Part III Solitons, Instantons, and Geometry, Sheet Two.

Maciej Dunajski, Lent Term 2023

1. Abelian Higgs model. Find the Euler-Lagrange equations for the $U(1)$ gauge potential A and the complex Higgs field ϕ resulting from the Lagrangian

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} \overline{D_{\mu} \phi} D^{\mu} \phi-\frac{\lambda}{8}\left(1-|\phi|^{2}\right)^{2} .
$$

2. Variational equations for one vortex. Consider the static vortex solution with $N=1$ in a gauge where $A=f(r) d \theta$ and $\phi=h(r) e^{i \theta}$. Find a coupled system of 2nd order ODEs for $f(r), h(r)$ resulting from extremizing the potential energy functional in the polar coordinates.
3. Boundary integral in the Bogomolny equations. Verify the covariant Leibniz rule

$$
\partial_{j}\left(\bar{\phi} D_{k} \phi\right)=\overline{\left(D_{j} \phi\right)} D_{k} \phi+\bar{\phi} D_{j} D_{k} \phi,
$$

and the identity

$$
\left[D_{j}, D_{k}\right] \phi=-i F_{j k} \phi
$$

Use these to complete the derivation of the Bogomolny energy bound and the Bogomolny equations in the Abelian Higgs model at critical coupling $\lambda=1$.
4. Taubes equations for one vortex. Consider the one-vortex solution in a gauge as in Question 2. Show that, if $\lambda=1$ the Bogomolny equations for f and h reduce to a pair of 1 st order ODEs

$$
\begin{equation*}
h^{\prime}=\frac{1}{r}(1-f) h, \quad f^{\prime}=\frac{r}{2}\left(1-h^{2}\right) \tag{1}
\end{equation*}
$$

(a) Show that these equations imply the second order ODEs from Question 2 with $\lambda=1$.
(b) Eliminate f from (1) to find a radial form of the Taubes equation for $u=2 \log h$.
5. Vortices on a Riemann surface. Consider a surface Σ with a curved metric

$$
\begin{equation*}
g=\Omega(z, \bar{z}) d z d \bar{z} \tag{2}
\end{equation*}
$$

where $z=x^{1}+i x^{2}$, and $\Omega=\Omega(z, \bar{z})$ is the conformal factor (locally, any curved metric on a surface takes this form for some Ω).
(a) Show that the potential energy functional takes the form

$$
\begin{equation*}
V=\frac{1}{2} \int_{\Sigma}\left(\Omega^{-1} B^{2}+\left|D_{1} \phi\right|^{2}+\left|D_{2} \phi\right|^{2}+\frac{\lambda}{4} \Omega\left(1-|\phi|^{2}\right)^{2}\right) d x^{1} d x^{2} \tag{3}
\end{equation*}
$$

where $F=B d x^{1} \wedge d x^{2}$ is the gauge field, $|\psi|^{2} \equiv \psi \bar{\psi}$ for any complex number, and $N=\frac{1}{2 \pi} \int_{\Sigma} F$ is the vortex number.
(b) Complete the square with $\lambda=1$, and show that $V \geq \pi N$, with the equality if

$$
\begin{equation*}
\bar{D} \phi=0, \quad B=\frac{1}{2} \Omega\left(1-|\phi|^{2}\right) . \tag{4}
\end{equation*}
$$

6. Taubes equation. Let $u: \Sigma \rightarrow \mathbb{R}$ be a function such that $|\phi|^{2}=$ $\exp (u)$. Show that the Bogomolny equations (4) reduce to the Taubes equation

$$
\begin{equation*}
\Delta h+\Omega(1-\exp (u))=0 \quad \text { where } \quad \Delta=\left(\frac{\partial}{\partial x^{1}}\right)^{2}+\left(\frac{\partial}{\partial x^{2}}\right)^{2} \tag{5}
\end{equation*}
$$

What are the boundary conditions for u if Σ is non-compact, and $\Omega \rightarrow 1$ as $|z|^{2} \rightarrow \infty$? What if instead Σ is compact with no boundary?
7. Vortices on the hyperbolic space. Compute Gaussian curvature of the metric (2) in terms of Ω and its derivatives, and find a constant value K_{0} of the Gaussian curvature for which the change of variables $u=\sigma-\log \Omega$ reduces the Taubes equation (5) to the Liouville equation

$$
\Delta \sigma=e^{\sigma} .
$$

(a) Verify that the hyperbolic metric

$$
g=\frac{8}{\left(1-|z|^{2}\right)^{2}} d z d \bar{z}
$$

has the Gaussian curvature equal to K_{0}.
(b) Show that

$$
\sigma=\log \left(\frac{32|z|^{2}}{\left(1-|z|^{4}\right)^{2}}\right)
$$

satisfies the Liouville equation, and find the norm of the Higgs field ϕ of the corresponding vortex solution. What is its vortex number? Are the required boundary conditions satisfied?
8. Vortex from Sinh-Gordon. Find a conformal factor Ω in terms of u, such that the Taubes equation (5) becomes the Sinh-Gordon equation.

$$
\begin{equation*}
\Delta(u / 2)=\sinh (u / 2) \tag{6}
\end{equation*}
$$

In this example the intrinsic geometry of the surface with the metric (2) is interpreted as a vortex. Verify this by showing that the $U(1)$ gauge potential is gauge equivalent to the $S O(2)$ Levi-Civita connection oneform, and the curvature two-form of g is a constant multiple of the magnetic-field two-form $F=B d x^{1} \wedge d x^{2}$.
Show that if $u=u(r)$ (where $r^{2}=|z|^{2}$) is a circularly symmetric solution with vortex number $N=1$, then the corresponding metric (2) has a conical singularity at the origin, and find its deficit angle.

The Sinh-Gordon equation imposes conditions on the metric g which are equivalent to the statement that the background surface (Σ, g) is a space-like immersion with constant mean curvature in the flat Lorentzian three-space $\mathbb{R}^{2,1}$. It can be shown, that for any vortex number N there exists a unique circularly symmetric solution to (6) corresponding to a vortex.

