Part III Solitons, Instantons, and Geometry, Sheet Three.

Maciej Dunajski, Lent Term 2023

- 1. Action from Yang–Mills. Derive the SU(2) Yang–Mills theory on \mathbb{R}^4 form the action. Let $A_a(x)$ be a solution to these equations. Show that, for any nonzero constant c, the potential $\widetilde{A}_a(x) = cA_a(cx)$ is also a solution and that it has the same action.
- 2. $\mathfrak{so}(4)$, and self-duality. Let T_1, T_2, T_3 form a basis of $\mathfrak{su}(2)$ such that

$$[T_{\alpha}, T_{\beta}] = -\varepsilon_{\alpha\beta\gamma}T_{\gamma}, \quad \alpha, \beta, \gamma = 1, 2, 3,$$

and let the symbols $\sigma_{ab} = -\sigma_{ba}$ where $a, b = 1, \ldots, 4$ be defined by

$$\sigma_{\alpha\beta} = \varepsilon_{\alpha\beta\gamma} T_{\gamma}, \quad \sigma_{\alpha4} = T_{\alpha}.$$

Show that

$$\sigma_{ab} = \frac{1}{2} \varepsilon_{ab}{}^{cd} \sigma_{cd}, \quad \text{and} \quad \sigma_{ab} \sigma_{ac} = -\frac{3}{4} \mathbf{1} \delta_{bc} - \sigma_{bc}$$

Identify $\Lambda^2(\mathbb{R}^4)$ with the Lie algebra $\mathfrak{so}(4)$ and deduce that $\mathfrak{so}(4) = \mathfrak{so}(3) \oplus \mathfrak{so}(3)$.

3. An explicit instanton. Let $V = 1 + r^{-2}$, where $r^2 := \delta_{ab} x^a x^b$. Show that the one-form

$$A = \sigma_{ab} \ \frac{1}{V} \frac{\partial V}{\partial x^b} dx^a \tag{1}$$

is a solution of the anti-self-dual Yang-Mills equations on \mathbb{R}^4 .

The one-form A is singular at r = 0. What can you say about the behaviour of the field strength F at r = 0?

- 4. ... and its Chern number. Find, by explicit integration, the Chern number of the solution (1).
- 5. Hodge operator in various signatures. Let F be a two-form on \mathbb{R}^4 . Show, from the definition of the Hodge operator, that
 - (a) $**F = \pm F$ depending on the signature.
 - (b) $*F \wedge *F = F \wedge F$.

Show that in the U(1) theory $F \to *F$ interchanges the electric and magnetic fields with factors of ± 1 or $\pm i$ and determine the different cases in the corresponding signatures.

Let F be a non-zero real self-dual two-form on \mathbb{R}^4 such that $F \wedge F = 0$. What is the signature of the underlying metric?

6. Self-duality in null coordinates. Show that the two-forms

 $\omega_1 = dw \wedge dz, \qquad \omega_2 = dw \wedge d\tilde{w} - dz \wedge d\tilde{z}, \qquad \omega_3 = d\tilde{w} \wedge d\tilde{z}$

span the space of SD two–forms in \mathbb{C}^4 , where

$$ds^{2} = 2(dzd\tilde{z} - dwd\tilde{w}), \qquad \text{vol} = dw \wedge d\tilde{w} \wedge dz \wedge d\tilde{z}.$$

Show that a two form F is ASD iff $F \wedge \omega_i = 0$.

- 7. *K*-equation from the Lax pair. Use the Lax pair formulation of ASDYM to
 - (a) Deduce the existence of a gauge such that $A = A_{\tilde{w}} d\tilde{w} + A_{\tilde{z}} d\tilde{z}$
 - (b) Deduce the existence of a \mathfrak{g} valued function $K = K(w, z, \tilde{w}, \tilde{z})$ such that $A_{\tilde{w}} = \partial_z K, A_{\tilde{z}} = \partial_w K$
 - (c) Reduce the ASDYM to a single second order PDE

$$\partial_z \partial_{\tilde{z}} K - \partial_w \partial_{\tilde{w}} K + [\partial_w K, \partial_z K] = 0.$$

What is the residual gauge freedom in K?

8. Chern–Simons three–form. Let A be a 1–form gauge potential on \mathbb{R}^n with values in $\mathfrak{su}(2)$, and let F be its curvature. Verify that $Tr(A), Tr(A \wedge A), Tr(A \wedge A \wedge A \wedge A)$ and Tr(F) all vanish.

Verify that $C_2 = dY_3$, where C_2 and Y_3 are the second Chern form, and the Chern–Simons three–form respectively.

9. ASD Yang-Mills as gradient flow. Let $A = A_i dx^i$, i = 1, 2, 3 be a gauge potential on \mathbb{R}^3 with values in the Lie algebra \mathfrak{g} . Find the Euler-Lagrange equations arising from varying the Chern-Simons functional

$$W[A] = \int_{\mathbb{R}^3} \operatorname{Tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)$$

with respect to A.

Now consider a one parameter family of \mathfrak{g} -valued one-forms A = A(t)on \mathbb{R}^3 , and define a one-form on \mathbb{R}^4 by $\mathcal{A} = A + \phi dt$, where the function $\phi = \phi(x^i, t)$ takes its values in $\mathfrak{su}(2)$. Show that, in a gauge where $\phi = 0$, the anti-self-dual Yang-Mills equations on \mathcal{A} take the gradient flow form

$$\frac{dA_i(t)}{dt} = \frac{\delta W[A]}{\delta A_i}.$$

10. Left and right invariant vector fields on a Lie group. Let $G \subset GL(n+1,\mathbb{R})$ be a Lie group consisting of matrices of the form

$$g = \begin{pmatrix} x^0 & x^1 & x^2 & \dots & x^n \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix},$$

where $x^0 \in \mathbb{R}^+, x^i \in \mathbb{R}$ for $i = 1, \dots n$.

- By considering g near the identity matrix find the structure constants of the Lie algebra \mathfrak{g} of G.
- Construct the left invariant one-forms $\sigma^a, a = 0, 1, ..., n$, and the left invariant vector fields of G. Show that

$$d\sigma^a = \sum_{b,c=0}^n \kappa^a{}_{bc} \sigma^b \wedge \sigma^c$$

for some $\kappa^a{}_{bc}$ which should be determined

- 11. Connection and curvature of a principal bundle. Consider a connection $\omega = \gamma^{-1}A\gamma + \gamma^{-1}d\gamma$ on a principal *G*-bundle $P \to B$, where *A* is a one-form on *B* and $\gamma^{-1}d\gamma$ is the Maurer-Cartan form on *G*.
 - (a) Show that the transformation of the fibres $\gamma' = g\gamma$, where $g \in G$ depends on the coordinates on B, does not change ω if A transforms like a gauge potential.

- (b) Let $\Omega = d\omega + \omega \wedge \omega$. Show that $\Omega = \gamma^{-1} F \gamma$ for some F which should be found.
- (c) Let $D_a, a = 1, ..., \dim(B)$ be linearly independent vector fields on P such that

$$D_a \,\lrcorner\, \omega = 0.$$

Show that $D_a = \partial_a - A^{\alpha}_a R_{\alpha}$, where $\partial_a = \partial/\partial x^a$ are vector fields on *B* and R_{α} are right-invariant vector fields on *G*. Demonstrate that

$$[D_a, D_b] = -F_{ab}^{\alpha} R_{\alpha}.$$