Part III Solitons, Instantons, and Geometry, Sheet Three.

Maciej Dunajski, Lent Term 2023

1. Action from Yang-Mills. Derive the $S U(2)$ Yang-Mills theory on \mathbb{R}^{4} form the action. Let $A_{a}(x)$ be a solution to these equations. Show that, for any nonzero constant c, the potential $\widetilde{A}_{a}(x)=c A_{a}(c x)$ is also a solution and that it has the same action.
2. $\mathfrak{s o}(4)$, and self-duality. Let T_{1}, T_{2}, T_{3} form a basis of $\mathfrak{s u}(2)$ such that

$$
\left[T_{\alpha}, T_{\beta}\right]=-\varepsilon_{\alpha \beta \gamma} T_{\gamma}, \quad \alpha, \beta, \gamma=1,2,3,
$$

and let the symbols $\sigma_{a b}=-\sigma_{b a}$ where $a, b=1, \ldots, 4$ be defined by

$$
\sigma_{\alpha \beta}=\varepsilon_{\alpha \beta \gamma} T_{\gamma}, \quad \sigma_{\alpha 4}=T_{\alpha} .
$$

Show that

$$
\sigma_{a b}=\frac{1}{2} \varepsilon_{a b}{ }^{c d} \sigma_{c d}, \quad \text { and } \quad \sigma_{a b} \sigma_{a c}=-\frac{3}{4} \mathbf{1} \delta_{b c}-\sigma_{b c} .
$$

Identify $\Lambda^{2}\left(\mathbb{R}^{4}\right)$ with the Lie algebra $\mathfrak{s o}(4)$ and deduce that $\mathfrak{s o}(4)=$ $\mathfrak{s o}(3) \oplus \mathfrak{s o}(3)$.
3. An explicit instanton. Let $V=1+r^{-2}$, where $r^{2}:=\delta_{a b} x^{a} x^{b}$. Show that the one-form

$$
\begin{equation*}
A=\sigma_{a b} \frac{1}{V} \frac{\partial V}{\partial x^{b}} d x^{a} \tag{1}
\end{equation*}
$$

is a solution of the anti-self-dual Yang-Mills equations on \mathbb{R}^{4}.
The one-form A is singular at $r=0$. What can you say about the behaviour of the field strength F at $r=0$?
4. ... and its Chern number. Find, by explicit integration, the Chern number of the solution (1).
5. Hodge operator in various signatures. Let F be a two-form on \mathbb{R}^{4}. Show, from the definition of the Hodge operator, that
(a) $* * F= \pm F$ depending on the signature.
(b) $* F \wedge * F=F \wedge F$.

Show that in the $U(1)$ theory $F \rightarrow * F$ interchanges the electric and magnetic fields with factors of ± 1 or $\pm i$ and determine the different cases in the corresponding signatures.
Let F be a non-zero real self-dual two-form on \mathbb{R}^{4} such that $F \wedge F=0$. What is the signature of the underlying metric?
6. Self-duality in null coordinates. Show that the two-forms

$$
\omega_{1}=d w \wedge d z, \quad \omega_{2}=d w \wedge d \tilde{w}-d z \wedge d \tilde{z}, \quad \omega_{3}=d \tilde{w} \wedge d \tilde{z}
$$

span the space of SD two-forms in \mathbb{C}^{4}, where

$$
d s^{2}=2(d z d \tilde{z}-d w d \tilde{w}), \quad \operatorname{vol}=d w \wedge d \tilde{w} \wedge d z \wedge d \tilde{z}
$$

Show that a two form F is ASD iff $F \wedge \omega_{i}=0$.
7. K-equation from the Lax pair. Use the Lax pair formulation of ASDYM to
(a) Deduce the existence of a gauge such that $A=A_{\tilde{w}} d \tilde{w}+A_{\tilde{z}} d \tilde{z}$
(b) Deduce the existence of a \mathfrak{g} valued function $K=K(w, z, \tilde{w}, \tilde{z})$ such that $A_{\tilde{w}}=\partial_{z} K, A_{\tilde{z}}=\partial_{w} K$
(c) Reduce the ASDYM to a single second order PDE

$$
\partial_{z} \partial_{\tilde{z}} K-\partial_{w} \partial_{\tilde{w}} K+\left[\partial_{w} K, \partial_{z} K\right]=0 .
$$

What is the residual gauge freedom in K ?
8. Chern-Simons three-form. Let A be a 1 -form gauge potential on \mathbb{R}^{n} with values in $\mathfrak{s u}(2)$, and let F be its curvature. Verify that $\operatorname{Tr}(A), \operatorname{Tr}(A \wedge A), \operatorname{Tr}(A \wedge A \wedge A \wedge A)$ and $\operatorname{Tr}(F)$ all vanish.

Verify that $C_{2}=d Y_{3}$, where C_{2} and Y_{3} are the second Chern form, and the Chern-Simons three-form respectively.
9. ASD Yang-Mills as gradient flow. Let $A=A_{i} d x^{i}, i=1,2,3$ be a gauge potential on \mathbb{R}^{3} with values in the Lie algebra \mathfrak{g}. Find the EulerLagrange equations arising from varying the Chern-Simons functional

$$
W[A]=\int_{\mathbb{R}^{3}} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

with respect to A.
Now consider a one parameter family of \mathfrak{g}-valued one-forms $A=A(t)$ on \mathbb{R}^{3}, and define a one-form on \mathbb{R}^{4} by $\mathcal{A}=A+\phi d t$, where the function $\phi=\phi\left(x^{i}, t\right)$ takes its values in $\mathfrak{s u}(2)$. Show that, in a gauge where $\phi=0$, the anti-self-dual Yang-Mills equations on \mathcal{A} take the gradient flow form

$$
\frac{d A_{i}(t)}{d t}=\frac{\delta W[A]}{\delta A_{i}}
$$

10. Left and right invariant vector fields on a Lie group. Let $G \subset$ $G L(n+1, \mathbb{R})$ be a Lie group consisting of matrices of the form

$$
g=\left(\begin{array}{ccccc}
x^{0} & x^{1} & x^{2} & \ldots & x^{n} \\
0 & 1 & 0 & \ldots & 0 \\
. & . & . & . & . \\
. & . & . & . & . \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

where $x^{0} \in \mathbb{R}^{+}, x^{i} \in \mathbb{R}$ for $i=1, \ldots n$.

- By considering g near the identity matrix find the structure constants of the Lie algebra \mathfrak{g} of G.
- Construct the left invariant one-forms $\sigma^{a}, a=0,1, \ldots, n$, and the left invariant vector fields of G. Show that

$$
d \sigma^{a}=\sum_{b, c=0}^{n} \kappa^{a}{ }_{b c} \sigma^{b} \wedge \sigma^{c}
$$

for some $\kappa^{a}{ }_{b c}$ which should be determined
11. Connection and curvature of a principal bundle. Consider a connection $\omega=\gamma^{-1} A \gamma+\gamma^{-1} d \gamma$ on a principal G-bundle $P \rightarrow B$, where A is a one-form on B and $\gamma^{-1} d \gamma$ is the Maurer-Cartan form on G.
(a) Show that the transformation of the fibres $\gamma^{\prime}=g \gamma$, where $g \in G$ depends on the coordinates on B, does not change ω if A transforms like a gauge potential.
(b) Let $\Omega=d \omega+\omega \wedge \omega$. Show that $\Omega=\gamma^{-1} F \gamma$ for some F which should be found.
(c) Let $D_{a}, a=1, \ldots, \operatorname{dim}(B)$ be linearly independent vector fields on P such that

$$
\left.D_{a}\right\lrcorner \omega=0 .
$$

Show that $D_{a}=\partial_{a}-A_{a}^{\alpha} R_{\alpha}$, where $\partial_{a}=\partial / \partial x^{a}$ are vector fields on B and R_{α} are right-invariant vector fields on G. Demonstrate that

$$
\left[D_{a}, D_{b}\right]=-F_{a b}^{\alpha} R_{\alpha} .
$$

