

Standard Model 1, P, C and T

(1) The four dimensional 4×4 Dirac matrices are defined uniquely up to an equivalence by $\{\gamma^\mu, \gamma^\nu\} = 2g^{\mu\nu}1$, with 1 the unit matrix. We may also require that if $\gamma^\mu = (\gamma^0, \boldsymbol{\gamma})$ then $\gamma^{\mu\dagger} = (\gamma^0, -\boldsymbol{\gamma})$. If $[X, \gamma^\mu] = 0$ for all μ then $X \propto 1$ and if γ^μ, γ'^μ both obey the Dirac algebra then $\gamma'^\mu = S\gamma^\mu S^{-1}$ for some S . Define the charge conjugation matrix C by $C\gamma^{\mu t}C^{-1} = -\gamma^\mu$, where t denotes the matrix transpose. Show that $[C^t C^{-1}, \gamma^\mu] = 0$ and hence that $C^t = cC$, $c = \pm 1$. Derive the results

$$(\gamma^\mu C)^t = -c\gamma^\mu C, \quad (\gamma_5 C)^t = c\gamma_5 C, \quad (\gamma^\mu \gamma_5 C)^t = c\gamma^\mu \gamma_5 C, \quad ([\gamma^\mu, \gamma^\nu]C)^t = -c[\gamma^\mu, \gamma^\nu]C.$$

Hence, since there are 6 independent antisymmetric and 10 symmetric 4×4 matrices, show that we must take $c = -1$.

Show also, using the assumed hermiticity properties of the Dirac matrices, $[\gamma^\mu, CC^\dagger] = 0$ so that we may take $CC^\dagger = 1$.

The matrix B is defined by $B\gamma^{\mu*}B^{-1} = (\gamma^0, -\boldsymbol{\gamma})$. Show that $B\gamma_5^*B^{-1} = \gamma_5$. With the assumed form for $\gamma^{\mu\dagger}$ verify that we may take $B = \pm\gamma_5 C$.

*Generalise the above argument for finding c to $2n$ dimensions when the Dirac matrices are $2^n \times 2^n$ and we may take as a linearly independent basis 1 and $\gamma^{\mu_1 \dots \mu_r} = \gamma^{[\mu_1 \dots \mu_r]}$, where $[\dots]$ denotes antisymmetrisation of indices, for $r = 1, \dots, 2n$ ($\gamma^{\mu_1 \dots \mu_r}$ has $\binom{2n}{r}$ independent components). Show that $C(\gamma^{\mu_1 \dots \mu_r})^t C^{-1} = (-1)^{\frac{1}{2}r(r+1)}\gamma^{\mu_1 \dots \mu_r}$ and hence $c = (-1)^{\frac{1}{2}n(n+1)}$. Generalise γ_5 by taking $\hat{\gamma} = i^{n-1}\gamma^0\gamma^1 \dots \gamma^{2n-1}$ and show that $\hat{\gamma}$ is hermitian and $\hat{\gamma}^2 = 1$. Show that

$$\psi^c = C\bar{\psi}^t, \quad \psi' = \hat{\gamma}\psi \quad \Rightarrow \quad \psi = -cC\bar{\psi}^c, \quad \psi'^c = -(-1)^n\hat{\gamma}\psi^c.$$

In what dimensions is possible to have Majorana-Weyl spinors, so that $\psi^c = \pm\psi' = \psi$?

(2) A Dirac quantum field transforms under parity so that

$$\hat{P}\psi(x)\hat{P}^{-1} = \gamma^0\psi(x_P), \quad x_P^\mu = (x^0, -\mathbf{x}),$$

and has an interaction with a scalar field $\phi(x)$

$$\mathcal{L}_I(x) = g\bar{\psi}(x)\psi(x)\phi(x) + g'\bar{\psi}(x)i\gamma_5\psi(x)\phi(x).$$

How must $\phi(x)$ transform under parity, i.e. obtain the necessary form for $\hat{P}\phi(x)\hat{P}^{-1}$, to ensure that the theory is invariant under parity if $g' = 0$? What are the transformation properties of $\phi(x)$ for parity invariance when $g = 0$. Can parity be conserved in a theory if both g, g' are non zero. How does the axial current $j_5^\mu(x) = \bar{\psi}(x)\gamma^\mu\gamma_5\psi(x)$ transform under parity?

(3) For a free operator Dirac field $\hat{\psi}(x)$ assume $\hat{\psi}(x) = \sum_r a_r \psi_r(x)$ where $\{\psi_r(x)\}$ forms a basis for solutions of the Dirac equation and a_r are operators. Explain why a basis may be chosen so that $B\psi_r(x)^* = \psi_{r'}(x_T)$ where $x_T^\mu = (-x^0, \mathbf{x})$ and $B\gamma^{\mu*}B^{-1} = (\gamma^0, -\boldsymbol{\gamma})$. Assume the time reversal operator is defined so that $\hat{T}a_r\hat{T}^{-1} = a_{r'}$. What is $\hat{T}\hat{\psi}(x)\hat{T}^{-1}$?

(4) Under charge conjugation and time reversal a Dirac field ψ transforms as

$$\hat{C}\psi(x)\hat{C}^{-1} = C\bar{\psi}(x)^t, \quad \hat{T}\psi(x)\hat{T}^{-1} = B^{-1}\psi(x_T), \quad x_T^\mu = (-x^0, \mathbf{x}).$$

with \hat{C} , \hat{T} the unitary, anti-unitary operators implementing these operations (note, if $\hat{T}|\phi\rangle = |\phi_T\rangle$ then $\langle\phi'|\phi\rangle = \langle\phi_T|\phi'_T\rangle$). The matrices C, B are defined in question 1 with also $C^\dagger C = B^\dagger B = 1$. Show that, if X is matrix acting on Dirac spinors,

$$\hat{C}\bar{\psi}(x)X\psi(x)\hat{C}^{-1} = \bar{\psi}(x)X_C\psi(x), \quad \hat{T}\bar{\psi}(x)X\psi(x)\hat{T}^{-1} = \bar{\psi}(x_T)X_T\psi(x_T),$$

where $X_C = CX^tC^{-1}$ (take ψ and $\bar{\psi}$ to anti-commute) and $X_T = BX^*B^{-1}$. Hence determine the transformation properties under charge conjugation and time reversal of

$$\bar{\psi}(x)\psi(x), \quad \bar{\psi}(x)i\gamma_5\psi(x), \quad \bar{\psi}(x)\gamma^\mu\gamma_5\psi(x).$$

If $|p\rangle$ is a boson with momentum p and $\langle 0|\bar{\psi}(0)i\gamma_5\psi(0)|p\rangle \neq 0$ show that, in a theory in which P, C are conserved, then the boson must have negative intrinsic parity and also positive charge conjugation parity.

(5) From Maxwell's equation $\partial_\nu F^{\mu\nu} = e\bar{\psi}\gamma^\mu\psi$, $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$ derive the required transformation properties of $A_\mu(x)$ to ensure invariance under parity, charge conjugation and time reversal. Show that $\int d^4x \epsilon^{\mu\nu\sigma\rho} F_{\mu\nu} F_{\sigma\rho}$ is odd under both P and T .

(6)* For a spin half particle of mass M the matrix element of the electromagnetic current j_{em}^μ between states of momentum $p, p', p^2 = p'^2 = M^2$ has the general form

$$\langle p', s' | j_{\text{em}}^\mu(0) | p, s \rangle = \bar{u}(p', s') \Lambda^\mu(q) u(p, s), \quad q = p' - p,$$

with $u(p, s)$ a Dirac spinor satisfying $\gamma \cdot p u(p, s) = M u(p, s)$. Show that current conservation, $\partial_\mu j_{\text{em}}^\mu = 0$, requires the condition $q_\mu \langle p', s' | j_{\text{em}}^\mu(0) | p, s \rangle = 0$ (use $j_{\text{em}}^\mu(x) = e^{iP \cdot x} j_{\text{em}}^\mu(0) e^{-iP \cdot x}$ for P_μ the four momentum operator) and hence that in general we may write, from Lorentz invariance,

$$\Lambda^\mu(q) = \gamma^\mu F_1(q^2) + \frac{1}{2M} i\sigma^{\mu\nu} q_\nu F_2(q^2) + \frac{1}{2M} \gamma_5 \sigma^{\mu\nu} q_\nu F_3(q^2) + \left(\gamma^\mu - q^\mu \frac{2M}{q^2} \right) \gamma_5 F_A(q^2),$$

where $\sigma^{\mu\nu} = \frac{i}{4}[\gamma^\mu, \gamma^\nu]$, $\gamma_5^\dagger = \gamma_5$. Show that hermiticity, $j_{\text{em}}^\mu = j_{\text{em}}^\mu$, requires $\gamma^0 \Lambda^\mu(-q)^\dagger \gamma^0 = \Lambda^\mu(q)$ and hence that $F_{1,2,3,A}(q^2)$ are real. Verify that we may take $u(p_P, s) = \gamma^0 u(p, s)$ and $u(p_P, -s)^* \eta_s = B^{-1} u(p, s)$, for some phase η_s . Use the standard transformation properties of the current, j_{em}^μ , and the states, $\hat{P}|p, s\rangle = |p_P, s\rangle$, $\hat{T}|p, s\rangle = |p_P, -s\rangle \eta_s$, to show that invariance under parity requires Λ to satisfy $\gamma^0 \Lambda_P^\mu(q_P) \gamma^0 = \Lambda^\mu(q)$ and for time reversal invariance $B \Lambda_P^\mu(q_P)^* B^{-1} = \Lambda^\mu(q)$ (where $\Lambda_P^\mu = (\Lambda^0, -\Lambda)$). Hence show that both discrete symmetries require $F_3(q^2) = 0$ and parity $F_A(q^2) = 0$.

(7) For a Dirac field ψ , with $\bar{\psi} = \psi^\dagger \gamma^0$, the Lagrangian is

$$\mathcal{L} = \bar{\psi} i\gamma \cdot \partial \psi - \bar{\psi} M \psi + \frac{1}{2} \psi^t C^{-1} m \psi - \frac{1}{2} \bar{\psi} \bar{m} C \bar{\psi}^t,$$

with M, m in principle matrices satisfying $M = \gamma^0 M^\dagger \gamma^0$, $\bar{m} = \gamma^0 m^\dagger \gamma^0$, $C^{-1} m C = m^t$. Show that $\mathcal{L}^\dagger = \mathcal{L}$. Obtain the equation

$$(i\gamma \cdot \partial - \mathcal{M})\Psi = 0, \quad \Psi = \begin{pmatrix} \psi \\ C\bar{\psi}^t \end{pmatrix}, \quad \mathcal{M} = \begin{pmatrix} M & \bar{m} \\ m & M \end{pmatrix}.$$

Assume that the physical masses m_p are determined by $p^2 = m_p^2$ where $\det D_p = 0$ for the Dirac operator $D_p = p \cdot \gamma - \mathcal{M}$. By considering $\det(\gamma_5 D_p \gamma_5 D_p) = \det(D_{-p} D_p)$ show that, if M, m have just one component, the physical masses are $|M \pm |m||$.