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Wave–vortex interactions and effective mean forces: three
basic problems

Michael Edgeworth McIntyre
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ABSTRACT
Three examples of wave–vortex interaction are studied, in analyti-
cally tractable weak refraction regimes with attention to the mean
recoil forces, local and remote, that are associated with refractive
changes in wave pseudomomentum fluxes. Wave-induced mean
forces of this kind can be persistent, with cumulative effects, even
in the absence of wave dissipation. In each example, a single wave-
train propagates past a single vortex. In the first two examples, in a
two-dimensional, non-rotating acoustic or shallow-water setting, the
focus is on whether or not the wavetrain overlaps the vortex core.
In the overlapping case, the recoil has a local contribution given by
the Craik–Leibovich force on the vortex core, the vector product of
Stokes drift and mean vorticity. (For a quantum vortex this contribu-
tion is called the Iordanskii force arising from the Aharonov–Bohm
effect on a phonon current.) However, in all except one special
limiting case there are additional “remote” contributions, mediated
by Stokes-drift-induced return flows that can intersect the vortex
core well away from locations where the waves are refracted. The
third example is a non-overlapping, remote-recoil-only example in
a rapidly rotating frame, in which the waves are deep-water grav-
ity waves and the mean flow obeys shallow-water quasigeostrophic
dynamics. Contrary to what might at first be thought, the Ursell
“anti-Stokes flow” induced by the rotation – an Eulerian-mean flow
tending to cancel the Stokes drift – fails to suppress remote recoil.
There are nontrivial open questions about extending these results to
regimes of stronger refraction, especially regarding the scope of the
“pseudomomentum rule” for the wave-induced recoil forces.
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1. Introduction

The following is a shortened, mainly descriptive version of a longer paper (McIntyre 2019),
to which the reader is referred for full technical details. The longer paper, to be referred
to hereafter as “the main paper”, explores analytically tractable, precisely soluble ver-
sions of the wave–vortex interaction problems to be discussed. It pays careful attention
to asymptotic validity and carries out cross-checks on the results via independent analyses
in complementary, but overlapping, asymptotic regimes. The present, shorter paper tries to
add value to the main paper by providing a relatively concise summary of the main results
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together with some additional discussion. The problems look simple at first sight but have
proved to be surprisingly tricky – conceptually as well as technically. They are fundamen-
tal, moreover, to any attempt to complete our understanding of the O(a2) wave-induced
mean forces arising from wave-induced momentum transport, where a is wave amplitude
defined such that a � 1 validates linearisation.

It hardly needs saying that mean forces of this kind are scientifically important. They
have long been recognised as playing a key role in, for instance, global-scale atmospheric
dynamics, as recalled in themain paper and in greater detail in the reviews by Fritts (1984),
Holton et al. (1995) and Baldwin et al. (2001). See also Dritschel and McIntyre (2008,
and refs.). Examples include what used to be the enigma of the quasi-biennial oscilla-
tion or 13-monthly reversal of the east–west winds in the equatorial lower stratosphere
(e.g. Baldwin et al. 2001), and the enigma of the cold summer mesopause with its noc-
tilucent clouds (e.g. Fritts 1984). (A global-scale circulation, gyroscopically pumped by
wave-induced mean forces, turns the summer mesosphere into a giant refrigerator.) Some
of the waves involved in these phenomena are internal gravity waves whose scales are too
small to be resolved in weather and climate forecastingmodels, and whosemean effects are
therefore routinely represented in the models via so-called gravity-wave parametrisation
schemes (e.g. Garcia et al. 2017, and refs.).

The parametrisation schemes and the associated theoretical literature have always, how-
ever, neglected the nondissipative wave-induced mean recoil forces associated with the
deflection of waves by vortices, and other horizontal-refraction effects. Here, the word
“refraction” will be used in its most general sense – which is the sense that is relevant here
– to mean not just the bending of rays but any distortion of the wave field by the vortex
flow. Examples include those illustrated in equations (2)–(5) below, as well as in studies
like those of, for instance, Sakov (1993), Sonin (1997), Coste et al. (1999) and Ford and
Llewellyn Smith (1999). In various ways those examples include, but also go beyond, stan-
dard ray theory (JWKB theory). The present work makes use of ray theory but also goes
beyond it in significant ways.

The nondissipative recoil forces in question are potentially important because they can
be persistent, in the same sense that the more familiar dissipative wave-induced forces are
persistent. They can act cumulatively over an arbitrary number of wave periods. And one
of the conceptually tricky questions about them is the question of where such forces are
exerted.

Even the simplest problems, or thought-experiments, in which a single wavetrain is
refracted by a single vortex, illustrate what is involved. Consider the problem sketched
schematically in figure 1(a). A steady train of gravity waves or sound waves passes to
one side of a vortex, in an inviscid, two-dimensional, non-rotating shallow water or
homentropic gas dynamical system. The vortex flow has small Froude or Mach number

ε = U/c0 � 1, (1)

and the wave refraction is correspondingly weak (and left invisible in the figure, but see
section 2 below). Here U is a vortex flow speed and c0 an intrinsic wave speed. For defi-
niteness, c0 will be taken as the wave speed at r = ∞ and U as the flow speed at the edge
of the vortex core, r = r0, say, where r2 = x2 + y2 in the notation of the figure.

The question of where themean recoil force is exerted is ambiguous. It can be asked and
answered in more than one way. Simplest and most useful is to ask the question in the way
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Figure 1. Panels (a) and (b) are schematics of wave–vortex interaction problems (i) and (ii) respec-
tively. Waves of wavenumber k are incident from the left and are weakly refracted by the vortex.
The refraction effects are left invisible to emphasise their extreme weakness (but see section 2). The
azimuthal angle θ is defined unconventionally but in a way that will be convenient when discussing the
Aharonov–Bohm effect, which turns out to be one of the significant wave refraction effects.

that is relevant to gravity-wave parametrisation.What force would be required if the waves
were removed, in order to have the same effect on themean flow? For the problem sketched
in figure 1(a) the answer was found in an earlier study by Bühler andMcIntyre (2003). The
answer may seem surprising at first sight. The force has to be exerted not where the waves
are refracted, within the wavetrain as it passes the vortex, but, rather, on the vortex core.
Because the core can be at an arbitrary distance from the wavetrain, Bühler and McIntyre
called this effective mean force a “remote recoil”.

Of course there is nomystery here – no violation ofNewton’s Third Law– because a fluid
medium has a mean pressure field that can mediate actions and reactions continuously,
across substantial distances, just as in ordinary vortex–vortex interactions. The point may
be obvious, but is sometimes overlooked when problems like these are discussed from a
particle-physics perspective. And it is perfectly reasonable to say, alternatively, that when
the waves are present the mean force is exerted where they are refracted. However, to make
sense of the resulting picture onewould then have to solve for theO(a2)meanpressure field
and explicitly describe how it transmits the force across the gap between the wavetrain and
the vortex core.

Bühler andMcIntyre also found that themean force complieswithwhat is now called the
“pseudomomentum rule” (e.g. Bühler 2014). Its validity is tacitly assumed in, for instance,
parts of the literature on gravity-wave parametrisation, and on quantum vortices as well
(e.g. Sonin 1997). When valid, it avoids any consideration of the O(a2)mean equations. It
says that the magnitude and direction of the mean force can be calculated from linearised
wave theory alone as if pseudomomentum were momentum, and as if the fluid medium
were absent.

Pseudomomentum, also called quasimomentum or wave momentum, or phonon
momentum, is the O(a2) linear-theoretic wave property whose nondissipative conser-
vation depends, through Noether’s theorem, on translational invariance of the mean or
background state onwhich thewaves propagate, as distinct from translational invariance of
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the entire physical system, background plus waves, which implies conservation of momen-
tum (e.g. McIntyre 1981, Peierls 1991, and refs.). In a linearised ray-theoretic description
the pseudomomentum p per unit mass isAk, where k is the wavenumber vector andA the
wave-action, the intrinsic wave energy divided by the intrinsic frequency, per unit mass.
Bühler (2014) gives more general expressions for p outside the scope of linearised ray
theory.

Another way to state the pseudomomentum rule is to say that the magnitude and direc-
tion of the recoil can be calculated as if the problem were one of particles such as photons
hitting an obstacle in a vacuum, i.e. ignoring theO(a2) pressure field and treating thewaves
as bullet-like, withmomentum equal to their pseudomomentum. Such ideas are implicit in
the phraseology sometimes encountered in which the waves are described as exchanging
“their momentum” with the mean state. A tendency to conflate momentum with pseudo-
momentum can be found scattered throughout the physics literature under headings such
as “Abraham–Minkowski controversy” (e.g. Peierls 1991).

The problem sketched in figure 1(a) is the first of a set of three problems, or thought-
experiments, considered here. It is shown in the main paper that the pseudomomen-
tum rule holds in all three problems, at least to leading order in ε. The first two problems
are in the two-dimensional, non-rotating setting and the third involves rotation:

(i) As in figure 1(a). The vorticity ω0(r) is zero outside the vortex core.
(ii) As in figure 1(b). The wavetrain overlaps the vortex core. This brings in an additional

refraction effect, familiar in the quantum literature as the so-called Aharonov–Bohm
topological phase jump (figure 2).

(iii) As in figure 1(a) but in an inviscid, unstratified, incompressible, rapidly rotating
system of finite depth H with a free upper surface, under gravity g. The quasi-
geostrophic potential vorticity is uniform outside the vortex core. The waves are
surface gravity waves with kH large enough to make exp(−kH) negligible, where k is
the magnitude of the wavenumber vector k. The mean-flow Rossby number is small,
but the intrinsic wave frequency (gk)1/2 � f , the Coriolis parameter.

In all three problems, it is assumed that a � ε � 1, allowing linearised wave theory
to be used to describe the weak wave refraction. In problem (iii), we take the mean-flow
Rossby number to be of the same order as ε. In some but not all cases, the wavenumber k
is assumed large enough to permit the use of ray theory.

The plan of the paper is as follows. In section 2 and figure 2, we present and discuss a
simple asymptotic solution for the O(a) wave field far from the vortex core, applicable to
problems (i) and (ii) and describing the Aharonov–Bohm phase jump and other relevant
wave-refraction effects. In a significant sense, this solution encompasses ray theory but also
goes beyond it.

In section 3, we introduce what turns out to be the simplest way to compute the
mean recoil forces and to understand their origin. It is to compute the complete nondis-
sipative O(a2) mean flows associated with the wavetrains, sometimes called “Bretherton
flows”. Such a flow consists of the Stokes drift within the wavetrain together with the
return flow required by mass conservation. For a narrow wavetrain, the return flow takes
place mostly outside it. Figure 3 shows an example. Section 4 presents the very sim-
ple mean-flow equations derived in the main paper. They govern the Bretherton flows
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Figure 2. Wavecrests plotted from the far-field solution (2), with α = 0.75. The unit of length is taken
as k−1

0 so that the unrefracted wavelength is 2π . The Aharonov–Bohm phase jump appears as a phase
discontinuity on the positive x axis. In a full solution, this discontinuity is smoothed out across a relatively
narrow “wake” region. Theother relevant refractioneffect is the very slight rotationof thewavecrests that
can be seen, for instance, by careful inspection of the left-hand edge of the plot.

Figure 3. Schematic of the Brethertonflowarising in a versionof problem (i) studied in Bühler andMcIn-
tyre (2003). TheO(a2)meanflowwithin a narrowwavetrain,whose ray path is shownby theheavy curve,
is dominated by the Stokes drift. A small portion of its mass flux, O(a2ε1) in this case, leaks sideways as
a consequence of wave refraction. To describe this situation the refraction problemmust be considered
correct to two orders in ε, as was done in section 5.1 of Bühler and McIntyre (2003). Refraction effects
enter at both orders, not only the O(ε) effects illustrated in figure 2 but also an O(ε2) change in the
direction of the absolute group velocity, exaggerated in this schematic.
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that are relevant to leading order in our three problems. As noted in Bühler and McIn-
tyre (2003) and in the main paper, this route to the results avoids any need to analyse
the wave refraction explicitly, a remarkable simplifying feature. To leading order in ε it is
enough to compute Bretherton flows for the unrefractedwavetrains, i.e. correct to O(a2ε0).
And that in turn shows the leading-order results to be robust, in that they hold outside
the ray-theoretic and other regimes within which the wave refraction can be computed
explicitly.

In section 5, we present the resulting formulae for the recoil forces in all three prob-
lems, correct to leading order, in limiting cases for which the formulae become very
simple. In problem (ii), the simplest results are for wavetrains whose widthW and length
L are both infinite. But immediately we encounter a surprise. The results depend strongly
on the limiting value of W/L. The limits W → ∞ and L → ∞ are noninterchangeable.
Problem (iii) is interesting in a different way. It exhibits remote recoil just as in prob-
lem (i), contrary to what might be suggested by the effects of rapid rotation. Rotation
produces a tendency for the Stokes drift to be cancelled by the well-known “anti-Stokes
flow” (Ursell 1950). Nevertheless, the cancellation is incomplete such that there is still a
significant Bretherton flow giving rise to a non-vanishing remote recoil, which moreover
satisfies the pseudomomentum rule to leading order in ε.

Section 6 summarises the main paper’s independent and more lengthy, and indeed
more delicate, derivations of the same results from refraction calculations. Those deriva-
tions make use of an appropriate “impulse–pseudomomentum theorem”, which justifies
the pseudomomentum rule independently, alongside direct calculations of the pseudo-
momentum fluxes in the refracted wave fields correct to O(a2ε1). Ray theory is used
in some of these calculations, and the non-ray-theoretic results of Ford and Llewellyn
Smith (1999) in others. Section 7 offers brief concluding remarks in which some challenges
for future work are noted, particularly regarding what happens at higher orders in ε, for
which the impulse–pseudomomentum theorem fails. In some but not all circumstances
the pseudomomentum rule still holds, but the precise circumstances remain to be clarified.

2. Wave refraction in problems (i) and (ii)

Before considering the O(a2) mean flows, we note some key wave-refraction effects in
problems (i) and (ii). As shown in themain paper, the linearised equations – see (2.1)–(2.3)
of the main paper – have the following far-field solution. For sufficiently large r, the
velocity potential φ′ describing the waves has the asymptotic form φ′ = A exp(iΦ) where
the O(a) amplitude envelope A is slowly-varying and where the phaseΦ is given by

Φ = k0(x − c0t)− αθ + const. + O(ε2r20/r
2). (2)

The incident wavenumber k0 and far-field phase speed c0 are constants, and α is another
constant, to be defined in (3). The azimuthal angle θ is defined as in the figures. It ranges
from −π to π .

In problem (ii), with the main focus on a wavetrain that is infinitely wide and infinitely
long, we can take A to be a real constant. The constant α in (2) is defined by

α = Γ k0/2πc0 = Uk0r0/c0 = k0r0ε, (3)
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where Γ is the Kelvin circulation of the vortex, equal to
∫∫
ω0 dx dy. The phase jump

2πα across the positive x axis is the Aharonov–Bohm phase jump, a topological defect or
dislocation of Φ . In a full solution, it is smoothed out across a relatively narrow “wake”
region surrounding the positive x axis. The phase jump measures the effect of the vortex
flow outside the core, u0(r) = Ur0r−1θ̂ = εc0r0r−1θ̂ , where θ̂ is the unit vector in the θ
direction, in compressing the wavetrain on one side while stretching it on the other, at
positive and negative y respectively.

Figure 2 plots the far-field wavecrest shapes Φ = constant described by (2) with the
error term neglected. We have taken α = 0.75, fixing the phase jump at three quarters
of a wavelength to make it clearly visible. Also visible, less clearly, is another refraction
effect that nevertheless has comparable importance. Except on the y axis, the wavecrests
are slightly rotated away from the y direction, through angles O(εr0r−1). The effect can be
seen by careful inspection of the left-hand edge of the plot. The local wavenumber vector
k = ∇Φ has a refractive contribution −αr−1θ̂ = −εk0r0r−1θ̂ directed against the vortex
flow:

k = ∇Φ = k0[x̂ − ε r0r−1 θ̂ + O(ε2r20 r
−2)], (4)

where x̂ is the unit vector in the x direction. As in the main paper, we note that (2)
and (4) are consistent with ray theory, but also go beyond it in the sense that phase
changes over long distances of order r are represented accurately enough to describe
the Aharonov–Bohm phase jump.

Despite the rotation of the wavecrests and of k, the absolute group velocityCabs remains
parallel to the x axis correct to O(εr0r−1), as can be checked from its leading-order
expression

Cabs = c0k
|k| + u0(r)+ O(ε2c0r20 r

−2) (5)

by taking the y components of (4) and of u0(r) = εc0r0r−1θ̂ . Propagation due to the y
component of k cancels advection due to the y component of u0. The cancellation follows
alternatively from the vanishing of the vorticity outside the vortex core, in virtue of the curl-
curvature formula of ray theory, Bühler (2014, p. 86), which was first derived by Landau
and Lifshitz (1959) and generalised to dispersive waves by Dysthe (2001). Dysthe’s result
is made use of in problem (iii).

The property of Cabs just noted means that (2) can also be applied to problem (i), with
a y-dependent amplitude envelope A, as long as the wavetrain passes the vortex at a dis-
tance great enough for the expression (2) and ray theory to be asymptotically valid, as was
assumed in Bühler and McIntyre (2003). Then A can be taken to depend on y alone in a
way that restricts the wavetrain as sketched in figure 1(a). The width scaleW of this enve-
lope � k−1

0 for consistency with ray theory, yet small by comparison with the distance to
the vortex core.

The phase function (2) is well known in the quantum literature. It applies not only
to the vortex problem but also to the original Aharonov–Bohm problem, in which the
waves represent nonrelativistic electrons going past a thin magnetic solenoid, as recalled
in Appendix A of the main paper, with the magnetic vector potential in the role of the
vortex flow u0(r).
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What is not apparent from (2) is the character of the wake region that smooths out
the Aharonov–Bohm phase jump. In the original Aharonov–Bohm problem, the wake is
symmetric about the x axis, for arbitrary α, and within it the discontinuous structure (2)
is replaced by a smooth Fresnel-diffractive structure with angular size tending toward zero
like (k0x)−1/2 as x → ∞. In the vortex problem, by contrast, the wake generally has small
but non-vanishing angular size O(ε) and an asymmetry about the x axis of the same order,
except in an extreme long-wave limiting case with both ε and k0r0 tending to zero. In
that case, the wake structure tends toward a Fresnel-diffractive structure symmetric about
the x axis, as shown in Sakov (1993) and in Ford and Llewellyn Smith (1999). In cases
of stronger refraction at finite ε, the wave field becomes more complicated and the wake
asymmetry increased (Coste et al. 1999). In all cases, however, the phase jump seen in
figure 2 is smoothed out in some manner.

3. Bretherton flow and Kelvin impulse

Following the past literature including the pioneering work of Bretherton (1969), we use
the term Bretherton flow to denote the entire O(a2) wave-induced Lagrangian-mean flow.
For instance in cases with relatively narrow wavetrains such as that of figure 1(a) the mean
flow includes not only Stokes drifts but also any sideways return flows required by mass
conservation. An example from Bühler and McIntyre (2003) is shown in figure 3. This
represents schematically a version of problem (i) analysed in their section 5.1, in a par-
ticular formal limit, namely that of an infinitely long wavetrain slightly deflected by the
vortex.

Within the wavetrain (which again is considered wide by comparison with k−1
0 , like a

laser beam, even though narrow by comparison with the distance to the vortex core), the
Stokes drift is toward the right. Therefore the return part of the Bretherton flow advects
the vortex core toward the left. The core translates leftward at velocity utr say. The resulting
rate of change in the Kelvin impulse I of the vortex, equation (7), is the same as if the waves
were removed and a suitably tailored body force field F, pointing in the+y direction, were
artificially applied to the vortex core. As already indicated, this is the effective mean recoil
force in the sense considered here. It is exactly the sense required by – though, in fact, so far
neglected in – gravity-wave parametrisations in weather and climate forecasting models.

The “remoteness” of the recoil can now be seen to be related to the fact that the return
flow extends well outside the wavetrain in cases like this. The Stokes drift does not directly
contribute to utr, but only the return part of the Bretherton flow. In problem (ii), by con-
trast, the wavetrain overlaps the vortex core so that the local Stokes drift uS contributes to
utr, as well as remote contributions from other parts of the wavetrain.

For our core with vorticity ω0(r), it is easy to verify that the effective force is just
F = −ω0 ẑ× utr where the unit vector ẑ points out of the paper.1 Being transverse to the

1 The curl of this two-dimensional force field F is just that required to move the vortex core leftward through the fluid at
velocity utr, while the divergence of F sets up the dipolar pressure field required to produce the corresponding changes
outside the core, where the velocity field is irrotational. Thus defined,F has the dimensions of acceleration, length/(time)2,
i.e. force per unit mass, since it is a forcing term on the right-hand side of the standardmomentum equation having ∂u/∂t
on the left, whose curl is the standard vorticity equation. So for instance the resultant force on a two-dimensional vortex
core of depth H is ρH

∫∫
F dx dy where ρ is fluid density. The factor ρH will be ignored in what follows. Strictly speaking,

therefore, “resultant force” and “impulse” in the main text should be read as ρ−1 times resultant force and impulse per
unit core depth.
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vortex motion, the resultant forceR has the character of a Magnus force, namely

R =
∫∫

F dx dy = −ẑ× utr
∫∫

ω0 dx dy = −Γ ẑ× utr. (6)

We note that the Kelvin circulation Γ is an O(ε) quantity and that, in the case of figure 3,
Bühler and McIntyre (2003) found that utr is O(a2ε1) so that R is O(a2ε2). It is readily
shown (see equation (3.7) of the main paper) that dI/ dt = R for our translating vortex
core, with vorticity ω0(r′) where r′ = |x − utrt|. The two-dimensional Kelvin impulse I is
defined by

I =
∫∫

(y, −x)ω0 dx dy =
∫∫

−ẑ× x ω0 dx dy (7)

(e.g. Batchelor 1967, equation (7.3.7)). In the case of figure 3, Bühler and McIntyre also
found that utr is just such thatR satisfies the pseudomomentum rule.

The effect on the vortex, continually moving it parallel to the x axis, is persistent and
cumulative, over an arbitrary number of wave periods. In that respect, the wave-induced
recoil is like the wave-induced mean forces that arise from wave dissipation, even though
in our three problems there need not be any such dissipation. Even the wave sink need
not be dissipative. It can be a wavemaker whose amplitude and phase are contrived to give
perfect absorption, as for instance in the thought-experiments used by Léon Brillouin in
his classic works on radiation stress (e.g. Brillouin 1936, and refs.).

Two further points to note are first that the wave field can be taken as steady only as an
approximation, for small a and ε, and second that the weakness, O(a2), of the return flow
and its strain-rate means that the vortex core is advected bodily without significant distor-
tion (Kida 1981) as indeed was already assumed below (6), simplifying the calculation of
dI/ dt from (7).

In problem (ii), as already said, there is an additional, local contribution to utr and
therefore to R, from the Stokes drift uS of the wavetrain where it overlaps the vortex
core. This local contribution is just the Craik–Leibovich vortex force as usually defined,
FCL = uS×ω0, whereω0 = ω0 ẑ. The remote or return-flow contribution, fromother parts
of the wavetrain, varies with W/L. So it is the remote and not the local contribution that
gives rise to the noninterchangeability of limits already mentioned.

4. Mean-flow equations at leading order

From here on we restrict attention to leading-order, O(a2ε1) recoil forces, thus excluding
further consideration of cases like that of figure 3 in which the recoil is O(a2ε2) or smaller.
Then (6) can be used with utr correct to O(a2ε0) only, because of the factor Γ = O(ε). So
as said earlier we need only compute Bretherton flows for unrefracted wavetrains.

As shown in the main paper, at this order the Bretherton flows uLB are nondivergent,
with streamfunction

ψ̃B = ψ̃ − ψ̃0 (8)

say, where ψ̃0 = ψ̃0(r′) is the streamfunction for the nondivergent velocity field u0(r′) of
the vortex flow, and where the complete Lagrangian-mean flow uL, vortex flow u0 plus
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Bretherton flow uLB, has x and y components

ūL = −∂ψ̃
∂y

and v̄L = ∂ψ̃

∂x
. (9)

In the main paper, it was shown that correct to O(a2ε0) the mean-flow equations can be
written in the very simple forms

∇2
Hψ̃B = ẑ ·∇×p in problems (i) and (ii) (10)

and

(∇2
H − L−2

D )ψ̃B = ẑ ·∇×〈p〉 in problem (iii), (11)

where p is the wavetrain’s pseudomomentum per unit mass, as before, ∇2
H is the Lapla-

cian in the xy plane, and LD in problem (iii) is the Rossby deformation length-scale LD =
f−1(gH)1/2. The angle brackets denote vertical averaging, needed in problem (iii) because
of the strong dependence of p upon the vertical coordinate z, namely p ∝ exp(2k0z). The
streamfunction ψ̃B neednot be averaged vertically, in problem (iii), because at small Rossby
number the Taylor–Proudman effect makes it z-independent.

The simplicity of equations (10) and (11) comes from their close relation to Kelvin’s
circulation theorem as expressed most succinctly by GLM (generalised Lagrangian-mean)
theory; see for instance section 10.2.7 of Bühler (2014), and equations (2.9)–(2.11) of the
main paper.

Because the wavetrains are unrefracted, they can be taken to have the simple sinusoidal
structure A exp(iΦ) with Φ = k0(x − c0t), and constant or slowly varying A. From this,
and from the irrotationality of the wavemotion in all three problems, we have p = uS. See
for instance Bühler (2014, equations (10.15) and (10.17)). The elliptic operators on the
left of (10) and (11) show why Bretherton flows extend well outside any relatively narrow
wavetrain.

5. Bretherton flows and recoil forces at leading order

To take advantage of the simplifications just noted, with Bretherton flows computed from
unrefracted wavetrains, we need to consider a wavetrain of finite length in the case of prob-
lem (i) as was done in Bühler andMcIntyre (2003). In the formal limit of an infinitely long
wavetrain, in that problem, to leading order in ε, the recoil and net pseudomomentum flux
vanish because the rays remain straight and parallel to the x axis thanks to the cancellation
already noted in the absolute group velocity (5), between the y components of the leading
terms. (The bending of rays indicated in figure 3 takes place at the next order in ε, with the
mean-flow equations becoming less simple, though still elliptic, as shown in Bühler and
McIntyre’s section 5.1.)

So for problem (i) at leading order, we consider the situation sketched in figure 4, with
an unrefracted wavetrain of finite length marked by the heavy straight line, along with its
surrounding return flow satisfying equation (10). The heavy straight line corresponds to
the wavetrain sketched in figure 1(a), whose width scaleW � k−1

0 to permit the use of ray
theory. So once again the wavetrain is wide by comparison with k−1

0 , like a laser beam, even
though narrow by comparison with the distance to the vortex core.
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Figure 4. Schematic of Bretherton-flow streamlines in problem (i), as analysed in Bühler and McIn-
tyre (2003) correct to lowest order O(a2ε0) for the finite wavetrainwhose ray path is shown by the heavy
straight line. At this order, theStokesdrift is nondivergent exceptwithin thewave source and sink regions.
The waves propagate from a source on the left to a sink on the right.

The wave source and sink are modelled as irrotational body-force fields, with k0 large
enough to allow the wave source and sink to be considered approximately localised near
positions (x, y) = (±X,Y), say, with X,Y � W. The Stokes drift is toward the right,
straight along the wavetrain where the right-hand side of (10) is nonzero, and the return
flow with right-hand side zero is irrotational, emanating from the wave sink and return-
ing through the wave source. Its streamlines are mirror-symmetric about the wavetrain,
because the wavetrain is unrefracted at this order. As in Bühler and McIntyre (2003) and
in the main paper the O(a2ε0) flow advecting the vortex core at (x, y) = (0, 0) can then be
shown to be

utr = uLB(0, 0) = S
π

X
X2 + Y2 (−x̂), (12)

where

S =
∫

p1(y) dy =
∫

ūS(y) dy. (13)

The pseudomomentum per unit mass within the wavetrain has been written as p =
p1(y)x̂ = ūS(y)x̂, and the integral is taken across the wavetrain. Applying the Magnus
formula (6), we see that the corresponding recoil force is

R = Γ S
π

X
X2 + Y2 (+ŷ) (14)

correct to O(a2ε1), where ŷ is the unit vector in the y direction. As shown in Bühler and
McIntyre (2003) and in Bühler (2014) there is a corresponding imbalance between the
mean forces exerted by the wave source and sink, as implied by Newton’s third law.
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We note that (12) and (14) tend toward zero in the formal limit of an infinitely long
wavetrain, X → ∞. More precisely, since (13) implies the scaling S ∼ W|uS|, we have

|utr| ∼ W|uS|/X and |R| ∼ ΓW|uS|/X as X → ∞, (15)

going to zero likeX−1. The irrotational return part of the Bretherton flow becomes increas-
ingly spread out in the y direction, diluting its effect at (x, y) = (0, 0). The vanishing ofR
in this formal limit in problem (i) is consistent with the straightness of the rays and the
vanishing of all refractive distortions as |x| → ∞, at fixed y = Y in (2). In the limit the
incoming and outgoing pseudomomentum fluxes become equal, and the wave source and
sink exert equal and opposite mean forces.

The dilution effect summarised by (15) is key to understanding the noninterchangeabil-
ity of limits in problem (ii). For instance, the same dilution effect occurs for any unrefracted
wavetrain whose widthW is given an arbitrary fixed value while its length L = 2X → ∞,
whether or not it overlaps the vortex core. When it does overlap, the local Stokes drift uS

contributes to utr while the diluted return flow is still governed by (15), going to zero in the
limit. It remains zero if the limit W → ∞ is taken subsequently. Therefore, for problem
(ii) in the limit L → ∞ followed byW → ∞, the formulae (12) and (14) are replaced by

utr = uS(0, 0) = p1(0)(+x̂) (16)

and

R = Γ p1(0)(−ŷ). (17)

Not only the magnitudes but also the signs have changed. Notice again that (17) is
equal to the Craik–Leibovich vortex force FCL = uS×ω0 integrated over the vortex core,
corresponding to what is called the Iordanskii force in the quantum vortex literature
(e.g. Sonin 1997, Stone 2000), with uS = p corresponding to the phonon current per unit
mass.

If we take the limits in the opposite order, W → ∞ followed by L → ∞, it is easy to
see that utr andR both go to zero. For an infinitely wide wavetrain of finite length, with p1
uniform across the wavetrain, the dilution effect is banished to |y| = ∞ so that the return
flow at each finite |y| is just−uS. Thus utr = uS − uS = 0. For intermediate cases in which
W/L has a finite limiting value, and inwhich thewavetrain is uniform and symmetric about
the |x| axis, we obtain the intermediate values

R = −
[
1 − 2

π
lim arctan

(
W
L

)]
Γ p1 ŷ, (18)

as shown in the main paper, where lim denotes the limitW → ∞ and L → ∞ withW/L
tending to a constant. In cases where the constant has a value of order unity, the local and
remote contributions have comparable importance.

In problem (iii) there is no dilution effect as L → ∞, because the Bretherton flow sat-
isfies (11) and therefore, for a long wavetrain, decays sideways like exp(−|y|/LD) on the
fixed length-scale LD. In the formal limit L → ∞, and with a narrow wavetrain, W � Y
and W � LD, we have uLB = uLB(y) = (S/2LD) exp(−|y − Y|/LD)(−x̂) for |y − Y| >W,
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i.e. outside the wavetrain, so that, for a small vortex core r0 � LD, the vortex-core
advection velocity and recoil force are

utr = uLB(0) = (S/2LD) exp(−|Y|/LD)(−x̂) (19)

and

R = (Γ S/2LD) exp(−|Y|/LD)(+ŷ) (20)

with 
 evaluated at the edge of the core and with vertical averaging understood in (13).
Notice that the signs have reverted to those in problem (i).

6. Cross-checks from refraction calculations

The foregoing recoil formulae were rederived in the main paper via a completely
independent route, in two stages. First, it was shown that an appropriate “impulse-
pseudomomentum theorem” holds for any vortical flow and any wave field with irrota-
tional sources and sinks, provided that the mean flows comply with either (10) or (11).
This means that the pseudomomentum rule is guaranteed to hold in any such situation.
Then, second, explicit linear-theoretic calculations of wave refraction were carried out to
yield the incoming and outgoing pseudomomentum fluxes in our three problems. They
were found to be precisely consistent with the foregoing results (14), (17), (18) and (20).

The calculations used ray theory in all three problems and, in addition, in problem (ii),
used the long-wavelength asymptotics and Fresnel-diffractive wake structure analysed in
Ford and Llewellyn Smith (1999). Their careful analysis completes the picture described
by (2) in an elegant way when both k0r0 and ε are small, making the Aharonov–Bohm
phase jump 2πα even smaller, being the product of two small quantities as seen in (3).

In problem (ii), the two contributions to R in (18) can be attributed separately to the
two refraction effects seen in figure 2. The first contribution in (18), which is the same
as (17), arises solely from the wake and the Aharonov–Bohm phase change across it,
while the second contribution arises solely from the other refraction effect noted earlier,
the O(ε) rotation of wavecrests in the larger domain outside the wake. This second con-
tribution becomes significant in problem (ii) when the width W of the wavetrain is large
enough, accounting for the dependence on W/L. These attributions hold good not only
when k0r0 � 1 but also when k0r0 � 1, allowing the use of ray theory. In that case, the
wake has a different structure involving a ray caustic, but continues to account solely for the
first contribution in (18) while the O(ε) rotations of wavecrests outside the wake, which
as noted earlier are consistent with ray theory, account solely for the second contribution.
In particular, therefore, the Aharonov–Bohm effect is the only relevant refraction effect –
as often assumed in the quantum vortex literature – only in the special limiting case for
which lim (W/L) = 0.

In problem (iii), ray theory is used. Because the vortex now has quasigeostrophic struc-
ture with finite scale LD it is the potential vorticity, not the vorticityω, that vanishes outside
the vortex core. Therefore the curl-curvature formula of Dysthe (2001) implies that rays
passing outside the vortex core, as in figure 1(a), are now deflected at leading order in ε.
The formula tells us that the ray curvature is just ω/C where C = 1

2 (g/k)
1/2, the intrinsic

group velocity for deep-water gravity waves.When the formula is used and the calculations
carried out (section 8 in the main paper), the result is found to agree perfectly with (20).
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7. Concluding remarks

All the foregoing results depend on the restriction to leading order in ε, which is essential
to the derivation of (10) and (11) and therefore essential to our computations of Bretherton
flows, and to the proof of the impulse–pseudomomentum theorem. Yet cases are known in
which the pseudomomentum rule holds at higher orders of accuracy in ε. One of them is
the case of figure 3, which requires one further order of accuracy, and in which the mean-
flow equations are less simple than (10) and (11). Indeed, in section 5.2 of Bühler and
McIntyre (2003) it was shown that there is a version of that case for which the rule holds
to all orders in ε. On the other hand, as recalled in the main paper, exceptions to the rule
have long been known.

There is a major unresolved puzzle here, and a challenge for future work. For now, one
may speculate that the present restriction to leading order in ε may be a limitation of the
Kelvin impulse concept, rather than of the pseudomomentum rule itself. Some further
discussion of this issue is given in section 9 of the main paper.
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