Part III Solitons, Instantons, and Geometry, Sheet Two.
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1.

Abelian Higgs model. Find the Euler-Lagrange equations for the
U(1) gauge potential A and the complex Higgs field ¢ resulting from
the Lagrangian

1 1— A
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. Variational equations for one vortex. Consider the static vortex

solution with N = 1 in a gauge where A = f(r)df and ¢ = h(r)e®.
Find a coupled system of 2nd order ODEs for f(r), h(r) resulting from
extremizing the potential energy functional in the polar coordinates.

Boundary integral in the Bogomolny equations. Verify the co-
variant Leibniz rule

0;(¢Dy) = (D;¢) Dy + ¢D; Dy.¢h,

and the identity
[Dj, Di]é = —iFj¢.

Use these to complete the derivation of the Bogomolny energy bound
and the Bogomolny equations in the Abelian Higgs model at critical
coupling A = 1.

Taubes equations for one vortex. Consider the one—vortex solution
in a gauge as in Question 2. Show that, if A = 1 the Bogomolny
equations for f and h reduce to a pair of 1st order ODEs
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(a) Show that these equations imply the second order ODEs from

Question 2 with A = 1.

(b) Eliminate f from (1) to find a radial form of the Taubes equation
for u = 21og h.



5. Vortices on a Riemann surface. Consider a surface X with a curved
metric

g =Qz,2)dzdz, (2)

where z = 2! + 2%, and Q = Q(z, 2) is the conformal factor (locally,

any curved metric on a surface takes this form for some ().

(a) Show that the potential energy functional takes the form
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where F' = Bdx' A d2? is the gauge field, ||> = ¢ for any
complex number, and N = % fz F' is the vortex number.

(b) Complete the square with A = 1, and show that V' > 7N, with
the equality if

Do=0, B =001 oP) @

6. Taubes equation. Let u : ¥ — R be a function such that |¢|> =
exp (u). Show that the Bogomolny equations (4) reduce to the Taubes
equation

0 \?2 0 \?2
Ah+Q(1 —exp(u)) =0 where A= (%) + <@> . (9
What are the boundary conditions for w if ¥ is non—compact, and
Q — 1 as |z|*> = 0o? What if instead ¥ is compact with no boundary?

7. Vortices on the hyperbolic space. Compute Gaussian curvature
of the metric (2) in terms of Q2 and its derivatives, and find a constant
value K of the Gaussian curvature for which the change of variables
u = o —log Q reduces the Taubes equation (5) to the Liouville equation

Ao = e’.
(a) Verify that the hyperbolic metric
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has the Gaussian curvature equal to K.
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(b) Show that

32|z
(1—]z I4)2>
satisfies the Liouville equation, and find the norm of the Higgs
field ¢ of the corresponding vortex solution. What is its vortex
number? Are the required boundary conditions satisfied?
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8. Vortex from Sinh—Gordon. Find a conformal factor €2 in terms of u,
such that the Taubes equation (5) becomes the Sinh—Gordon equation.

A(u/2) = sinh (u/2) (6)

In this example the intrinsic geometry of the surface with the metric (2)
is interpreted as a vortex. Verify this by showing that the U(1) gauge
potential is gauge equivalent to the SO(2) Levi-Civita connection one—
form, and the curvature two—form of g is a constant multiple of the
magnetic-field two—form F = Bdx' A da?.

Show that if w = wu(r) (where r? = |z|?) is a circularly symmetric
solution with vortex number N = 1, then the corresponding metric (2)
has a conical singularity at the origin, and find its deficit angle.

The Sinh—Gordon equation imposes conditions on the metric g which
are equivalent to the statement that the background surface (3, g) is a
space—like immersion with constant mean curvature in the flat Lorentzian
three—space R*Y. It can be shown, that for any vortex number N there
exists a unique circularly symmetric solution to (6) corresponding to a
vortex.



