Corrections and suggestions should be emailed to m.dunajski@damtp.cam.ac.uk.

1. Using the Lagrange multiplier method, write down the Euler-Lagrange equations associated to the problem of minimising the functional

$$
I[\psi]=\int_{-\infty}^{+\infty}\left(\psi^{\prime 2}+x^{2} \psi^{2}\right) d x
$$

subject to the normalization condition $\int \psi^{2} d x=1$. Given that $x \psi(x)^{2} \rightarrow 0$ as $x \rightarrow \pm \infty$, show that

$$
I[\psi]=1+\int_{-\infty}^{+\infty}\left(\psi^{\prime}+x \psi\right)^{2} d x
$$

and hence deduce that $I \geq 1$. Show that equality holds for a function ψ that you should give explicitly. Verify that it satisfies the Euler-Lagrange equation for an appropriate value of the Lagrange multiplier.
2. Let $\mathbf{x}(t) \in \mathbb{R}^{3}$ be a curve which is constrained to lie on the sphere $S^{2}=\{\mathbf{x}:|\mathbf{x}|=1\}$. Use the Lagrange multiplier function formalism to obtain the following Euler-Lagrange equation

$$
\ddot{\mathbf{x}}+|\dot{\mathbf{x}}|^{2} \mathbf{x}=\mathbf{0}
$$

for the problem of minimising $I[\mathbf{x}]=\int|\dot{\mathbf{x}}|^{2} d t$ amongst curves satisfying the constraint $\mathbf{x}(t) \in S^{2}$. Show that the solutions of the Euler-Lagrange equation lie on a plane through the origin (i.e. that they are great circles.)
3. Obtain the Euler-Lagrange equations associated with the functionals
(i) $I[u]=\int\left[\frac{1}{2} u_{t}^{2}-F\left(u_{x}\right)\right] d x d t$,
(ii) $I[u]=\int\left[|\nabla u|^{2}+e^{2 u}\right] d x d y$.
4. Show that:
(i) x^{2} / y is convex on the upper half plane $(x, y): y>0$.
(ii) the function $F(x, y)=y f(x / y)$ (called the "perspective" of f) is convex on $(x, y): y>0$ if $f(x)$ is convex [Hint: after introducing $t \in(0,1)$ use the new variable $s=\frac{t y^{\prime}}{(1-t) y+t y^{\prime}}$]. Now, assuming f to be twice differentiable, verify convexity of F by computing its Hessian matrix.
5. Find the Legendre transform of $f(x)=e^{x}$, (giving its domain also). Find the Legendre transform of $f(x)=a^{-1} x^{a}, a>1$ defined on $x>0$, and hence deduce Young's inequality

$$
x y \leq \frac{x^{a}}{a}+\frac{y^{b}}{b}, \quad \frac{1}{a}+\frac{1}{b}=1
$$

6. For an ideal gas, the internal energy $U=U(S, V)$ as a function of entropy and volume is

$$
U=U_{0}+\alpha n R T_{0}\left[\left(\frac{V_{0}}{V}\right)^{\frac{1}{\alpha}} e^{\frac{S-S_{0}}{\alpha n R}}-1\right]
$$

for some constants $U_{0}, T_{0}, V_{0}, S_{0}, \alpha, n, R$. Calculate the Helmholtz free energy $F=F(T, V)$ defined by $F(T, V)=\min _{S}(U(S, V)-T S)$.
7. A particle of mass m is constrained to roll on the inside of a smooth upturned hemispherical bowl of radius a. The Lagrangian describing the motion is

$$
L=\frac{1}{2} m a^{2} \dot{\theta}^{2}+\frac{1}{2} m a^{2}\left(\sin ^{2} \theta\right) \dot{\phi}^{2}+m g a \cos \theta
$$

where g is the acceleration due to gravity, and θ and ϕ are the usual spherical angles (with θ measured relative to the downward vertical). Find two constants of the motion.
Find the two momenta p_{θ} and p_{ϕ} and hence the particle's Hamiltonian. What do Hamilton's equations become in this case?
8. Hamilton's Principle is applicable to the relativistic dynamics of a charged particle in an electromagnetic field. The appropriate choice of Lagrangian $L[\mathbf{x}(t), \dot{\mathbf{x}}(t), t]$ for a particle of rest-mass m and charge q in a given electric potential $\phi(t, \mathbf{x})$ and magnetic vector potential $\mathbf{A}(t, \mathbf{x})$ is

$$
L=-m c^{2} \sqrt{1-|\mathbf{v}|^{2} / c^{2}}-q \phi+q \mathbf{v} \cdot \mathbf{A}
$$

where $\mathbf{v}=\dot{\mathbf{x}}(t)$. Verify that the Euler-Lagrange equations yield the equation of motion

$$
\frac{d}{d t}\left(m_{0} \gamma \mathbf{v}\right)=q(\mathbf{E}+\mathbf{v} \times \mathbf{B}), \quad \gamma=\left(1-|\mathbf{v}|^{2} / c^{2}\right)^{-\frac{1}{2}}
$$

where $\mathbf{E}=-\nabla \phi-\partial \mathbf{A} / \partial t$ (the electric field) and $\mathbf{B}=\nabla \times \mathbf{A}$ (the magnetic field).
9. The mass density $\rho(t, \mathbf{x})$ and velocity field $\mathbf{v}(t, \mathbf{x})$ of a compressible fluid are constrained by conservation of mass to satisfy the continuity equation

$$
\begin{equation*}
\dot{\rho}+\nabla \cdot(\rho \mathbf{v})=0 \tag{*}
\end{equation*}
$$

Given that the energy density of the fluid is $u(\rho)$, the action (for inviscid irrotational flow) is

$$
S[\rho, \mathbf{v}, \phi]=\int d t \int d^{3} x\left\{\frac{1}{2} \rho|\mathbf{v}|^{2}-u(\rho)+\phi[\dot{\rho}+\nabla \cdot(\rho \mathbf{v})]\right\}
$$

where $\phi(t, \mathbf{x})$ is a Lagrange multiplier field imposing the continuity condition (*). Find the EulerLagrange equations for this action. Show that they imply $\mathbf{v}=\nabla \phi$ (so ϕ is the velocity potential). Given that the fluid pressure $P(t, \mathbf{x})$ satisfies

$$
\nabla P=\rho \nabla h(t, \mathbf{x}), \quad h=u^{\prime}(\rho),
$$

deduce Euler's equation for inviscid irrotational flow:

$$
\rho[\dot{\mathbf{v}}+(\mathbf{v} \cdot \nabla) \mathbf{v}]=-\nabla P .
$$

10. If a curve between points A and B on the unit sphere can be parametrised by the polar angle θ then its length is given by the functional $L[\phi]=\int_{A}^{B}\left(1+\phi^{\prime 2} \sin ^{2} \theta\right)^{\frac{1}{2}} d \theta$. Show that $\delta^{2} L$ is positive.
If the curve can be parametrised by the azimuthal angle ϕ then its length is given by the functional $\tilde{L}[\theta]=\int_{A}^{B}\left(\theta^{\prime 2}+\sin ^{2} \theta\right)^{\frac{1}{2}} d \phi$. Why does your result for $L[\phi]$ not imply that $\delta^{2} \tilde{L}$ is positive?
11. For $F[y]=\int_{\alpha}^{\beta}\left(y^{\prime 2}+y^{4}\right) d x$ with $y(\alpha)=a, y(\beta)=b$, show that $\delta^{2} F$ is strictly positive, and hence that any solution of the Euler-Lagrange equation is a local minimum of F. Write down the Euler-Lagrange equation and find its solution for the case $a=b=0$. Why is this solution a global minimum of F ?
12. A function $y(x)$ defined for $0 \leq x \leq 1$ is such that $y(0)=y(1)=0$. Write down the Euler-Lagrange equation associated to the functional

$$
F[y]=\int_{0}^{1}\left(\frac{1}{2} y^{\prime 2}+g(y)\right) d x
$$

where $g(y)$ is such that $g^{\prime}(0)=0$. Show that $y_{0}(x)=0$ is a solution. Given that the Euler-Lagrange equation is satisfied, find $\delta^{2} F$ and determine the range of values of $g^{\prime \prime}(0)$ for which it is positive. [This includes a range of negative values of $g^{\prime \prime}(0)$.]

