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1. Abelian Higgs model. Find the Euler–Lagrange equations for the
U(1) gauge potential A and the complex Higgs field φ resulting from
the Lagrangian

L = −1

4
FµνF

µν +
1

2
DµφD

µφ− λ

8
(1− |φ|2)2.

2. Variational equations for one vortex. Consider the static vortex
solution with N = 1 in a gauge where A = f(r)dθ and φ = h(r)eiθ.
Find a coupled system of 2nd order ODEs for f(r), h(r) resulting from
extremizing the potential energy functional in the polar coordinates.

3. Boundary integral in the Bogomolny equations. Verify the co-
variant Leibniz rule

∂j(φDkφ) = (Djφ)Dkφ+ φDjDkφ,

and the identity
[Dj, Dk]φ = −iFjkφ.

Use these to complete the derivation of the Bogomolny energy bound
and the Bogomolny equations in the Abelian Higgs model at critical
coupling λ = 1.

4. Taubes equations for one vortex. Consider the one–vortex solution
in a gauge as in Question 2. Show that, if λ = 1 the Bogomolny
equations for f and h reduce to a pair of 1st order ODEs

h′ =
1

r
(1− f)h, f ′ =

r

2
(1− h2) (1)

(a) Show that these equations imply the second order ODEs from
Question 2 with λ = 1.

(b) Eliminate f from (1) to find a radial form of the Taubes equation
for u = 2 log h.
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5. Vortices on a Riemann surface. Consider a surface Σ with a curved
metric

g = Ω(z, z̄)dzdz̄, (2)

where z = x1 + ix2, and Ω = Ω(z, z̄) is the conformal factor (locally,
any curved metric on a surface takes this form for some Ω).

(a) Show that the potential energy functional takes the form

V =
1

2

∫
Σ

(
Ω−1B2 + |D1φ|2 + |D2φ|2 +

λ

4
Ω(1−|φ|2)2

)
dx1dx2, (3)

where F = Bdx1 ∧ dx2 is the gauge field, |ψ|2 ≡ ψψ̄ for any
complex number, and N = 1

2π

∫
Σ
F is the vortex number.

(b) Complete the square with λ = 1, and show that V ≥ πN , with
the equality if

D̄φ = 0, B =
1

2
Ω(1− |φ|2). (4)

6. Taubes equation. Let u : Σ → R be a function such that |φ|2 =
exp (u). Show that the Bogomolny equations (4) reduce to the Taubes
equation

∆h+ Ω(1− exp (u)) = 0 where ∆ =
( ∂

∂x1

)2

+
( ∂

∂x2

)2

. (5)

What are the boundary conditions for u if Σ is non–compact, and
Ω→ 1 as |z|2 →∞? What if instead Σ is compact with no boundary?

7. Vortices on the hyperbolic space. Compute Gaussian curvature
of the metric (2) in terms of Ω and its derivatives, and find a constant
value K0 of the Gaussian curvature for which the change of variables
u = σ− log Ω reduces the Taubes equation (5) to the Liouville equation

∆σ = eσ.

(a) Verify that the hyperbolic metric

g =
8

(1− |z|2)2
dzdz̄

has the Gaussian curvature equal to K0.
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(b) Show that

σ = log
( 32|z|2

(1− |z|4)2

)
satisfies the Liouville equation, and find the norm of the Higgs
field φ of the corresponding vortex solution. What is its vortex
number? Are the required boundary conditions satisfied?

8. Vortex from Sinh–Gordon. Find a conformal factor Ω in terms of u,
such that the Taubes equation (5) becomes the Sinh–Gordon equation.

∆(u/2) = sinh (u/2) (6)

In this example the intrinsic geometry of the surface with the metric (2)
is interpreted as a vortex. Verify this by showing that the U(1) gauge
potential is gauge equivalent to the SO(2) Levi–Civita connection one–
form, and the curvature two–form of g is a constant multiple of the
magnetic–field two–form F = Bdx1 ∧ dx2.

Show that if u = u(r) (where r2 = |z|2) is a circularly symmetric
solution with vortex number N = 1, then the corresponding metric (2)
has a conical singularity at the origin, and find its deficit angle.

The Sinh–Gordon equation imposes conditions on the metric g which
are equivalent to the statement that the background surface (Σ, g) is a
space–like immersion with constant mean curvature in the flat Lorentzian
three–space R2,1. It can be shown, that for any vortex number N there
exists a unique circularly symmetric solution to (6) corresponding to a
vortex.
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