose that the background straining
flow has the form

U = (ox, By, v2), (1.1)
where a+p+y=0, a<0<y, f=za (1.2)

If B < 0, then there is one positive principal rate of strain (y), and there is a tendency
to form vortex tubes aligned with the corresponding axis of strain (Oz); we shall
describe this type of strain as axial strain. If # > 0, then there are two positive principal
rates of strain (# and y), and there is a tendency to form vortex sheets in the plane of
the corresponding axes of strain (Qy, Oz); we shall describe this type of strain as biaxial
strain. If § = 0 and a = —, then of course we have the case of plane strain. We may
characterize the different types of strain by the single strain parameter

a—pf
A=-—~Lt (AZ=20 1.3
a+p ( ) (1.3)
as follows:
A=0, axisymmetric axial strain;

0 <A< 1, axialstrain;

A=1, plane strain;

1 <A <3, biaxial strain with 0 < g < y;

A =3, axisymmetric biaxial strain (8 = y);
A>3, biaxial strain with g > .

Note that the determinant of the rate-of-strain matrix is given by

afy =1 (1-2%). (1.4)

It is well known that afy <0, the overbar denoting the ensemble average, in
homogeneous isotropic turbulence, so that there would appear to be a statistical bias
towards regions of biaxial strain. However, as pointed out by Jiménez (1992) and Kida
(1993), the presence of a strained vortex itself modifies the local strain field, tending to
convert axial strain to biaxial strain, so that care is needed in this inference. Moreover,
vortex sheets are in any case subject to Kelvin—Helmholtz instability, an instability that
is modified but not completely suppressed by strain (Lin & Corcos 1984); this
instability leads to spiral wind-up of a vortex sheet and to the formation of a row of
parallel vortex tubes of spiral structure. Spiral structures have been considered as

T The alternative term ‘worms” has been suggested by Yamamoto & Hosokawa (1988). We prefer
the term ‘sinews’ for the reason given above, and also because vortex tubes, unlike worms, do not
have clearly defined end-points.
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candidates for the typical dissipative structures of turbulence (Lundgren 1982; Moffatt
1984, 1993) but clear evidence for spiral structures from direct numerical simulations
(DNS) of turbulence is not yet available.

Vortex tubes formed either in regions of axial strain or (via the Kelvin-Helmholtz
mechanism) in regions of biaxial strain are in general represented by fully nonlinear
solutions of the Navier—Stokes equations, the nonlinearity arising through convection
of the (generally non-axisymmetric) vorticity field @ by the rotational velocity u (where
o =Vxu). Only in the axisymmetric case (f = o) is an exact solution of the
Navier—Stokes equation of finite circulation available; this is the Burgers vortex for
which @ = (0,0, w(r)) with

o(r) = —e p[ 1’{:] (1.5)

Here, I' is the total circulation associated with the vortex. If « < # < 0, and if the
Reynolds number
Rr=T)v (1.6)

is very small, so that self-induced convection of vorticity is negligible, then the
linearized vorticity equation admits a unique solution similar to (1.5), namely

o) =D e[ | 17

so that iso-vorticity contours w = const. are ellipses with principal axes aligned with
the principal axes of strain (see Appendix A).

Study of the effects of nonlinearity for larger R, was initiated by Robinson &
Saffman (1984) (see also Saffman 1992, §13.3), who developed a double series solution
in terms of the Reynolds number (still assumed small) and the strain parameter A,
representing the departure from axisymmetry in the imposed strain field (1.1), and also
assumed small; they also provided numerical evidence for the continued existence of
such vortices for Reynolds number up to 100 and values of A up to 0.75. In turbulence,
we are particularly 1nterested in large values of R, (Jiménez et al. 1993 provide evidence
for a scaling law R, ~ Re? where Re is the turbulent Reynolds number based on the
Taylor microscale) and also in the full range of values of A, not only the range 0 <
A < 1, but also the range A > 1 (i.e. §> 0) since, as will emerge, strong vortex tubes
can survive for a very long time even in regions of biaxial strain (see §5).

Renewed interest in this problem has been kindled by two numerical studies: first
that of Buntine & Pullin (1989) who studied the time-dependent merger of two vortices
in a strain field with A = } and R/2n in the range 10 to 1280; and second, that of Kida
& Ohkitani (1992, hereafter referred to as K0O92) who (in the Appendix to their paper)
analysed the stretched vortex problem numerically and computed not only steady iso-
vorticity contours for A = § and a range of values of R up to 500, but also the contours
of constant energy dissipation rate @ = 2vs,;s,;, where s;; 1s the rate-of-strain tensor
(including both the background strain field and the contribution from the vortex).
K092 showed that (i) the principal axes of the contours w = const. rotate anticlockwise
towards the lines x = + y at 45° to the axes of strain Ox, Oy as R, increases, and at the
same time tend to become more circular in form; (ii) the contours of the dissipation
function @ evolve in a rather complex manner as R increases, but the function always
exhibits two maxima on or near the line x = —y and symmetrically displaced from the
vortex centre. A similar double-peaked structure of the dissipation function was noted
in the high-vorticity regions (sinews) of a DNS at Reynolds number (based on the
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Taylor microscale) Re ~ 186 (K092, figure 6b); in this numerical experiment,
concentrated vortices with values of R, in the range 50-100 were observed.

It is obviously important to understand the reasons for the changing structure of
both vorticity and dissipation fields as R increases, and this is the aim of the present
paper. We approach the problem as one in high-Reynolds-number asymptotics. At
leading order, the iso-vorticity lines are circular; the distribution of w as a function
of radius r is not determined at this order, but is determined by a solvability condition
at the next order of approximation. The same phenomenon was encountered by Neu
(1984) in a study of the unsteady dynamics of vortices subjected to plane strain (the
case A =1 in our notation). Here we solve the problem fully to order ¢ = 1/R,, at
which level the results depend on ¢ and A only through the combination ¢, = eA. We
present the asymptotic form of the vorticity field to this order in §2, and in §3 we
analyse the structure of the dissipation field @. There are indeed interesting, but fully
comprehensible, changes in the structure of this function as revealed by a study of its
saddle points and their connections. The results are fully compatible with those of
K092, and permit confident application of the asymptotic theory for all values of A,
and for arbitrarily large R, In §4, we extend the theory to the next level of
approximation, O(¢%), and indicate the procedure for extension to still higher order (the
solvability condition at order ¢* is obtained in Appendix B). In §5, we consider
particular problems that arise when A > 1. Finally, in §6, we assess the significance of
the results in the framework of high-Reynolds-number turbulence.

2. Stretched vortex: asymptotic solution for R, > 1

Let u,(=03y/0y) and u,(=—0y/0x) be the additional velocity components
associated with the vortex, with vorticity

_Ouy Qup oy
w=7 o V3. 2.1
We suppose that the total circulation
Ir= wa(x,y)dxdy 2.2)
is finite, and that
e=1/R,=v/I" < 1. (2.3)

The steady vorticity equation that we wish to solve is
(ax+u )a—w+(ﬂ +u )a_w__ +vV2 2.4
x ox 34 v ay =Y@TVViw. .

The configuration is sketched in figure 1, for (a) axial and (b) biaxial strain regions.

Anticipating that, even when a = £, the radial lengthscale is still of order § = (v/ y)%,
and the maximum velocity in the region of the vortex is of order I'/d, let us introduce
dimensionless variables

* %) = /0, (@ %) = (p))y, y¥*=y/I. (2.5)
Substituting in (2.4) and dropping the stars, we obtain the dimensionless equation
WY, w) _

) 6[(”%“‘”%)‘”—0’—"%]- 2.6)
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FiGUre 1. Sketch of the configuration considered. Perspective view of vortex @ = (0,0, w(x,y))
stretched by the flow U = (ax, fy,yz), and (below) cross-section of the flow in the (x, y)-plane. (a)

Axial strain. (b) Biaxial strain.

Note that now a+f = —1 and that the third (dimensionless) strain rate is + 1.
In the dimensionless variables adopted here, the time ¢, = §*/I" characteristic of the
circulating motion around the vortex becomes of order unity, and the time ¢, = §%/»

characteristic of viscous diffusion over a scale § becomes of order R,

It is convenient to adopt plane polar coordinate (r,6) with x = rcosf, y = rsin 6.

Then (2.6) may be transformed to

18(y, ) _
For0) eLyw—eAL, w,
r o
where L,=14-—-+V2

20r

2 or 00
and where now A = f—a, so that
a=—31+0, p=—31-N.

N
L, = 1(cosfwri—sin 2192),

This form of the equations proves most convenient for subsequent analysis.

We seek a solution of (2.7) in the form
U=yytep+e,+ .,
with corresponding expansions for the velocity components

ey
= VT T e

Q2.7)

2.8)

(2.9)

(2.10)

@2.11)

2.12)
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and for the vorticity

16 2 1
= V= |~ Ny 2.13
@ Vi (rarr8r+r2602)w 2.13)
At order ¢°, we obtain the Euler equation
Ao @)
Are e 2.14
0.0 0, (2.14)

so that w, = # (i,) for some function . If we assume that the flow ¢, has a single
stagnation point at r = 0, the streamlines being closed curves around this stagnation
point, then it seems highly probable that the only solutions of (2.14) in an unbounded
fluid and with localized vorticity are of the form v, = ¥(r), i.e. the streamlines (and
so the iso-vorticity lines also) are circles r = const. Certainly this is consistent with the
trend noted by K092. We note moreover that it has been recently shown by
Linardatos (1993) that in the closely related problem of finding magnetic equilibria in
a perfectly conducting fluid by the method of magnetic relaxation (Moffatt 1985), the
minimum-energy states with a single null-point do indeed have circular field lines.

At any rate, we shall restrict attention to this class of solutions of (2.14), i.e. we
assume ¥, = ¥,(r) so that

w(r) = =Yy —r "y, (2.15)
and the associated velocity components are
Uy =0, v,=—1y. (2.16)

Here, and subsequently, the prime is used to denote differentiation with respect to r.
The function ¢,(r) is not determined at this level of approximation.
Now equating terms of order ¢ in (2.7), we obtain

_l |:a(¢1’ ) + (Y9, ©1) — l_a_
r|l o(r,0) o, 9) rof

Averaging over 6, we obtain the solvability condition

L,w, =0, (2.18)

and this has solution, finite at r = 0 and vanishing at r = o0,

Wy ¥y +0y0,) = Lywy+ AL, w,. (2.17)

wy(r) = %e"'z/“, (2.19)

where we have normalized so that the total (dimensionless) vortex strength is unity
(consistent with the dimensional constraint (2.2)). Thus, despite the non-axisymmetry
of the strain (A > 0), the vorticity field at leading order is precisely that of the
axisymmetric Burgers vortex and is independent of the strain parameter A. This
remarkable result has already been obtained by Neu (1984) for the particular case of
plane strain (A = 1). The result is quite subtle because it means that viscosity has an
important residual effect even in the limit of infinite Reynolds number. In this respect,
the result (2.19) is reminiscent of the Prandtl-Batchelor theorem (Batchelor 1956) for
two-dimensional steady flow with closed streamlines, which establishes a similar
residual effect of viscosity (in establishing a uniform vorticity distribution outside
boundary layers) in the limit »— 0. By analogy with that situation, we may conjecture
that it will take a time of order R, to establish the steady state (2.19) starting from an
initial condition in which o is localized within an area of order unity but otherwise
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FiGure 2. The function f(r) determined by (2.25), (2.28) and (2.29). The dashed curve shows the
required convergence of rZf(r) to a constant as r - co.

arbitrary (Rhines & Young 1982). (A residual disturbance approximately constant on
streamlines Y = const. may persist on the longer timescale O(R,); the time-dependent
problem (cf. Buntine & Pullin 1989) deserves further study in this respect.) Note that
the circulatory velocity corresponding to (2.19) is

v,(r) = th—r(l —e N, (2.20)
and the streamfunction is
1 2
- _ ey - , 21
o) 2n£(1 e My rtdr (2.21)
Returning now to (2.17), and using (2.18), we have
1o0,, /
76_0(% ¥, +v,0,) = AL, 0, = 3Arw,cos 26. (2.22)
Hence, 0, Vi, — w, ¥, = —IAr*w] sin 26+ q(7), (2.23)
for some function g(r). Hence we may set
¥, = Mr)sin20+g(r), (2.24)
where [l —ar i = (=) () (2.25)
’ 2
with () =20 = r (2.26)

v, 4E—1)

The function g(r) is not determined at this level, but will be shown to be zero (see
the final paragraph of this section) on the basis of a solvability condition at order €?.
For small r, #(r) has the Taylor expansion

) =—1+—Lr+ (2.27)

and, by elementary techniques, the expansion for f{r) may be found in the form
f0) = art + 3G —a) (* ~r"+ ..), (2:28)
where the constant a is to be determined in such a way that the outer boundary
condition Pf()>C as r—oo (2.29)

is satisfied (ensuring that the flow is irrotational as r — c0). Numerical solution of (2.25)
determines f(r) (see figure 2), and the constants g and C:

a=-0381475..., C=-174723.... (2.30)
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FIGURE 3. The vorticity functions 4nw,(r) (solid line), —€(r) (dashed line) defined by
(2.19) and (2.34).

Note that f{r) < 0 for all » > 0, and that f{r) has a single well-defined minimum at
r=r, & 2.94 where f(r,) & —1.10. The convergence of r*f for large r is rapid; in fact,
it is easily shown that

rPf—C~3te™ as r—oo. (2.31)

Assuming for the moment that g(r) = 0, we now have ¢ to order ¢ in the form

= (r)+e,.f(r)sin20, (2.32)
where ¢, = eA. The corresponding vorticity is
= wy(r)+¢, (r) sin 20, (2.33)
where Qr)=—rY Y +4rf =Gy (2.34)
using (2.25). Clearly Q(r) < 0 for all r (figure 3). Note the asymptotic behaviour
Qr)y ~—3(1—day(r*—=Zr*+ ...) for r<1, (2.35)
and Q) ~—&rte ™t as roo. (2.36)

We note a potential difficulty here, in that

Q(r) T

o) i as r-—»o00, (2.37)

so that the ‘leading’ term wy(r) in (2.33) is not dominant for large r. However, it is
dominant provided
r* < 2(me,)), (2.38)

and when 7% ~ 2(me,) %, both w,(r) and €, Q(r) are of order (4m) exp[—i(ne,) Y, ie.
transcendentally small. We discuss this point further in §5.
The streamlines are now given, to order ¢,, by

r=rytery (), (2.39)

where, by substituting in (2.32) and equating terms of order e,,

r,(6) = — ;::(’:3) sin 26 = Ufo ((rr ‘;)) sin 26. (2.40)
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FIGURE 4. Contours 1 = const. (thick) and o = const. (thin) obtained from (2.32) and (2.33) with
¢, = 0.005. Note that the streamlines are quite nearly circular, whereas the iso-vorticity lines are
more strongly flattened. (Contour levels: y = —0.0152 (n = 1,2,....,7); w = 0, + (0, — ;) 1/ 7
n=12,...,6); 0, =—473Tx 10 v, =7938x107%) ‘

Thus, the streamlines are ellipses with major axes on 6 = 3n/4, 7n/4 and minor axes
on 8 = n/4, 5n/4 (because f(r,)/v,(r,) < 0); the eccentricity of these ellipses is maximal
at r, & 3.9.
Similarly provided ¢; < 1 and r* <€ 2(nel) the lines of constant vorticity are given
by
r=r,+er(0), (2.41)

Q(ro)
@y(ro)

Again, these are ellipses with the same orientation of major and minor axes as above,
a property that is evident in the iso-vorticity plots of KO92 (figure 134-f) for R, 2
100. The tendency of the principal axes of the iso-vorticity ellipses to rotate in a
counterclockwise sense from the principal axes of strain (x = 0,y = 0) was noted by
Robinson & Saffman (1984); the present analysis shows that the total angle of rotation
asymptotes to 31 as R, .

Although the principal axes of streamline ellipses and iso-vorticity ellipses coincide,
the curves do not themselves coincide because the eccentricities at given r, are clearly
different in the two cases. At order ¢, vorticity is no longer constant on streamlines; the
slight mismatch is accommodated by the strain field and by viscous diffusion. The
situation is illustrated for the case ¢, = 0.005 in figure 4, which shows contours of
and w based on (2.32) and (2.33). Note that, despite the quite strong ellipticity of the

where r(0)=—

sin 20 = —2r, [41’0 —f 0)] sin 26. (2.42)
—e

reld
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iso-vorticity lines, the streamlines settle down rapidly to circular form outside the
vortex core.

Proof that g(r) =0
Consider now the terms of order €* in (2.7); these give
_l I:a('ﬁZ’ &)0) + a(l//o’ wz)] _ 1 a 1 a(wl’ (1)1) (243)

P06.0) T a6n0) | rop Vet heed) = Lot ALiontoTe .

All the terms in AL, &, and r*3(y,, w,)/(r, 8) are proportional to sin 26 or cos 26 (for
details see §4 below), and so give zero when integrated from 6 = 0 to 6 = 2xn. Hence,
integrating (2.43) over @ gives the solvability condition

L (—V3¢) =0 (2.44)
using the vorticity w, = — V), with ¢, given by (2.24). It follows that
Vig = ket (2.45)

for some constant k. The normalization condition coupled with the zero-order solution
(2.19) now implies that £ = 0. Hence V2g(r) = 0 and the only solution finite at r = 0 is
g = const.; since an additive constant in the streamfunction does not affect the flow,
we may clearly take g = 0, as anticipated above.

3. Spatial distribution of viscous dissipation
Let s;; be the (dimensionless) rate-of-strain tensor, with elements

a+0u,/ox 3(0u, /0y +0u,/0x) 0
{s;;} = | 3(0u, /0y +0u, /0x) fB+0u,/dy 0}

0 0 1 3.1

Then the rate of viscous dissipation is given by
D = 2s,5;,; = 2[D+ (A + )], (3.2)
where D =2y 3 2o — Vi) — 261 ¥y 3.3)

and, as before, ¢, = Ae. (The dimensional dissipation rate is given by v(I'/§*® =
(y*I'*/v) @.) The term €*(3A* +3) in (3.2) comes from the background strain field and is
the uniform value of 3& far from the vortex; hence D represents the excess of 3 over
this background values due to the presence of the vortex. Converting to polar
coordinates, (3.3) becomes

D(l‘, 0) = %(1//” - r—lwr - "_21/’00)2 + 2"_2(1#,0— r—lwﬁ)z
—e,(Y,, —r Y, —r 2, sin 20 —2¢, r (Y, —r r,)cos 26. (3.4)
It proves necessary to consider terms up to order €* in this expression, in order to get
a uniformly valid first approximation to D. Substituting ¥ = ,(r) +¢,f(r)sin 20 +
e*Yry(r, 8), we obtain
D(r,0) = {(H(r))*—e, H(r)(1 — G(r)) sin 20 + e2[(AG* — G) sin® 20 + (LF2 — F) cos? 26]
+€*H(r) Gy(r, 6)+ O(e®), (3.5)
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FIGURE 5. The functions F(r) (chain-dashed), G(r) (solid), 32nH(r) (dashed)
given by (3.6), (3.7) and (3.8).

where F(r) = 4r (" —r ), (3.6)
Gr)=f"—rY"+4r%, (3.7
vy pfP) L (1 1)
H(r) = ¥y —r Yy = r(r) =3 (4n+nr2)e " (3.8)
and G2(ra 0) = wzrr_ ’_11/’2r - r_2¢280' (39)

The functions F, G, H are shown in figure 5. Note the following asymptotic behaviour:
for small r,

Fry~4a+G—a)rr—&G—ar+..., (3.10a)
G(r) ~da+G—ar—E&G—ar+..., (3.10b)
1 2 1.4 .
H(r) m(r Gr +), (3.100)
and as r— o0,
Fir)y~— 154C+ O(r2 e, (3.11a)
G(r) ~ lf—f +O0(r* e, (3.11b)
H(@r) ~ #Jr O(e™"1). (3.11¢)

The presence of the small factor (32n)~* &~ 0.01 in (3.10¢) is rather striking; looking at
the structure of (3.5) suggests that, for numerical purpose, 32ne, might be a more
appropriate expansion parameter than ¢, (see the asymptotic behaviour of D(r,§) as
r— 0, obtained below (3.15)). Note also that

H(r)=0 and H()=H,,,~0.0237 at r=r,~2.67, (3.12)
and that G(r) < 0 for all r. Note finally that the functions F(r) and G(r) are almost
identical for r <1, where the first two terms of (3.10a,b) give an excellent

approximation to both functions.
The function y,(r, 6) is determined in §4. All we need note here is that

asr—0, Y, =0(@F* andso G,=0(l), (3.13a)
and as r— o0, Y, =0(@F"?% andso G,=0@F™?). (3.13b)
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FiGURE 6. Contour plots (a) of the inner dissipation function e} 2lj(r”, ) defined by (3.15) and
(b) of the outer dissipation function ¢;2D(7, f)) defined by (3.19).

The structure of the dissipation field (3.5) may be best understood by considering
three regions.

@) r=0()
Defining an ‘inner variable’ .
F = (32me,)77r, (3.14)

the leading-order contribution to D in the region where 7 = O(1) is
D(#,0) ~ e2[5* — (1 —4a) P sin 20 + 4a(Ra—1)], (3.15)

the final term coming from the third term of (3.5). The need to retain terms of order
€? in (3.5) should now be clear; note however that the final term of (3.5) makes no
contribution to (3.15) since

H(r) G,(r, 0) = O(e¥?) = O(e'?) (3.16)

in this region. The function e;zﬁ(f, #) defined by (3.15) has universal form independent
of bothl/\ and ¢ = 1/R,; its contours are shown in figure 6(«). It is minimal at 7 =
(1—4a): ~ 1.59, 6 = n/4, 51/4, and there
D, = —0.5¢. (3.17)
(i) r=O(e?)
Similarly, defining an ‘outer variable’

F = (me,)r, (3.18)
we find that in the region where 7 = O(1), the leading contribution to (3.5) is
D(F,0) ~ b4 —F?sin 26). (3.19)

Again, €2 D(r,0) has universal form; its contours are shown in figure 6(b). It is
minimal at 7 =1, 6 = /4, 51/4, and there we again find

D,y = —0.5¢2. (3.20)
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(Actually, as noted below (2.37), the asymptotic solution is suspect for r 2 eﬁ, and is
certainly invalid in the outermost region r > e;%; this is discussed further in §5 and in
Appendix A.) The results (3.17) and (3.20) imply that the corresponding minima of @
are given by

%djmin = %62’ (3.21)

independent of A.

(iii) r = O(1)
When r = O(1), it is sufficient to retain the first two terms of (3.5), i.e.

D(r,0) ~ D/(r,0) = Y(H(r)*—e, Hir)(1 —G(r)) sin 26. (3.22)
This function is symmetric about the diagonal lines x = +y, and since H(r)(1 —G(r))
> 0 for all ¥ > 0, D is maximal as a function of @ on x = —y, minimal on x = y. In the

limit ¢, = 0, the contours D,(r, #) = const. become circles r = const. (a behaviour that
may be seen both in the outer limit #— oo of (3.15) and in the inner limit 7 — 0 of (3.19))
and D, is maximal where H(r) is maximal, i.e. at r = r, & 2.67. This maximum value
is thus, asymptotically,

D\pas ~ M2~ 2.808 x 1074, (3.23)

The perturbation term in (3.22) breaks this circular symmetry, and, provided we
avoid the critical circle » = r,, the contours are given to first order in ¢, by

r=r,+ery0), (3.24)

where, by substituting in (3.22) and linearizing,

1max

1—-G(ry) .
rp(f) = ——Lsin 26. 3.25)
ol H'(r,) (
These contours are ellipses, with major axis x = —y for H'(r,) < 0, 1.e. r, > r,, and with

major axis x =y for H'(r,) > 0, t.e. r, < r,.
This approximation is clearly invalid near r, = r, where H'(r,) = 0. Near this value,

H(r)y ~ H,+¥r—r)H, (3.26)
where H, = H(r,), H, = H(r,), so that (3.22) becomes
D,r,0) ~ H:+3(r—r.)* H H,—¢, H,(1—G,)sin 26, 3.27)
and the contour
D=iH—¢ H(1-G,) =(0.028—2.6¢,) x 1072 = D,, (3.28)
say, is given by
1-G .
(r—r)= 261|T,,|”(1 —sin 26). (3.29)

This is a separatrix joining saddle points at r = r,, 6 = n/4, St/4. Maxima of D occur
atr=r, 0 =3n/4, Tn/4, and there

D,,.=3H'4+¢ H(1—-G,) = (0.028 +2.6¢,) x 1072, (3.30)
There is a “cat’s eye’ structure with width (at § = 3n/4, 7r/4) given from (3.29) by
41—G) . L
Ar= ———% e ~ 13.2¢, 3.31
\HE € €1 ( )

9 FLM 259
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L

s 0 5
FiGure 7. Contour plots of the dissipation function D(r, ) defined by (3.32). The maxima of D are
marked with * and the (global) minima with x . The contour levels are equally spaced at one-seventh
of the difference D, —D,,,,- The separatrices D = D, and D = D_ are also included (thick lines),
and the plots are shaded light grey where min(D,, D,) < D <max(D,,D,) and dark grey where
D > max(D,,D,). (@) e, = A/R=0.01(D, > D,), (b)e, =0.005(D, > D), (c) ¢, = 0.0025 (D, > D),
(d) ¢, = 0.001 (D, > D,). Compare with the computed contours in figure 14(c—f) of KO92.

All of these features may be observed in figure 7(d) which shows contours of the
function (3.32) below for ¢; = 0.001.

The above discussion makes it clear that a uniformly valid approximation to
D(r, 0) for small ¢ is given by simply omitting the term ¢*H(r) G,(r, 6) in (3.5) which is
always dominated by other terms. Thus

D(r, ) ~ {H(P)2 — e, Hr)(1 — G(r)) sin 20
+e[GG*—G)sin® 20+ GF?— F)cos?26].  (3.32)

Contours of this function are shown in figure 7 for ¢, = 0.01, 0.005, 0.0025, 0.001.
These values are chosen to enable comparison with the contours obtained numerically
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FiGUure 8. The function D(r,n/4) defined by (3.34) for various values of ¢,. A saddle point of
D(r, 0) occurs very near the point where D(r,n/4) is maximal. When ¢, & 0.00656, the value D, at
this saddle equals D, = 2.69¢Z.

and presented in figure 14 (c—f) of KO92. The value ¢, = 0.01 (for which 32ne;, ~ 1) is
the largest for which the present asymptotic theory can reasonably be applied. The
separatrices

D =D, =4a(2a—1)é} ~ 2.69¢: (3.33)

through the origin and D = D, through the other saddle points on x = y, are included
in each case, and the contour plots are shaded light grey in the region where min (D,
D,) < D < max (D, D,), and dark grey where D > max (D,, D,). The following points
should be noted: (i) the inner region (# = O(1)) is best seen in figure 7(d) (¢, = 0.001)
(compare with figure 64) and the outer region is best seen in figure 7(a) (¢; = 0.01)
(compare with figure 65); (i) the cat’s eye pattern and the ellipses both inside and
outside are best seen in figure 7(d); (iii) in all cases, the regions (dark grey) of strong
dissipation are set distinctly off-centre on the diagonal x = —y, very much as revealed
in the corresponding computations of K092,

There is a change of topology of these contours as ¢, increases from very small levels.
This may be understood from consideration of the function

D(r,m/4) = 3(H(r))* — e, Hr) (1 - G(r)) + 61GG* - G) (3.34)

shown in figure 8 for various values of ¢,. The change of topology occurs when ¢, =
€. & 0.006 56, at which value D, = D,. The corresponding contour plot is shown in
figure 9. There are further interesting changes in the topology of D(r,#) for larger
values of ¢, but these lie beyond the range of validity of the asymptotic analysis, and
are therefore not considered here.

The most striking property of the field of dissipation (3.32) is that, as ¢, >0, the
dissipation becomes quite sharply concentrated near the radius r = 2.67 at which H(r)
is maximal. At this radius,

wo(r) —r2/4
=¢ 7' =0.166,
w,o(0)

so that the enstrophy (w,(r))? is only 0.028(w(0))?, i.e. 2.8 % of its maximum value. This
means that the region of large enstrophy and large dissipation are effectively non-
overlapping, an important conclusion in the turbulence context (see §6 below). The 6-
averaged enstrophy and dissipation, correct to order e, are given by

(0> = (0y(r)* = (1677 e, 2({D) = (H(r))*, (3.35)

9-2
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Ficure 9. Contour plot of D(r,6) for the critical case ¢, = ¢,, = 0.00656 (D, = D,).
Shaded area as in figure 7.

and it is not hard to verify that

[ orar= | woyrar= oy (3.36)

It is lso casy to verify that &t £ = /2,
(gg))z = (‘:’U‘%ﬁ’; ):2 — ¢ =0.368 (3.37)
and that foz (0y(F)rdr = 0.632 f (0 (F)rdr, (3.38)
and JO2 (H()rdr = 00128 f:o (H)rdr. (339)

Hence 63.2% of the total enstrophy associated with the vortex lies within the radius
r = 4/2, whereas 98.7% of the viscous dissipation occurs outside this radius.
The correlation between the fields wy(r) and H(r) is given by

Jw w,(r) H(r)rdr | e

o= 2 = 161t2f wo(r) H(r) rdr. (3.40)

(fowgrdrijzrdr)i 0
0 0

This integral can be evaluated, with the result
pr=—14+21n2 = 0.386. (3.41)
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Qe Qey'e,,,
€ From (3.32) From (3.30) Numerical From (3.32) Numerical
(a) 0.01 3.00 2.98 2.90 1.50 1.50
(b) 0.005 5.76 5.73 5.57 1.50 1.50
(c) 0.0025 15.5 15.4 15.1 1.50 1.50
(d) 0.001 79.1 78.1 77.3 1.50 1.50

TABLE 1. Maximum and minimum dissipation rate for the case A = 4. The numerical values were
obtained by integrating (A 3) by the finite difference method as in KO92 with a larger domain
(=15 < x,y < 15) and a finer mesh (Ax = Ay = 0.25).

The correlation between the enstrophy field (w(r, 8))* and the dissipation field D(z, 6)
is given, correct to order ¢, by

joo wi H?rdr
. + O(e?). (3.42)

Pe = o 0 B
(J wérdrf H“rdr)
(] 0

The integrals have been evaluated numerically, with the result

1.157x 107
[(2.005 x 1077) x (1.882 x 107%)}2

= 0.19+0(ed). (3.43)

The results (3.41), (3.43) should be testable through appropriate manipulation of DNS
data.t

Finally, we note some numerical comparisons. Table 1 shows the maximum and
minimum values of @/2¢* obtained from the function (3.32) for the case A = §, together
with the corresponding figures computed for this case by KO92. The minimum values
are in perfect agreement. There is however a systematic difference of about 10%
between the maxima given by the asymptotic theory and the maxima previously
computed. The reason for this difference is that, for the larger values of ¢, the
asymptotic theory is perhaps not sufficiently accurate, while for the smaller values of
€,, the numerical procedure of K092 is slow to converge. We have repeated the
computation of KO92 for the case A =1, R, = 500 (i.e. ¢, = 0.001) using a larger
domain and a finer mesh, and the discrepancy between the numerical solution and the
asymptotic theory is indeed reduced (see Table 1).

+O0(2)

P2 =

4. Higher-order asymptotics

Let us now briefly consider the problem posed by (2.43) at order ¢*. As shown at the
end of §2, the solvability condition for this equation yields the result g(r) = 0. Then,
(2.43) simplifies to the form

0 . .
30 (o Yy + 0y 0,) = 2A0,(r) M(r) sin 20+ 42%v,(r) N(r) sin 46, 4.1

+ As pointed out by a referee, p, is zero for a Rankine vortex (for which the enstrophy is non-zero
only for r < & and the dissipation is non-zero only for r > 4). On the other hand, p, = 1 for a vortex
layer in which @ = (0,0, w(y)) and dissipation is proportional to enstrophy (Tanaka & Kida 1993).
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7

where M@E) = 300

@ +Gr+r) @ +(1-4D)0Q), (42)

N(r)

= o (FPQ — 2rQ—A(fQ —f'Q)). @.3)

Integrating (4.1) with respect to 6 and dividing by v,(r), we obtain
V3, —(r) ¢y = AM(r) cos 20+ A*N(r) cos 40 + g,(r), 4.4

for some function g,(r).
The solution of (4.4) may be sought in the form

Uy(r, ) = A% ga(r) + Afy(r) cos 20+ A%, (r) cos 40, 4.5)
where Lofo = o417 5= 47 = 0o+ M(r), (4.6
and L,f, =fi+rfi—16r7%f = nf, + N(@). 4.7

The function ¥, is determined by a solvability condition at O(¢®) (see Appendix B).
Note that the equation L,f = 0 has linearly independent solutions r* and r~2, while the
equation L,f = 0 has linearly independent solutions r* and r™*.

Now, using (2.28) and (2.35), the behaviour of M and N for small r may be
calculated, and is

M(r) ~ sn(1—4a)r?, N(r) ~ —&n(l —4a)?rt. 4.8)
Similarly, from (2.31) and (2.36), we find that
M(r) ~ —gmrt e, N(r) ~ —ggnrbe™/* as r-co. (4.9)

These properties guarantee that solutions of (4.6) and (4.7) may be found with the
properties
fo~arr as r—>0, f,~C,r? as r—-oo, (4.10)

fi~art as r—>0, fi~C,r* as r—oo. 4.11)

Hence the solution (4.5) is uniquely determined. Again it has the property that the
associated vorticity w, = —V?, is exponentially small as r— oo.
The streamfunction ¥ = ,+ ey, +€*, now has the form

U = (1) + eAf(r) sin 20 + €2(A%ryo(r) + Afy(r) cos 20+ A% (r) cos 46) + O(e®). (4.12)

Note that ¢ now involves ¢ and A independently, and not just through the combination
¢, = eA. Moreover, the symmetry about the diagonals x = + y is clearly broken at order
€%, and this will carry over to the dissipation function also.

This procedure may now be carried to higher orders in ¢ if required. The main point
to note here is that a well-defined procedure exists. This lends confidence to our claim
that the essential features of the flow are well captured by the first two terms of the
expansion (2.11) when ¢ is sufficiently small.

5. The case A > 1 (biaxial strain)

The asymptotic solution that we have obtained in §2 appears to be valid whether
A< 1, or A>1, provided merely that ¢, = ¢eA < 1. This suggest that concentrated
vortices should be able to survive even in a biaxial strain field where both £ and vy are
positive.
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There are two difficulties here, the first of which we have already noted in relation
to the behaviour (2.37) of the ratio (r)/w,(r) for large r. The fact that ¢,|Q2(r)| eventually
becomes of the same order of magnitude as w,(r) means that the expansion (2.11)
cannot be uniformly valid all the way to r = co. However, at the large values of r (of
order ;%) at which it breaks down, the vorticity is already of order exp [—%(nel)‘%], ie.
so small that the non-uniformity is of no consequence. (The situation is a little
reminiscent of the breakdown of the “inner solution’ for Stokes flow past a sphere, a
breakdown that can be rectified by the use of matched inner and outer expansions.) At
very great distances (r > e;%) the solution should match to a solution of the linearized
form of (2.4). We show, in Appendix A, that the unique stable steady solution of this
linearized equation is the solution (1.7). Hence in the outermost regions, the principal
axes of the iso-vorticity ellipses must rotate back towards the principal axes of strain
(Ox, Oy).

The second difficulty arises specifically for A > 1. Far from the vortex core, the
vorticity is exponentially small, moreover the imposed strain field (ax, fy,yz)
dominates (at sufficient distance) over the velocity v (r) ~ I'/2nr associated with the
vortex. In this ‘far field’, the vorticity behaves like a passive scalar and when g > 0, it
is convected to y = + oo (the linearized solution (1.7) is not available when # > 0). The
strain dominates over v,(r) at a (dimensional) distance

F~ € (5.1

from the vortex, and at distances greater than this a strictly steady solution with
£ > 0 is apparently not possible.

However, the vorticity is transcendentally small in this region so that the rate of
reduction of the circulation I(r) inside a circle of radius r ~ €728 due to this ‘stripping’
mechanism? is likewise transcendentally small. In order of magnitude, when
(r/0)* ~ €7,

0 vI' r L1 I
&F(r,t)~—2nrﬂrmexp[—w]~—§ e ' I'exp i (5.2)

say, so that the timescale ¢, of this process is

to~ %exp [4%], (5.3)

which is effectively infinite when ¢ < 1. Thus, although in a strict sense equation (2.4)
has no solution vanishing at infinity when £ > 0, the ‘solution’ that we have obtained
in §2 is quasi-steady when # > 0, with a rate of loss of circulation (by stripping) that
is so small as to be effectively negligible. Our conclusion is that the stretched vortex can
survive for a time that is effectively infinite even when A > 1 (i.e. g > 0).

A fortiori, the same remarks apply to the plane strain situation A = 1 (i.e. # = 0). In
this case, vorticity can be lost to y = + oo by viscous diffusion which (at large distances
from the core) is not opposed by inward convection. The rate of loss of vorticity is
likely to be even smaller than estimated above for the case # > 0, provided always that
e <1,

1 The mechanism should not be confused with the inviscid stripping mechanism that can act on
elliptical vortices in two-dimensional straining flow (Dritschel 1989, 1990; Legras & Dritschel 1993),
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6. Discussion

In this paper we have obtained an asymptotic solution of the nonlinear equation
describing a vortex of finite circulation I" subject to a non-axisymmetric strain field.
This solution is applicable in the limit R,-= I'/v— o0, and is valid for all values of the
parameter A = (a—f)/(a+f) representing the departure from axisymmetry in the
strain field.

For 0 < A < 1, the strain field is axial, with & < # < 0. Previous numerical evidence
(Robinson & Saffman 1984 ; K092) indicated the existence and structure of solutions
of the governing equation (2.4) for particular values of the parameters R, and A. The
great advantage of the asymptotic solution is that it is valid for arbitrary values of these
parameters provided eA < 1 where ¢ = 1/R,. Moreover, the solution may be analysed
in detail, to explain the rather complex structure of the field of viscous dissipation
revealed by the computed solution of K092, and the manner in which this changes as
R increases. The dissipation has been found to be located predominantly in the region
of low enstrophy near the radius /8 = 2.67, and the correlation between dissipation
and enstrophy fields has been found to be 0.19 + O(¢®) for ¢ < 1.

The case A = 1 (8 = 0 or plane strain) is of particular interest, as noted by Neu (1984)
who developed a theory of unsteady vortex development for this case, with a view to
explaining vortical structures (e.g. braids) in turbulent mixing layers (Lin & Corcos
1984). The theory of the present paper is clearly applicable when A = 1, and provides
detailed steady solutions for the persistent stretched braid-type vortices that are such
a characteristic feature of free-shear-layer flows.

The case A > 1 (f > 0 or biaxial strain) is also of great interest. A weak vortex
aligned with the z-axis cannot possibly survive in the presence of such a strain field: the
linearized solution (1.7) is available only when both « and f are negative. However, a
strong enough vortex may well survive because its rapid rotation always tends to
re-establish the circular cross-section, thus thwarting the disruptive tendency of the
positive strain rate g, although as explained in §5 an exceedingly slow decay of
circulation is inevitable. With this reservation, the asymptotic solution that we have
obtained is equally valid in the range 1 < A < 3 (corresponding to 0 > f# < v). This
may help to explain why vortices, once formed, are remarkably persistent; even if they
move into an environment in which g > 0, they can continue to survive with a minor
adjustment of structure, provided simply that ¢, = A/R remains very small.

Even if we move into the regime A > 3 (i.e. § > y), the asymptotic solution, with the
vortex still aligned along the vy-axis of strain, apparently still exits. However, if the
vortex is disturbed away from this axis of strain, it will tend to rotate towards the larger
() axis of strain so that we revert to a situation 1 > A’ > 3 with a revised ordering of
(a,f,y) and A" = (a—7y)/(a+7y). We speculate that the vortex can still persist, but
rotated through n/2 from its initial direction. This argument suggests moreover that
if , # and y vary continuously and not too rapidly with time, then the vortex must
always tend to line up with an axis of positive rate of strain, this being the only stable
configuration; only in exceptional circumstances therefore could it find itself aligned
with an axis of negative rate of strain (which could lead to its extinction).

Thus it appears that, if and when strong vortices form through the well-understood
vortex stretching mechanism, they have a good chance of surviving for a long time. A
network of such sinews connecting and merging with regions of much weaker vorticity
therefore provides an attractive starting point for the understanding of the fine-scale
structure of turbulence. Further DNS investigations varying the threshold level of
vorticity as well as rate of strain (see Tanaka & Kida 1993) for detection of vortex
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structures is desirable to identify any competing structures that may be responsible for
the balance of viscous dissipation.

This work was carried out while H. K. M. held a visiting appointment at the
Research Institute for Mathematical Sciences (RIMS), Kyoto University. The kind
hospitality of all at RIMS is gratefully acknowledged.

Appendix A. The far field
As noted in §5, for r > €73, the induced velocity (u,, u,) is negligible compared with
the strain field («x, fv), and we may therefore consider the linearized form of (2.6),

Ow ow 2
¥ — = = v Al
o 3 +,6’yay w+ Vo, (A1)

which must hold asymptotically, irrespective of the value of ¢ (= 1/R,). We have
already noted the solution

(ap):
2n

(X, y) = exp [3(ox® + By*)] (A2)

when « < 0,4 < 0 (i.e. (1.7) in dimensionless form). We now show that this is the
unique solution of (A 1) of finite circulation, and that no such solution exists if § > 0.
Consider the initial-value problem for w(x, y; 1),

——+acx-+/z’y—y—a)+V2a), (A3)

with o(x,y;0) = wy(x, ), JJ%(X’ y)dxdy = L. (A4

Equation (A 3) admits ‘Kelvin mode’ solutions (familiar from rapid distortion theory)
of the form

o(x,y;1) = w(t) exp [ik() - x], (A'5)
where k() = (ky(0), ko)) = (lyy €, kg ), (A6)
and do/dt = (1-k%) v, (A7)
ie. o(f) = w, exp [t+§—i‘:(e“2“‘— 1)+§—§ﬁ‘,’(e’2ﬂ‘— 1)]. (A 8)

The solution of the problem (A 3), (A 4) is given by a superposition of such Kelvin
modes. Let

wy(x,y) = ”cao(km, kys) 0 * dk,, dk,,. (A 9)

The condition of finite circulation ensures that this Fourier transform exists; and (A 4)
implies that
0o(0,0) = 2m)~2. (A 10)

Okyy, Koa) _

Noting that =
Ak, ky)

e@tht = gt (A11)
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the required solution of (A 3), (A 4) is given by

w(x,y;t) = fjwo(km,koz) exp {l‘+k°1 (e -1+ 02( —25_ 1)] e* *dk,, dk,,

24
= ch?)o(k1 e, k,eM)exp [i(l —e¥)+ Z,( 1— 2‘”)] etk *dk, dk,. (A 12)
If « <0 and g <0, then as t— oc,
w(x,y; 1) ~ Jjwo(O 0) exp[k2 ;;] k-xdk dk,
— ) exp i+ 417 (A 13)

using (A 10). Hence (A 2) is a global attractor for solutions of (A 3) and is therefore
the unique stable steady solution in this case. (There may conceivably exist unstable
steady solutions that cannot be determined by this method.)

If # > 0, then the form of the exponential factor in (A 12) makes it clear that there
is no stable steady solution (with finite non-zero circulation).

Appendix B. Determination of 1,,(r) from solvability condition at O(¢®)
Consideration of terms of order €* in (2.7) gives the equation

a('/’s’ wo) a(’ﬁoa a)3) oWy, 1) a(lﬁp(l)g)
[a(r B T o, 0>} “hooym ALy oy ‘[ 2.0 T a0, 0)] @1

Here, ¢,, w, and ¢, are given from (2.32), (2.33), (4.5) by

Y, = Af(r)sin20, w, = ALQ(r)sin 26, (B2)
Wy = A2 o(r) + Afy(r) cos 20+ A%f (r) cos 40, B3)

and we have then also
Wy, = A22,(r) + AQ,(r) cos 260+ A*Q (r) cos 40, (B4)
where Q,,(r) = =r"Yrf,), BS
Q,(r)=—-L,f,, ,r)=-L,f,. (B o)

Now the left-hand side of (B 1) (cf. (2.17), (4.1)) may be written as

10 ,
_;@(wo Y3+ 0, wy). B7)

Each term on the right-hand side of (B 1) may be calculated explicitly. The solvability
condition is obtained by integrating the equation from # =0 to 6 = 2xn. The left-
hand side integrates to zero, and on the right-hand side we get contributions from
— L, 2y,(r) and also from terms involving the factor cos®26 or sin®26. The resulting
equation for £, is

Ly Qg = —r71S(n), (BB)

where S(r) = °Q2,+1,2—12,. (B9)



Stretched vortices - the sinews of turbulence 263

The right-hand side of (B 8) is O(r?) as r— 0, and exponentially small as r > co. The
function £, finite at r = 0, exponentially small as » - co, and satisfying the normalizing
condition

J 1@, dr=0 (B 10)

is then given by
Qo) = —e7N f(e“/‘* —1) 8¢y dr. (B 11)

Then, 1/,,(r) is given from (B 5) by

Yoa(r) = ——j r"‘J r'Q,,(r")dr”. (B 12)
0 0

We see therefore that there is a small modification to the §-averaged structure of the
vortex at O(e?A?).
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