
Part III Solitons, Instantons, and Geometry, Sheet One

Maciej Dunajski, Lent Term 2023

1. Sine-Gordon kink. Starting with the Lagrangian

L =
1

2
(φ2

t − φ2
x)− (1− cos βφ)

derive the Sine–Gordon equation. Find a kink solution, and use the
Bogomolny bound to find its energy. How many types of kinks are
there?

2. Unstable kinks. The Lagrangian density for a complex scalar field φ
in 1 + 1 is

L =
1

2
|φt|2 −

1

2
|φx|2 −

1

2
λ2(a2 − |φ|2)2, a ∈ R.

Find the field equations, and verify that the real kink φ0(x) = a tanh (λax)
is a solution. Now consider a small pure imaginary perturbation φ(x, t) =
φ0(x) + iη(x, t) with η real and find the linear equation satisfied by η.

By considering η = sech(αx)eωt show that the kink is unstable.

3. Particle Interpretation. Suppose that U(φ) ≥ 0 and that U = 0 at
a non–empty and discrete set of values of φ. Show that the Bogomolny
equations φx = ±∂φW, φt = 0 imply the static field equation

φxx = ∂φU, where U(φ) =
1

2
(∂φW )2.

Explain how the static field equation can be interpreted as the equa-
tion for the particle motion in the inverted potential −U , where the
‘position’ φ is regarded as a function of ‘time’ x.

Assuming that the vacua of U are quadratic minima, find the generic
form of φ(x) as it approaches the minma. Suppose that U = 0 at
φ1 < φ2 < φ3. Use the Newtonian interpretation above to show that
there is no static kink connecting φ1 to φ3.

4. Moduli space approximation. Consider the static kink solution

φ = tanh (x− c),
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where the constant c is the location of the kink in the φ4 theory resulting
from the potential U = (1− φ2)2/2.

Use the Lorentz boost to construct an exact time–dependent solution
to the field equation.

The moduli space approximation replaces the constant parameter c by
a function c(t). This leads to an approximate solution to the field
equations if ċ is small. Substitute φ = tanh (x− c(t)) into the kinetic
energy of the kink, and show that the resulting expression is of the
form

T =
1

2
Mċ2

where the constant ‘mass’ M should be determined. Deduce that the
original φ4 Lagrangian reduces to a Lagrangian of a particle in 1D
moving in the constant potential. Solve the resulting Euler–Lagrange
equations and compare your answer with the exact solution you ob-
tained from the Lorentz boost.

The resulting second order field equation for c(t) can be viewed as the
geodesic equation in the moduli space R, with a flat Riemannian metric
Mdc2. In other soliton models (e. g. non–abelian monopoles or gauged
vortices) the moduli space of static solutions is higher–dimensional, and
inherits a curved Riemannian metric from the kinetic term in the La-
grangian. The geodesics of this metric approximate non–relativistic
soliton dynamics.

5. Sine Gordon on a wormhole. One way to evade the Derrick’s non–
existence scaling argument in higher dimensions, is to consider solitons
on curved backgrounds.

Consider a scalar field equation

�φ+ sinφ = 0,

where � is the wave operator on the (3+1) dimensional wormhole
space–time with the metric

ds2 = dt2 − dr2 − (r2 + a2)dω2

with (t, r) ∈ R2, dω2 the round metric on the unit two–sphere, and a is
a positive constant.
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Assume that φ = φ(t, r), and show that the field equation becomes

φtt = φrr +
2r

r2 + a2
φr − sinφ. (1)

Show that the energy functional

E =

∫ ∞
−∞

(1

2
φt

2 +
1

2
φr

2 + 2 sin2 (φ/2)
)

(r2 + a2)dr

is conserved.

Finiteness of the energy requires that at both asymptotically flat ends
of the wormhole one has

φ(t,−∞) = 2n−π, φ(t,∞) = 2n+π

where n−, n+ are integers, and w.l.g. we can chose n− = 0.

Use the interpretation of (1) with φ = φ(r) as the equation of motion
of a particle moving in a potential −2 sin2 (φ/2) with ‘time–dependent’
friction coefficient to show the existence of static kink solutions with
arbitrary kink number N = n+.

According to the Soliton Resolution Conjecture for any smooth and fi-
nite energy generic initial data, the solution eventually resolves into a
superposition of a radiative component plus a static kink solution for
some N . This conjecture is applicable to other soliton models, and
remains open in general.

6. Bäcklund transformations. The Sine–Gordon equation is

φxx − φtt = sin (φ), φ = φ(x, t).

Set τ = (x + t)/2, ρ = (x − t)/2 and consider the Bäcklund transfor-
mations

∂ρ(φ1 − φ0) = 2b sin
(φ1 + φ0

2

)
, ∂τ (φ1 + φ0) = 2b−1 sin

(φ1 − φ0

2

)
,

where b = const and φ0, φ1 are functions of (τ, ρ). Show that φ1 is a
solution to the Sine–Gordon equation if φ0 is.

Take φ0 = 0 and construct the 1-soliton (kink) solution φ1.
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Draw the graph of φ1(x, t) for a fixed value of t. What happens when
t varies?

The Sine–Gordon equation is (unlike the φ4 model) completely inte-
grable and multiple applications of the Bäcklund transformations allow
constructions of explicit time–dependent soliton solutions with different
topological charges. One such solution representing a kink and anti-kink
pair approaching eachother with topological charge 0 is

φ(x, t) = 4 arctan
(v cosh (x/

√
1− v2)

sinh (vt/
√

1− v2)

)
.

7. Sigma model lumps from holomorphic maps. Let φ : R2,1 → S2.
Set

φ1 + iφ2 =
2u

1 + |u|2
, φ3 =

1− |u|2

1 + |u|2
,

and deduce that the Bogomolny equations

∂iφ
a = ±εijεabcφb∂jφc, φt = 0

imply that u is holomorphic or antiholomorphic in z = x1 + ix2.

Find the expression for the total energy

E[φ] =
1

2

∫
∂jφ

a∂jφ
ad2x

in terms of u.

By counting the pre–images or otherwise find the topological degree of
φ corresponding to u(z) = u0 + u1z + . . . + ukz

k, where u0, . . . , uk are
constants with uk 6= 0.

It is a non–trivial result in analysis (established by Karen Uhlenbeck
in 1989) that all finite energy solutions to the 2nd order Sigma model
equations are solutions to the Bogomolny equations you have just con-
structed.

8. Topological degree of maps between spheres. Let z ∈ C. Restrict
the holomorphic map z → zk to the unit circle |z| = 1, and compute
its degree.

4



Let (θ ∈ [0, π], φ ∈ [0, 2π] be the polar coordinates on S2, and let
f : S2 → S2 be such that f(θ, φ) = (θ, kφ). Compute the degree of f .

Consider the volume form on S2 to prove the general degree formula
for f : S2 → S2 given in lectures.

Starting from the degree k–maps from S1 to S1 constructed above you
can construct degree k maps from S2 to S2 (also constructed above).
An inductive application of the topological suspension then shows that
there there exists maps of all degrees from Sn to Sn.

9. Topological degree and Lie groups. Consider the map g : S3 →
SU(2) defined by

g(x1, x2, x3, x4) = x4 + i(x1σ1 + x2σ2 + x3σ3),

where σi are Pauli matrices and x21 + x22 + x33 + x24 = 1 and find its
degree. By calculating Tr((dg g−1)3) at the point on S3 where x4 = 1,
or otherwise deduce that the formula

deg(g) =
1

24π2

∫
S3

Tr((dg g−1)3)

is correctly normalised.

Watch out for this formula when we discuss the instanton number in
the Yang–Mills theory. It will also appear at the end of the course,
when we classify principal SU(2) bundles over S4.
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