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The Stewartson—Warn—Warn (SWW) solution for the time evolution of an inviscid,
nonlinear Rossby-wave critical layer, which predicts that the critical layer will
alternate between absorbing and over-reflecting states as time goes on, is shown to
be hydrodynamically unstable. The instability is a two-dimensional shear instability,
owing its existence to a local reversal of the cross-stream absolute vorticity gradient
within the long, thin Kelvin cat’s eyes of the SWW streamline pattern. The unstable
condition first develops while the critical layer is still an absorber, well before the
first over-reflecting stage is reached. The exponentially growing modes have a
two-scale cross-stream structure like that of the basic SWW solution. They are found
analytically using the method of matched asymptotic expansions, enabling the
problem to be reduced to a transcendental equation for the complex eigenvalue.
Growth rates are of the order of the inner vorticity scale dg, i.e. the initial absolute
vorticity gradient dg,/dy times the critical-layer width scale. This is much faster than
the time evolution of the SWW solution itself, albeit much slower than the shear rate
du,/dy of the basic flow. Nonlinear saturation of the growing instability is expected
to take place in a central region of width comparable to the width of the SWW cat’s-eye
pattern, probably leading to chaotic motion there, with very large ‘eddy-viscosity’
values. Those values correspond to critical-layer Reynolds numbers A~ < 1, sug-
gesting that for most initial conditions the time evolution of the critical layer will
depart drastically from that predicted by the SWW solution. A companion paper
(Haynes 1985) establishes that the instability can, indeed, grow to large enough
amplitudes for this to happen.

The simplest way in which the instability could affect the time evolution of the
critical layer would be to prevent or reduce the oscillations between over-reflecting
and absorbing states which, according to the SWW solution, follow the first onset
of perfect reflection. The possibility that absorption (or over-reflection) might be
prolonged indefinitely is ruled out, in many cases of interest (even if the ‘eddy
viscosity’ is large), by the existence of a rigorous, general upper bound on the
magnitude of the time-integrated absorptivity a(t). The bound is uniformly valid for
all time ¢. The absorptivity «(t) is defined as the integral over all past ¢ of the jump
in the wave-induced Reynolds stress across the critical layer. In typical cases the
bound implies that, no matter how large ¢ may become, | x(f}| cannot greatly exceed
the rate of absorption predicted by linear theory multiplied by the timescale on which
linear theory breaks down, say the time for the cat’s-eye flow to twist up the absolute
vorticity contours by about half a turn. An alternative statement is that | a(¢) | cannot
greatly exceed the initial absolute vorticity gradient dg,/dy times the cube of the

t Present affiliation: Robert Hooke Institute for Atmospheric Research, Dept. of Atmospheric
Physics, Clarendon Laboratory, Oxford 0X1 3PU.
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widthscale of the critical layer. In typical cases, therefore, a brief answer to the
question posed in the title is that the critical layer absorbs at first, at a rate oc dg,/dy,
whereas after linear theory breaks down the critical layer becomes a perfect reflector
in the long-time average. If absolute vorticity gradients vanish throughout the
critical layer then the bound is zero, implying perfect reflection for all t.

The general conditions for the bound to apply are that the wave amplitude and
critical-layer width are uniformly bounded for all ¢, the motion is two-dimensional,
and vorticity is neither created nor destroyed within the critical layer, nor transported
into or out of it by diffusion, by advection, or by other means. Vorticity may,
however, be diffused or turbulently transported within the critical layer, provided
that the region within which the transport acts is of bounded width and the range of
values of vorticity within that region remains bounded. There are no other restrictions
on wave amplitude, none on wavelength, and no assumptions about flow details
within the critical layer nor about the initial vorticity profile ¢,(y), apart from an
assumption that q,(y) has singularities no worse than a finite number of jump
discontinuities. The proof, in its most general form, makes use of a new finite-amplitude
conservation theorem for disturbances to parallel shear flows, generalizing the
classical results of Taylor, Eliassen & Palm, and others.

1. Introduction and résumé
1.1. Background

There has been a continuing debate in recent years about what happens when
monochromatic Rossby waves are incident on a critical line in a shear flow, where
phase speed matches mean-flow speed. A basic question, posed epigrammatically, is
whether and when the nonlinear ‘critical layer’ surrounding the critical line acts as
an absorber, a reflector, or an over-reflector.

The problem is important in a wider context than the meteorological one which
directly motivates it (e.g. Tung & Lindzen 1979a,b; Tung 1979; Nigam & Held 1983
and references), since closely related questions arise whenever stable or unstable
disturbances to shear flows are of interest, these disturbances having coherent
structures and definite phase speeds. Disturbances to the jets and shear layers
encountered in aerodynamics are cases in point. As was noted by Stewartson (1978),
the case of two-dimensional Rossby waves in constant shear provides the simplest
context in which one of the central theoretical problems can be studied in detail,
namely the onset of nonlinear effects in a time-dependent critical layer and the
consequent changes in the matching conditions across the layer. For surveys of the
topic in general the reader may consult the reviews by Maslowe (1981) and Stewartson
(1981), and for some very recent meteorological developments the papers by Al-Ajmi
et al. (1985), Clough ef al. (1985), Leovy et al. (1985), Hoskins et al. (1985), and
McIntyre & Palmer (1983, 1984). The last-named group of papers presents direct
evidence, from satellite and other observations, indicating that effects of the general
kind modelled inter alia by the time-dependent theory of nonlinear critical layers
play an essential role in the large-scale dynamics of the Earth’s atmosphere.

The linear, time-dependent problem, for monochromatic Rossby waves incident
upon an initially undisturbed critical line in constant shear, was originally solved by
Dickinson (1970), and further elucidated by Warn & Warn (1976), for the case of
inviscid flow. It predicts that the critical layer acts as a perfect absorber, as long as
the linearization remains valid, but that nonlinear effects become important after
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Time -

FicURE 1. The continuous curve represents the time evolution of the absorptivity of a Rossby-wave
critical layer according to the SWW solution. The absorptivity is expressed as a normalized
Reynolds-stress or momentum-flux jump across the critical layer, equivalent in this problem to
the phase-slope jump or ‘logarithmic phase jump’ of the fundamental harmonic. The initial value
is —n and represents the absorbing state predicted by linear critical-layer theory; zero represents
perfect reflection, and positive values over-reflection ; see (2.36) ff. The time is in units of 4~£71Ay ™,
where A is the shear of the basic flow, £ the xz-wavenumber of the Rossby wave, and Ay the
critical-layer width scale (the units in which the y-coordinate is expressed in figure 2). Ay is equal
to et4/p, where g = dg,/dy is the initial absolute (potential) vorticity gradient, assumed constant
in this case, and ¢ the disturbance amplitude defined in §2. The area under the entire curve, between
time zero and infinity, is equal to the area enclosed by the finely dotted rectangle (see §1.4). The
dashed curve schematically represents a result from the pioneering numerical simulation by Béland
(1976, figure 5); see also figure 5 of this paper. Ay varies with time in the problem solved by Béland,
so that a quantitatively meaningful comparison in the same time units is not possible. The dashed
curve has been drawn on the assumption that the effective value of Ay was increased (by about
10%) by the effects of instability in Béland’s simulation; ef. (1.11) with b oc Ay.

a sufficient time no matter how small the amplitude of the incident wave. Qur
understanding of the subsequent nonlinear time evolution has been greatly advanced
in recent years, particularly through the numerical work of Béland (1976, 1978) and
the analytical and numerical work of Warn & Warn (1978), Stewartson (1978), Brown
& Stewartson (1978), Smith & Bodonyi (1982), and Ritchie (1985). The most detailed
formal analysis of the nonlinear time evolution is that of Warn & Warn (1978), who
by making simultaneous use of matched-asymptotic and multiple-scale techniques
clarified the general structure of the inviseid initial-value problem. In addition, the
important discovery was made that special cases exist (Warn & Warn 1978) in which
a complete analytical solution can be found to leading order (Stewartson 1978). We
thus have examples in which a self-consistent, quantitative description of the inviscid
evolution of the critical layer, or rather a description of one possible such evolution,
isavailable out to times ¢ very much larger than the time at which linear theory breaks
down. That evolution is inaccessible to almost any kind of numerical method, because
of the exponentially large vorticity gradients which develop on exponentially small
spatial scales in certain parts of the critical layer.

The Stewartson—-Warn—Warn solution, as we shall call this analytical solution for
convenience (hereinafter referred to as the ‘SWW solution’), predicts that nonlinearity
turns the critical layer from a wave absorber into a wave reflector, then immediately
into an over-reflector (reversing the wave-induced momentum flux outside the critical
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layer), then back into a weaker absorber, and so on. The state of the critical layer
continues to oscillate about perfect reflection in this manner, as shown by the
continuous curve in figure 1. The oscillations die away like t72. As far as the wave
motion outside the critical layer is concerned, the perfectly reflecting state which is
approached at t > oo is nearly equivalent to that predicted by the earlier, steady-state
theories of Benney & Bergeron (1969), Davis (1969), and Haberman (1972) (hereinafter
referred to as BBDH), in the limit of small viscosity. During the long evolution
towards perfect reflection, the critical layer causes higher harmonics of the incident
wave to appear in the flow outside it, as Warn & Warn showed would generally occur
(figure 3 below). However, at least in the case of the SWW solution itself, the
contribution from these higher harmonics to the stream function in the outer flow
decays to zero in the long-time limit. The SWW solution and its physical meaning
are reviewed in §2 of this paper.

1.2. Instability

The present work was motivated by the realization that the SWW solution represents
an unstable flow, with growth rates generally much faster than the timescale of the
evolution just described.t The unstable condition first develops when ¢ exceeds the
value ¢; marked in figure 1. This raised the possibility that the long-time evolution
might be quite different in reality. Indeed Béland’s numerical work did, originally,
predict a qualitatively different time evolution, a fact which to our knowledge has
never been satisfactorily explained. We now believe that the instability is the most
likely explanation, even though the numerical scheme used by Béland may not have
represented the unstable disturbances with great accuracy. In his best-resolved
simulation, which predicted a time evolution like that indicated schematically by
the dashed curve in figure 1, with little indication of over-refiection (Béland 1976,
figure 5), disturbances appeared at the expected stage in the evolution and showed a
spatial structure very like that predicted by the instability theory (figures 5b,¢
below).}

The instability theory is presented in §§3 and 4. The instability is an ordinary
two-dimensional inviscid shear instability, in the sense that it depends in the usual
way upon a reversal of the absolute vorticity gradient in the y- or cross-stream
direction. The unstable modes have a two-scale spatial structure in the y-direction
paralleling that of the SWW solution itself. This is related to the fact that the shear
of the basic flow,

=4y
islarge in comparison with the absolute vorticity contrast g across the narrow region
of reversed vorticity gradient to which the instability owes its existence. The
maximum growth rate turns out to be of the order of d¢g. Even though this is much
slower than the basic shear rate A, it is much faster than the rate at which the SWW
solution itself evolves. Consequently there is a separation of timescales which permits
the time evolution of the SWW flow to be ignored in the instability analysis.

t This result was first announced in December 1979 at the 17th IUGG General Assembly;
see Ruttenberg (1980).

1 Itis also possible that the disturbances appearing in Béland’s simulation had a different cause,
namely the resonant amplification of stable harmonics recently studied by Ritchie (1985). But for
reasons to be given in §4 we think that the explanation in terms of instability is the more likely
alternative, on present evidence.
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Moreover, there is a corresponding separation of streamwise or xz-scales, which
permits the use of a local parallel-flow approximation. The disturbance 2-scale is much
smaller than that of the SWW solution, albeit much larger than the width of the
critical layer. These scaling relations imply, incidentally, that the unstable distur-
bances can always be treated as inviscid. If viscosity is small enough for the SWW
solution to be applicable in the first place, then it is a fortiori negligible for the faster-
evolving instabilities, since the same minimum spatial scale, the critical-layer
width, is relevant to both.

The scale separation in y between the inner, critical-layer region and its surroundings
gives rise to a further parallel between the instability and the basic SWW solution.
This will prove to be significant for understanding the long-time evolution of the
critical layer. The matched-asymptotic theory, which is used to compute the
structure of the unstable disturbances to leading order, predicts that the nonlinear
saturation of the instability, and the concomitant rearrangement of vorticity, will
take place in the inner, critical-layer region only. Although the outer region plays
an essential role in the nonlinear evolution of the instability, through the coupling
to the inner region expressed by the matching conditions, the dynamical behaviour
of the outer region itself remains linear to a first approximation, just as in the SWW
solution itself.t

1.3. Could the instability give rise to prolonged absorption?

Accurate calculations of the nonlinear development of the instability are given in
the following paper (Haynes 1985). As anticipated from order-of-magnitude estimates
(§3 below), the amplitudes at which the instability typically saturates turn out to
be more than enough to cause a substantial two-dimensional rearrangement of
vorticity within a finite central region of the critical layer. The width of this region
is numerically of the same order as that of the cat’s-eye pattern in the SWW stream
function. Such a rearrangement of vorticity may be expected to lead to a time
evolution which differs substantially from that indicated by the continuous curve in
figure 1 since, as will be recalled in §2, the absorptivity of the critical layer is a
functional of the vorticity distribution within it.

At this point, one might be tempted to speculate (as in fact we did in the early
stages of this work) that the instability might lead to prolonged absorption, and that
this might explain the absorptivity seen in the Earth’s atmosphere over timescales
of the order of a month or more, according to certain well-established meteorological
statistics (e.g. Starr 1968; Edmon, Hoskins & McIntyre 1980 ; Karoly 1982 ; Hamilton
1982; Held 1983, p. 145 and references). Although Béland’s results did not suggest
this (cf. dashed curve in figure 1), it seemed reasonable to suppose that they might
have done so had the numerical resolution been higher, and the instability better
resolved. The idea appeared to be supported by an intuitive appeal to the notions
of ‘mixing length’ and ‘eddy viscosity’, since the disturbance velocity and mixing-
length scales predicted by the instability theory and its nonlinear extension can be
shown to correspond to an exceedingly viscous critical layer and therefore, it might

+ This aspect of the situation finds an illuminating analogy in what, at first sight, might appear
to be an unrelated problem, namely that of the action of musical oscillators such as the clarinet
or bowed string. The nonlinearity controlling the saturation amplitude is largely concentrated in
one place, at the reed or bow, whereas the time evolution of the system as a whole depends on the
coupling between the nonlinear element and the rest of the system, exactly as it does in the
critical-layer problem. (For recent reviews see Fletcher 1979, and MclIntyre, Schumacher &
Woodhouse 1983.)
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be thought, to an absorber (Lin 1955; Haberman 1972; Béland 1978; Brown &
Stewartson 1978; Tung 1979; Smith & Bodonyi 1982).

However, it will be shown in §§5-7 that, in a very wide set of circumstances, the
opposite is the case. This well illustrates the dangers inherent in too careless a use
of the notion of ‘eddy viscosity’, even for the purpose of an order-of-magnitude
argument. We shall see that over long periods of time the critical layer must, on
average, be a perfect reflector, in a sense to be defined in §1.4 below, no matter how
chaotic the motion may be in any finite central region. More precisely, a critical layer
of bounded width, such as might be set up by a Rossby wave of bounded amplitude
and constant streamwise phase speed, will be a perfect reflector in the long-time
average — even though the time evolution of its absorptivity may well differ, in other
respects, from that suggested by the SWW solution — whenever the fluid motion is

(i) two dimensional,
(ii) free of sources and sinks of vorticity due to external forcing,
(iii) unable to advect vorticity into or out of the critical layer (implying that the
critical layer always consists of the same material fluid elements,} and
(iv) unable to diffuse vorticity towards or away from the critical layer.

The vorticity may be subject to diffusion or to any other laminar or ‘turbulent’
transport process within the critical layer, provided that the transport is confined to
some central region having finite width, so that (iv) is satisfied and provided also that

(v) the transport process just referred to is such that the range of values of
absolute vorticity stays bounded in the region affected.

Even up-gradient vorticity transport is allowed, therefore, as long as it is not so
persistently up-gradient as to cause the range of values to increase without bound
in the region affected by the transport. Note that, in the assumed circumstances,

(vi) the critical layer is free of external sources and sinks of mean momentum,

where ‘mean’ refers to the usual streamwise Eulerian mean. Otherwise, (ii) would
be contradicted for a critical layer of finite width. Finally, the motion is assumed
incompressible to a sufficient approximation, as is usual when talking about Rossby
waves.

The foregoing statements imply, inter alia, that the sustained absorption exhibited
by the viscous critical-layer models usually studied cannot be attributed solely to
the diffusion of vorticity within a given central region. The fact that these models
violate condition (iv) is crucial. The work of Haberman (1972), Brown & Stewartson
(1978) and Smith & Bodonyi (1982) has shown clearly that, in such models, which
assume spatially uniform viscosity, x-averaged vorticity does indeed diffuse further
and further away from the centre of the critical layer as time goes on, occupying
regions of width O(#) on either side as ¢t > 0.

The sustained absorption seen in long-term meteorological statistics seems likely,
by contrast, to be due mainly to violation of conditions (ii) and (iii), reading ‘ potential
vorticity on an isentropic surface’ for ‘ vorticity’ (e.g. Charney & Stern 1962 ; Hoskins
et al. 1985). If eddy viscosity values are much smaller outside the central critical-
layer region than within it, as the instability theory suggests might typically be the
case in the real atmosphere, then condition (iv) could be relatively well satisfied
and the usual concept of a viscous critical layer irrelevant.

t Note that condition (iii) is violated if fresh fluid elements are carried into the critical layer
by mean circulations, or if the critical layer moves through the fluid.
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1.4. A bound on the time-integrated absorptivity

The general measure of absorptivity to which the foregoing statements will be shown
to apply is the jump [u’v'] in the wave-induced Reynolds stress or Eulerian
momentum flux w’»’ across the critical layer. (In the meteorological case, read
‘convergence of the Eliassen—Palm flux onto the critical layer’.) The overbar
represents the Eulerian mean with respect to the streamwise coordinate z, and (u’, v’)
are the (z, y) components of the departure of the velocity field from its Eulerian mean.
In the case of the SWW solution, the continuous curve in figure 1 can be regarded
as a graph of —[u’v’] against time, the normalization and sign convention being
chosen such that the value at ¢ = 0 corresponds to the rate of absorption predicted by
linear theory. The value zero corresponds to perfect reflection, as already implied.
We define the time-integrated absorptivity as

t
aft) = L (wv']dt (1.1)

(with the sign conventions used by SWW). In the case of the SWW solution, it is
proportional to minus the area under the continuous curve in figure 1 up to time ¢,
and it is shown in the appendix to take the finite limiting value
A \3
2
a(o0) = 3.0858 ‘;—Z/" (%EA—) (SWW case), (1.2)
where £ is the z-wavenumber of the incident Rossby wave, and # the amplitude of
the y-component of the disturbance velocity at the critical layer, which is constant
with time in the SWW solution. The magnitude of a(c0) is shown in figure 1 as the
area of the finely dotted rectangle.

The general result to be proved in §§5-7 may be stated as follows. If conditions
(iy-(vi) of §1.3 are satisfied, a critical layer of bounded width set up by a Rossby wave
of bounded amplitude (the bounds on the width and amplitude being independent
of t) must satisfy a relation of the form

|a(t)| < apayx (for all 2), (1.3)

where the bound a,,,, depends on the width and amplitude but is independent of ¢.
It is in this, quite strong, sense that the critical layer must be a perfect reflector
in the long-time average, regardless of the details of its time evolution. In particular,
if a steady state should be reached it must be one of perfect reflection, just as was
originally predicted by the BBDH model, where ‘reflection’ would in general include
contributions to #»” due to radiation of higher harmonics from the critical layer,
if any.t Explicit expressions for a,,. are presented in §§6, 7, after giving
appropriate definitions of ‘bounded wave amplitude’ and ‘bounded critical-layer
width’. There are different versions representing different tradeoffs between simplicity
and sharpness of the bound. The expressions for a,,, have the order of magnitude
suggested by the right-hand side of (1.2), or more generally by (1.10)—(1.12) below.

One implication of these results is that in cases where the absolute vorticity is
uniform throughout the critical layer a,,, is zero. Therefore a(¢) itself must be zero.
It follows that in such cases the critical layer is a perfect reflector for all time ¢,
whether in the linear or nonlinear stages of its development. In other cases where

+ Tt happens that there are no such contributions in the BBDH and SWW models; in the latter
case this is a consequence of the boundary conditions imposed, which prevent the higher harmonics
from radiating away.
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(potential) vorticity gradients are sufficiently weak within the critical layer, any
absorption or over-reflection that takes place must be correspondingly weak for all
t, a fact which may be significant for certain problems in large-scale atmospheric
dynamics (e.g. Tung & Lindzen 1979a,b; Tung 1979; McIntyre 1982; McIntyre &
Palmer 1983).

Although the wave amplitude must be assumed to be bounded for all ¢, in order for
the result (1.3) to apply, it need not be small. Included is the meteorologically
important case of large wave amplitude, in which ‘critical layers’ are certainly
nonlinear, but certainly not thin. Thus the results of §§5-7 represent a significant
extension of the scope of critical-layer theory. In particular, the method of matched
asymptotic expansions is not used in the proof of (1.3). Nor is any particular cat’s-eye
structure assumed.

The result (1.3) is a direct consequence of the conservative behaviour of (potential)
vorticity, which is neither created nor destroyed in the circumstances considered
(although it may, for instance, be diffused). For the purpose of proving (1.3), the
‘critical layer’isdefined as the material region within which significant rearrangement,
mixing, diffusion, or turbulent transport of vorticity takes place. In the assumed
circumstances, the width of this region will be bounded provided that condition (iv)
holds. It turns out to be a matter of some delicacy to decide precisely how much
vorticity rearrangement is ‘significant’. In the case of the SWW solution, for
instance, most of the vorticity rearrangement does take place in and near the cat’s
eyes of the central region, as illustrated in figure 2 below, but a certain amount takes
place also in a much wider region including the outer flow. This is due to the presence
of starting transients which render the disturbance not quite monochromatic with
respect to streamwise phase speed (Dickinson 1970). They take the form of ‘sheared
disturbances’, which are equivalent to a continuous spectrum of phase speeds and
are described in the well-known way by disturbance fields having the form of a
function of ¢ times a sinusoidal function of (x—Ayt) (e.g. Kelvin 1887; Yamagata
1976; Brown & Stewartson 1980; Rhines & Young 1983; Shepherd 1985 and
references). Their presence in the outer flow is the reason why a full asymptotic
solution of the problem for large ¢ requires the use of multiple-scale as well as
matched-asymptotic techniques, beyond a certain level of approximation, as was
shown by Warn & Warn (1978).

If we ignore this point for the present — it is dealt with rigorously in §§5-7 — then
a simple ‘mixing argument’ can be used to make the result (1.3) immediately
plausible, and to give a rough idea of likely values for a(c0) and a,,,. Consider a
thought experiment in which the source of Rossby waves is gradually turned on and,
after an arbitrarily long time interval, gradually turned off again. Assume that the
initial and final states are both parallel shear flows, independent of x, with absolute
vorticity profiles g,(y) and q.(y) respectively.t Assume further that there is no
permanent rearrangement of vorticity (including that due to diffusion or other
transport processes) anywhere except within a ‘mixing region’

lyl <10, (1.4)

1 The notation ¢ for absolute vorticity is chosen for later convenience and also to suggest the
meteorological generalization to stratified, rotating flow, in which the symbol ¢ is often used to
denote a quantity that is then relevant, the quasi-geostrophic potential vorticity. The horizontal
distribution of ¢ approximately corresponds to the (more fundamentally significant) isentropic
distribution of Rossby—Ertel potential vorticity. See, for example, the important paper by Charney
& Stern (1962), and the recent review by Hoskins et al. (1985).
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of constant width, b, which for present purposes we identify with the critical layer.
The difference

A(y) = 4(¥) ~ 2(y)
between the initial and final absolute vorticity profiles then vanishes outside the

mixing region, and vorticity conservation dictates that the integral of Aq across the
mixing region must be zero:

1h
Lb Aq(y)dy = 0. (1.5)

Aq(y) is related to the corresponding change Awu(y) in the velocity profile by
Aq(y) = —0Au(y)/dy, so that

Y
suiy) =~ [ Baty)dy. (16)

Au(y) vanishes outside the mixing region, by (1.5). It is related to the time-integrated
absorptivity by momentum conservation, in virtue of condition (vi) above. We have

o _ b 10
a(o0) = J [w'0'1#, di = —F Au(y)dy = —f yAq(y) dy, (1.7)
[} —1p —éb
where the last step uses integration by parts and depends on the vanishing of Au(y)
outside the mixing region. Suppose now that the range of values of absolute vorticity
g within the mixing region satisfies

Imin < q < @max - (1-8)

Here ¢, and g, can be taken as finite constants for all ¢, by condition (v). There
are two functions Aq(y) that maximize the absolute value of the last integral in (1.7)
under the constraint (1.8), namely the step functions

Ag(y) = £ (Gmax — Tmin) 580 Y- (1.9)
Evaluating the integral, we deduce that (1.3) holds with ¢ = 0o and
Umax = Hdmax —Imin) O*. (1.10)

Such a Ag(y) is of course highly improbable — indeed it may not even represent a
g-conserving rearrangement, for general ¢,(y) — and so we do not expect this bound
to be at all sharp. For instance, suppose that the initial absolute vorticity profile has
constant gradient dg,/dy, and assume perfect mixing. Then the final value of the
absolute vorticity gradient is zero in the mixing region, and evaluation of the
right-hand side of (1.7) gives

_ L 4%,

This is one third of the bound given by substituting ., — ¢min = b dge/dy into (1.10),
namely

(1.11)

1 dg,
Amax = 1 Eyﬂ be.

The assumption of perfect mixing may not be very realistic (e.g. Clough et al. 1985;
MclIntyre & Palmer 1984 ; Haynes 1985), but the expression (1.11) is probably closer,
nevertheless, to actual large-time values of a(t) than (1.12) would be.

The estimate (1.11) suggests an intuitively appealing way of characterizing the
time-integrated absorptivity of a Rossby-wave critical layer, in terms of a ‘mixing

(1.12)
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width’ b,,. For any Rossby-wave critical layer whose absolute vorticity gradient has
a constant initial value dg,/dy and for which the limit «(o0) is attained, one could
define its ‘mixing width’ b, as the value of b which makes the right-hand side of (1.11)
equal to the actual time-integrated absorptivity, i.e.

a(oo)
b, =112 . 1.13
i dg,/dy ( )
In the case of the SWW solution, (1.2) and (1.13) give
a W
b |z
b, = 3.3331 Al (1.14)

which is about five-sixths of the width of the cat’s eyes in the stream-function pattern.
This is indicated by the bar at the centre of figure 2 (d) below.

The analysis to be given in §§5-7 improves on the simple mixing argument just
given, by replacing the unrealistic assumption (1.4), that of a finite mixing region,
with a realistic assumption about the rate at which disturbances to the vorticity field
fall off with distance from the central region. The resulting proof of (1.3) is rigorous
and quite generally applicable. It applies for all ¢, does not require the incident wave
to die away after a certain time, and does not require vorticity rearrangement to be
wholly confined to a region of finite width. The mathematical questions involved are
not entirely trivial. This can be seen at once from the presence of the factor y in the
integral on the right of (1.7) together with the fact that in some cases, for instance
that described by the SWW solution, the magnitude of the vorticity disturbance falls
off as slowly as |y|™! as |y |—> 0.

The general proof also avoids reference to the actual momentum changgLAu(y) dy.
Rather, it is expressed directly in terms of disturbance correlations like w'v” and the
corresponding vorticity flux v’q’, which as is well known are related by the Taylor
identity 3
@(W) =—vq. (1.15)
This route to (1.3) is a better preparation for extending the analysis to the
three-dimensional, meteorological case. In that case the actual momentum change
does not satisfy any relation as simple as (1.7), because of the existence of secondary
circulations in the (y,z)-plane which redistribute absolute angular momentum.
However, (1.15) generalizes immediately, the left-hand side being replaced by the
convergence of the Eliassen—Palm flux, as is well known, and the right-hand side by
minus the flux of quasi-geostrophic potential vorticity.

The mathematical tool on which the general proof depends is a finite-amplitude
conservation theorem for time-dependent disturbances to parallel shear flows, which
appears to be new and which generalizes the well-known results of Taylor (1915) and
(for the three-dimensional case) of Eliassen & Palm (1961). The two-dimensional
version of this theorem is proved in §§5 and 7. The ‘diffusive’ case is included by
means of a formalism which expresses condition (v) of §1.3 in a somewhat abstract
but very general way, thus allowing for a very wide class of vorticity-transport
processes of which ordinary downgradient diffusion is a special case. The only
restrictions are those dictated by condition (v), and implicitly by condition (vi): the
transport process must not, of course, violate momentum conservation. The
conservation theorem may have applications other than the present one. In the
non-diffusive case the theorem can be inferred from a mathematical analogy between
the present problem and the notion of ‘available potential energy’ for a stratified
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fluid, as suggested by the forms of the right-hand sides of (1.7) and (1.15). The result
(1.3) corresponds, in the analogy, to the statement that the potential-energy change
due to rearrangement of a stratified layer of finite depth is bounded.

We now turn to the SWW solution and its instability.

2. The SWW solution

The review to be given in this section will introduce some essential notation, and
will also remind us of the fact that the fluid-dynamical situation described by the
SWW solution has two cardinal features in common with other, more complicated
cases, including cases in which the instability is excited and modifies the properties
of the critical layer. First, the absorbing or reflecting properties of the critical layer
depend mainly on the distribution of vorticity within and near the Kelvin ‘cat’s eyes’
of the stream-function pattern. This vorticity field induces a velocity field which
extends outside the critical layer and thereby influences the outer flow. Secondly, the
time evolution of the vorticity distribution within the critical layer is given by a
conceptually simple rule: take the leading approximation to the cat’s-eye streamline
pattern, which is controlled by the linear, wavelike flow outside the critical layer
through the leading-order matching condition, and use the corresponding approxi-
mate velocity field to advect the absolute vorticity distribution within the critical
layer. For this purpose one can neglect the correction to the velocity field induced
by the changing vorticity distribution. Within the critical layer, it is a higher-order
contribution. In summary,

(e) as far as the inner, critical-layer problem is concerned the absolute vorticity
behaves like a passive tracer to leading order, but

(b) itsinduced velocity field is important to leading order outside the critical layer,
being the means whereby the critical layer exerts its influence upon the outer
flow and acts as an absorber, reflector, or over-reflector.

In the case of the SWW solution itself, there is a further simplification. Conditions
in the outer flow, including the boundary conditions, can be chosen in a special way
(Warn & Warn 1978, §6; (2.24) below) such that the changes induced in the outer
flow by the evolving vorticity distribution within the critical layer do not react back
upon the leading-order cat’s-eye streamline pattern. The cat’s-eye flow can therefore
be taken as steady, to leading order, throughout the nonlinear evolution. The
resulting absolute vorticity distribution within the critical layer is particularly
simple. It is illustrated in figures 2 (a), (b), (¢), (&), at four successive instants corres-
ponding respectively to the times marked £,,¢,, ., and {4 on the abscissa in figure 1.
The cat’s-eye flow is twisting up the contours of constant absolute vorticity like
spaghetti on a fork. The possibility of shear instability is at once apparent from the
fact that regions of reversed absolute vorticity gradient exist after a certain time ¢;,
lying between ¢, and #,, and also marked on the abscissa in figure 1. The time ¢, is
the time for the centre of the cat’s eye to rotate through one right angle.

The leading-order analytical details of the SWW solution will now be summarized,
together with the scaling assumptions which define its parameter regime. As before,
(z,y) are streamwise and spanwise Cartesian coordinates and (u, v) the corresponding
velocity components. The starting point is the barotropic vorticity equation for
inviscid, two-dimensional, incompressible motion on a beta-plane, namely

Dg _

o =0 (2.1)
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@ ¥ V%@ @

F16ure 2. Contours of the absolute vorticity field predicted by the SWW analytical solution, at
four times ¢,, ¢, ¢, and ¢;. The dimensionless time units are the same as in figure 1; see also (2.21).
Linear theory (Dickinson 1970) is beginning to break down at time ¢,, panel (a), and perfect
reflection is attained just before time {4, panel (d). The y-scale is exaggerated for clarity. The abscissa
Y is expressed in units of Ay, where Ay is equal to e4/8, where g = dg,/dy is the basic absolute
(potential) vorticity gradient, and € the disturbance amplitude defined in §2. The bar at the centre
of (d) represents the ‘mixing width’ b, defined by equation (1.14).
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where the material derivative
b_ i+ u i+ v 2
Dt & o oy

and where the materially conserved quantity g is the absolute vorticity, as before.
It is defined by

(2.2)

g = fy+{+ constant, (2.3)
v Ou
where = % 3 (2.4)

the relative vorticity, and where £ is a positive constant, representing the planetary
vorticity gradient or northward gradient of the Coriolis parameter. The incompres-
gibility condition

Ou v
oty =0 (2.5)
permits the introduction of a stream function y(z, y,?), for which we adopt the sign
convention oy oy
TR A 4 (26)
giving { = + V) so that
g = By + V3 + constant. (2.7

These equations and definitions comprise the basic mathematical model to be used
until §7, where we generalize (2.1) to include the possibility of a non-advective
transport consistent with condition (v) of §1.3.

SWW examined weak, z-periodic disturbances, of wavelength 2n/£, say, to an
initial state with constant shear A:

u = uy(y) = Ay, g = q,{y) = fy+ constant. (2.8)
Thus ¥ =—14y*t+ed(x,y,t), (2.9)

say, where ¢ is a small, dimensionless parameter. It is convenient at this point to
redefine the symbols x,y,, ¢, ¥ and ¢ so that they become dimensionless quantities,
using the natural scales

A/ for x,y,
A~ for ¢,¢7%, (2.10)
A3/ 3 for yr, ¢.

When ¢ and y are both of order unity, i.e. away from the critical layer, the small
dimensionless parameter ¢ measures the order of magnitude of the particle
displacement in the y-direction in units of 4/f. The dimensionless forms of (2.7) and
(2.9) are the same expressions with £ and 4 set equal to unity. Substituting these
into (2.1) ff., we get

Vig,+y Vi, + 4, +ed, Vi, — 9, Vi9,) = 0, (2.11)

where the suffixes z, y and ¢t denote partial differentiation.

The SWW solution depends not only on assuming that e is small, but also on
considering solutions to (2.11) whose z-wavelengths are long in comparison with the
natural lengthscale 4/8 (more precisely, £ < #/A), so that the operator V2 appearing
in (2.7) and (2.11) may be approximated by 0%/0y? for all y. (Warn & Warn’s formal
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analysis covers many other cases as well, but these do not admit analytical solutions
and will not be considered here.) Let

,u=ﬁ'/—1<1, (2.12)
B
and introduce the corresponding slow x and ¢ variables
£ =px, f=pt; (2.13)

& is the z-distance measured in radian wavelengths, and { = 1 represents the time for
a fluid element at y = 1 (dimensionally, at y = A/f) to be carried a dimensional
distance £~ by the basic flow (2.8). These assumptions allowed SWW to simplify

(2.11) to ) )
¢yy£+y¢yyx'+¢:i+e(¢:i: (ﬁyyy_éy éyyz‘) = 0(.”/2)’ (214)

where the symbol ¢ denotes ¢ regarded as a function of £,y and .
SWW considered flow in a domain — oo < y < y,, with y, formally of order unity,
and took the initial and boundary conditions to be

$=0 (y<y,li=0), (2.15a)
$>0 (y>—o0,{>0), (2.15b)
¢ =Re(ae'®) (y =y, [>0). (2.15¢)

These describe the switching on, at { = 0, of a steady sinusoidal disturbance aty = y,
such as might be generated by the flow past a corrugated boundary. The constant
a appearing in (2.15c¢) is taken to be real and of order unity; its numerical value will
be chosen shortly in a way that will prove convenient.

The work of Dickinson (1970), Warn & Warn (1976) and SWW showed that the
leading approximation to the linear (¢ = 0) solution of (2.14) and (2.15) tends to a
steady state, for > 1, everywhere except within a non-dimensional distance O(t™1)
of the critical line y = 0. This steady-state, linear solution is

4= {Re [{4o f(y) + By gy} ] (y > 0), (2.16a)

Re[4,h(y)e®] (y <0), (2.16b)

where the real-valued functions f(y), g(y) and h(y) are defined in terms of the Bessel
functions Y,, J; and K, by

fly) = —nyt ¥, (2yt)

=1—ylogy—(2y—1)y+O0(? logy), (2.17a)
9(y) = ¥, (24%) = y+O(y?), (2.17b)
hy) = 2|y K (2|y )

= 1+|ylloglyl+@2y—1)|y|+0(|y|*loglyl), (2.17¢)

v = 0.57722 being Euler’s constant and the O symbols referring to the limit y—~0.
1t is straightforward to check that (2.16) satisfies (2.14) with the terms in /3¢, € and
4 neglected. The constants 4, and B, in (2.16) are determined, in this linear problem,

by the relations )
B, =—ind, (2.18)

and Ao fyo)+ Bygly,) = a. (2.19)

The last relation expresses the boundary condition (2.15¢).
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According to (2.16) and (2.17), @ is continuous across the critical line y = 0. The
continuity of @, together with the relation (2.18), can be deduced either from the exact
solution of the initial-value problem (Dickinson 1970; Warn & Warn 1976) or
alternatively from an application of the method of matched asymptotic expansions
(SWW). We note that the dimensionless Reynolds stress —@; @, implied by (2.16)
is constant in y > 0 (Taylor 1915; Foote & Lin 1950; Eliassen & Palm 1961), being
proportional to the Wronskian fg' — f'g = 1. The Reynolds stress is zero in y < 0, and
the resulting jump discontinuity across y = 0 is given by

[—¢:8,]1 = 1Im (4, B}), (2.20)

where the asterisk denotes the complex conjugate.

The validity of linear theory ceases when { becomes large, of order ¢~} (Warn &
Warn 1976), at which time the e-term in (2.14) becomes significant. It does so within
the critical-layer region y = O(et). From then on a still slower time variable

T=etf=cu (2.21)

is appropriate; it is this that corresponds to the timescale of the nonlinear evolution
illustrated in figures 1 and 2. SWW showed that the steady-state y-structure
expressed by (2.16) and (2.17) is still relevant outside the critical layer on this
timescale, but that because of the nonlinear evolution within the critical layer the
constants 4,, B, in (2.16) become functions of T, with (2.18) ceasing to hold, while
extra terms representing the higher harmonics of exp (i€) appear in the solution.
Following Stewartson, we express this state of affairs succinetly by writing

A@#,1), B T)
in place of (2.22)
Re[4,¢'%], Re[B,e'?),
in (2.16), with A4(#, T), B(&, T) real, so that, in particular, the boundary condition
(2.19), with a real, is replaced by
A&, T) fly,)+ B(&, T) g(y,) = a cos . (2.23)

The SWW solution describes the nonlinear behaviour, for order-unity values of 7,
in the set of special cases for which g(y,) = 0 (and f(y,) + 0) so that (2.23) constrains
A to be independent of 7. The boundary positions for which g(y,) = 0 are

Yo = (&jy. n)? = 3.671,12.305,25.875, ..., (2.24)

J1,» being the nth zero of the Bessel function J;. In the remainder of this section,
and in §§3 and 4, we restrict attention to these cases, and without loss of generality
choose a in (2.15¢) and (2.23) to be such that

A2, T) = A(&) = cosZ. (2.25)

Now if we substitute into (2.16) and the dimensionless form of (2.9) the leading-
order, O(1) terms of (2.17), we obtain the following small-y approximation to ¥, the
dimensionless total stream function ¥ regarded as a function of £, y and {:

¥ ~—1y2+¢cosé. (2.26)

SWW showed that this gives the leading approximation to the total stream function
even inside the critical layer, y = O(e?), and not only at the end of the linear stage
(as already shown by Dickinson’s solution) but also throughout the nonlinear stage
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of evolution, 7' = O(1). The velocity field whose stream function is (2.26) is a steady
Kelvin cat’s-eye flow, the bounding streamline through the saddle points of i being
given by i = —¢, i.e. by

y = +2¢t| cos (&%) |, (2.27)

showing that the maximum y-extent of the cat’s eyes is just + 2¢! in units of 4/,
or +2 in terms of the scaled y-coordinate

Y=¢ty (2.28)

for the critical layer. The timescale for the nonlinear evolution, corresponding to
T ~ 1, can be thought of as the time for a fluid element to travel a substantial portion
of the way around one of the cat’s eyes. For instance a fluid element near the centre
of a cat’s eye, e.g. an element near the origin, makes a single round trip when 7'
increases by 2.

SWW’s analysis showed that the absolute vorticity ¢ in the critical layer takes the
form

q = e Q(&, Y, T)+ constant, (2.29)
where Q, Y, T)= Y+@Q,& Y,T)+O0(e loge), (2.30)

Q, @, as well as Y being order-unity quantities, and where Y +@,, the first approxi-
mation to the scaled absolute vorticity, satisfies
LA A a) _
(a—,_,~,+ 237 37 Y+ =0 (2.31)

Here ¥, is the appropriately scaled form of (2.26) (scale €) written as an order-unity
function of (£, Y):

@, (&, Y) = —1 Y2+ cos £. (2.32)

Since ¥, is a known function, {, may be computed to leading order simply by
integrating the first-order hyperbolic equation (2.31) along each steady streamline
of (2.32), either numerically, or analytically using Stewartson’s implicit solution in
terms of elliptic functions.t Either procedure, as we ourselves have verified, gives
the results shown in figure 2, where T'/4/2 = 1, 1.5, 2 and 3 in panels (a), (b), (c) and
(d) respectively. The situation described by (2.31) and figure 2 is a special case of the
more general statement (@) made at the beginning of this section.
For later reference we note the asymptotic approximation

Q, ~ %, {cos (&— YT)—cosd} (Y > T) (2.33)

(Warn & Warn 1976, 1978; Stewartson 1978), which satisfies (2.31) with zero initial
disturbance if we make the approximation corresponding to linear critical-layer
theory, viz. neglect the term —sin £ 0@, /0y in (2.31) with (2.32) substituted. It is the
large- Y behaviour indicated by (2.33) that gives rise to the difficulty in using (1.7)
mentioned earlier; (2.33) also illustrates the development outside the cat’s eyes of
the ‘sheared disturbances’ mentioned in §1.4. These are visible near the periphery of
figure 2(d).

The vorticity anomaly @, induces a jump [—@,] in the dimensionless z-velocity

T The fluid flow (2.32) is the same as the (incompressible) phase-space flow for a simple pendulum
(Whittaker 1937, p. 72-74).
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component —¢,, as we move across the critical layer, so that (2.18) is replaced by

BaN=| QY (=(4,). 234)

Here 3[ and [ ] denote the Cauchy principal values of the respective limits | Y| - o0
and |y|—-0. B(#, T) is an odd, periodic function of & whose nth harmonic is

B, (T) sin (n),
oy (2.35)
where B,ﬂ’):E f B(&, T) sin (n£) dé.

Thus, recalling that A(Z, T) = cos £, we see that (2.20) is replaced by
[—@:¢,] =31B,(D), (2.36)

giving the time evolution of the dimensionless Reynolds-stress jump according to the
SWW solution. The quantity plotted in figure 1 is actually — B,(T), which is equal
to the traditionally defined ‘logarithmic phase jump’. As figure 1 shows, it takes the
value —n for small 7. The value —=n can be directly verified from the asymptotic
solution (2.33) using contour integration in (2.34), or alternatively from compatibility
with (2.18), or yet again from the fact that, because of the well-known properties of
linear differential equations, (2.165) must be the analytic continuation of (2.16a), via
the lower half-plane, at the end of the linear stage. The value —B, = —n is often
regarded as signifying perfect absorption, since this is true in a certain class of
incident-wave problems, including the one originally solved by Dickinson, in which
the basic shear and absolute vorticity gradient vary on a much larger y-scale than
A/B. In other cases the absorption may be only partial even when — B, = —= (e.g.
Tung 1979, equation (46)), depending very much on the relative values of the basic
absolute vorticity gradient near and away from the critical layer; recall the remarks
in the paragraph below (1.3).

In connection with the terminology ‘phase jump’ it should perhaps be recalled that
— B, does not represent any actual phase discontinuity in the spatial structure of the
disturbance itself, as is clear for instance from the fact that — B, = —n does not
signify the same state of things as — B, = +n. Rather, as Warn & Warn show (1978,
p. 43, q.v. for further discussion), —B, can be regarded as the jump in the
dimensionless phase slope 36/dy, where O(y,T) is the phase of the fundamental
complex Fourier component of the £-dependence of the disturbance stream function.
A better terminology might therefore be to call — B, the ‘ phase-slope jump’ (of the
fundamental harmonic).

Figure 3 compares the time dependence of the second and third harmonics — B,(7T)
and — B,(T) with that of — B, (7).

To complete our description of the SWW solution, we note the approximation to
the total stream function within the critical layer that corresponds to the leading-order
relative-vorticity distribution @,. This may be written in terms of the scaled critical-
layer stream function ¥ defined by

P&, Y, T) = e 1y(&,y, T, (2.37)
to which !7’0 in (2.32) is the leading approximation. We have
Y, Y, T) = ¥, Y)
—Letloge) ¥ cos&—ed{(2y—1) ¥ cos &+ ¥} + O(e loge), (2.38)
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Fundamental

Time -

Fioure 3. Time evolution of the first three harmonies —B,, —B,, — B,, defined in (2.35), of the
Cauchy-principal-value velocity jump across the critical layer, according to the SWW solution. The
first harmonic — B, gives the same curve as in figure 1; see (2.36) ff.

where f’l(.i, Y, T) is related to Q,(#, ¥, T) by

2

a_aﬁ V(£ Y,T)= Q& Y,T). (2.39)
The remaining terms in (2.38) all correspond to irrotational motions, to this order.
It is straightforward to verify, using the matching rules given, for instance, by Lesser
& Crighton (1975) and Van Dyke (1975), and recalling the asymptotic result (2.33),
that (2.38) represents a three-term inner expansion to the first three orders of the
asymptotic sequence

(1, et loge, €, € loge, ...), (2.40)

which matches the two-term outer expansion represented by (2.16) and (2.17)

together with the dimensionless form of (2.9). We note, in particular, that (2.39)

is consistent with (2.34)ff. We note also that, at the first two orders, the inner

problem permits ¥ to be any function of the (approximately irrotational) form

F(&,T) Y+ G(&, T), but that at the first order this cannot match the outer solutions

(2.16a, b) unless F = 0. Together with (2.23) and (2.24) this is what fixes the form

of the first approximation ¥, to be the form given in (2.32). The same principle wilt’
apply in the next section when finding the stream function describing the unstable

disturbance.

In preparation for the instability analysis it may also be useful to re-emphasize
what has already been said in several ways, namely that the higher-order terms in
(2.38) are not needed to describe the velocity field responsible for advecting vorticity
within the critical layer (recall (2.31)). At the order of accuracy to which the problem
has been solved, the higher-order terms in (2.38) arise solely as part of the machinery
whereby the matched asymptotics express inversion of the relation (2.7), regarded
as an equation for i with ¢ given. This of course is what is meant by the velocity
field ‘induced’ by a given vorticity field. The inversion is an elliptic boundary-value
problem involving the entire flow domain, both inner and outer regions simul-
taneously — albeit slightly disguised by the fact that, under the present assumption
(2.12), the operator V2 is everywhere replaced by 02/0y®. It is only in solving
that boundary-value problem that matching between the two regions is involved. By
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contrast, solution of the leading-order vorticity equation (2.31), for given ¥, does
not depend on any matching condition. This is evident from the hyperbolic character
of that equation.

If one were to extend the solution to higher orders of accuracy, one would find that
the matching would hold in a coarse-grained sense only, as Warn & Warn (1978) made
clear. This is because (2.16) and (2.17) neglect the sheared disturbances whose
presence is indicated by the large-Y behaviour of (2.33), and which extend into the
outer region where they give rise to a fine-grained structure with typical y-scale €,
vorticity amplitude ¢, and stream-function amplitude €2, in the units of (2.10). Warn
& Warn handle this explicitly by using a combination of matched-asymptotic and
multiple-scale techniques. In particular, the analogue of (2.29) for the outer solution
8 q=y+ed(#,y,Y,T)+ constant. (2.41)
Strictly speaking, the y-dependence of the stream funection (2.9) should be rewritten
in the corresponding way, but to the order considered this is inconsequential because
of the fact that the leading-order fine-grained contribution to the stream function
Y is O(€?), < ¢, because of (2.7) and (2.28).

3. The instability problem

We now consider disturbances to the slowly evolving flow discussed in §2. In place
of (2.29), the dimensionless absolute vorticity is assumed to take the form

q = {Q(z, Y, T)+Q(x, ¥, T)} + constant (3.1a)

in the inner region. @ is the undisturbed flow (to which figure 2 represents the leading
approximation) and § is the disturbance. Similarly, in place of (2.41), we assume

q = y+el§(#,y, Y, TY+§(x,y, T)} + constant (3.1b)
in the outer region. T is a new time variable whose definition is
T = e, (3.2)

and z is the dimensionless coordinate introduced in (2.10). The corresponding stream
functions are written as

v =e{¥& YT+ P, ¥,T) (3.3a)
and ¥ =—1y+edE y, T+ Pz, y, TV}, (3.3b)

for the inner and outer regions respectively. Strictly speaking, the y-dependences of
¢ and &, as well as that of @, should all be written in multiple-scale notation like the
y-dependence of ¢ because of the presence of the fine-grained structure in § mentioned
at the end of §2. But it will be found that the fine-grained structure does not enter
the instability problem to leading order. Consequently, to that order, § and ¢ have
the simple outer structure just indicated in (3.15) and (3.35). The whole picture will
be seen to be justified post hoc when we find growth-rate maxima within the assumed
class of disturbances, with modal structures consistent with the forms of (3.1)—(3.3).

Before proceeding, it may be useful to summarize all the time variables that have
been introduced. They are

t, t=ut, T=eét, T=dut. (3.4)

It is immaterial to our results which of the middle two is the slower time variable,
but it is essential that both are much slower than the left-hand variable ¢, and that
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both are much faster than the right-hand variable 7. We note that the dimensional
timescale corresponding to 7' is the reciprocal of

dq = e, (3.5)

which is therefore the dimensional scale for disturbance growth rates. Maximum
growth rates will in fact turn out to be equal to d¢ times dimensionless numbers
ranging up to 1.24, in the cases considered. The same quantity ¢ measures the typical
strength of vorticity variations within the critical layer, being 8 times the critical-layer
thickness et4 /8. Moreover, the corresponding timescale dg~! is equal to the time for
a fluid element in the critical layer to move a streamwise distance of order 4/8,
(non-dimensionally,  ~ 1), the streamwise scale of the disturbance. It will be recalled
that, by our earlier assumption (2.12), 4/f is much smaller than the scale £!
(non-dimensionally, £ ~ 1), characteristic of the SWW solution.

The foregoing scale relations have two important consequences. First, the distur-
bances can be analysed locally in « (although not in y); we can speak of growth rates
and disturbance structures ‘at’ different locations along the length of the SWW cat’s
eye. Secondly, growth will be effectively instantaneous when viewed on the longest
of the four timescales, that of the nonlinear evolution of the SWW solution. In
particular, the instability will have taken effect shortly after the time ¢;, and long
before the time t,, marked in figure 1.

To derive the equation satisfied by the disturbance in the inner region, we
substitute the expressions (3.1a¢) and (3.3a) into the dimensionless forms of (2.1)ff.,
subtract out the equation satisfied by the undisturbed flow, and replace t by e~27
and y by €~tY, etc. The result is

(ot nt it ) a2 2w (L D @r01=0. o

We may now introduce the approximate expressions (2.30) and (2.38) to represent the
undisturbed (SWW) flow, and drop all but the leading terms under our scaling
assumptions. The inner disturbance equation simplifies to

0 0 0 ~
(5= Tor ) O+ Fop (V400 = = 2,8y + 2,4, (3.7)

with relative errors O(x) and O(et loge). The only surviving factor involving ¥ is
0%,/0Y, which by (2.32) is just — Y. The remaining contributions from (2.38) are still
negligible as far as their advective effects are concerned. Going through the
corresponding procedure for the outer region, we find simply

Y§,+ 6, =0, where §=V3§. (3.8a,b)

The dominant relative error is O(et), from neglecting the 0§/0T and §,0§/0Y terms.t
The full two-dimensional Laplacian appears in (3.85) because of the fact that the x-
and y-scales for the instability are both 4/8.

It is noteworthy that § does not appear in (3.8) at all. The outer problem is linear,
under our scaling assumptions, and the principle of superposition applies to the outer

1 This is the dominant formal error from the process of approximating the outer equation, but
it should be added that we expect a very slightly larger relative error O(e! loge) in the leading-order
outer solution to be obtained. This is not due to any term neglected in the outer e(}uation. Rather,
it is induced by the inner vorticity distribution, whose relative error will be O(¢? loge) just as it
is in (2.30).
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portions of the unstable disturbance and the SWW solution when both are regarded
as disturbances to the original parallel shear flow. (This is why the fine-grained outer
structure does not enter the instability problem to this order.) By contrast, the inner
equation (3.7) has nonlinear terms on its right-hand side, a consequence of the fact
that so far § has been allowed to be comparable in magnitude to ¢, both being
dimensionless quantities of order unity. Although, as it happens, the second term on
the right of (3.7) is negligible to leading order, for reasons about to be explained, the
first term is by no means negligible except in the early exponentially growing stages
of the disturbance evolution.

The second term on the right of (3.7) is negligible, even when the first term becomes
important, for the same reason as was indicated earlier for the SWW solution. The
expansion for ¥ has the same structure as the expansion (2.38) for ¥, and the
matching condition on the leading term %(x, Y, T dictates, in essentially the same
way as before, that this term is a function of x and 7 only:

Y(x, Y,T) = ¥z, T). (3.9)

This is the only significant contribution to (the advective effects of) the disturbance
stream function ¥, both on the left and on the right of (3.7), in precise analogy to
the situation with ¥ aiready explained.

The forms of (3.7) and (3.8) (together with the fact that growing solutions
consistent with the implied scalings will indeed be found) imply that the nonlinear
saturation of growing disturbances will take place in the inner region, as was asserted
in §1.2, and that the disturbance will indeed reach amplitudes such that § is
comparable to unity, at least in an order-of-magnitude sense. Moreover, numerical
evaluation of the first nonlinear term on the right of (3.7), using the fastest-growing
disturbances found from linear theory (§4), strongly indicates that nonlinearity
cannot stop ¢ from growing to amplitudes numerically 2 1, at least in some cases.
This implies that substantial rearrangement of the SWW vorticity patterns shown
in figure 2 must take place, on the timescale d¢~*. Details of these estimates are
omitted, since they have been superseded (and their implications confirmed) by the
quantitative calculations of nonlinear saturation amplitudes given in Haynes (1985).
Note that, if we were to assume (naively) that the effect of the rearrangement is
equivalent to that of an eddy viscosity compatible with the foregoing scaling
relations, then its value would greatly exceed the values required to make the SWW
solution into a viscous critical layer. This follows from the fact that fluid elements
travel across the critical layer in a time of order d¢~, which as already emphasized,
is much faster than the time on which the SWW solution evolves.

We now turn from order-of-magnitude considerations to an explicit consideration
of the disturbance structure.

Since (3.7) and (3.8) have z-independent (albeit #-dependent) coefficients, the
problem is locally (in x) a parallel-flow instability problem. It is therefore natural to
represent the local disturbance structure by means of Fourier integrals. Thus, in the
outer region, we assume that the leading-order disturbance is locally represented by

s o]
jx,y, T) = J dkel** §(k,y, T), (3.10a)
—o

and d(x,y,T) = 'fw dkel*z $(k, y, T). (3.100)
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The corresponding transforms Q(k,y,T) and ¥,(k,T) will be used to represent
Q(z, Y, T) and ¥,(x,T) in the inner region. From (3.8), ¢ satisfies

951111"'(;_’02)95:0- (3.11)

In the absence of the boundary at y = y,,, an appropriate (|y|-evanescent) solution
to (3.11) would be

1
—lkyl
A Clk, T)F<2|k|+1> U(2|k| 0, 2|Icy|) (y > 0), (3.12a)
9= .
—lky|
Ck, T) <2|k|+1> U<2Ik| 0, 2|ky|) (y < 0), (3.12b)
where I'(.) denotes the gamma function and U(., ., .) the second confluent hyper-

geometric function, in the notation of Abramowitz & Stegun (1965). The expressions
(3.12a, b) decrease exponentially towards zero as y—~= cc. To satisfy the boundary
condition ¢ = 0 at y = y, < o0 we must add to (3.12a) a term proportional to

lim {I'(0)} ™" M{—(2|k])~", o, 2| ky|},
o0
which cancels the contribution from U at y = y,. Here M denotes the first confluent
hypergeometric function. However, we may neglect the M-term for present purposes
since it was found to change growth rates for the fastest-growing disturbances by only
a few percent at most, in the cases considered, even when y, takes its smallest possible
value in (2.24). For the more distant boundary positions the effect is far smaller still,
indeed utterly negligible vis-d-vis the numerical accuracy of the growth-rate
computations to be presented in the next section. The reason is the exponentially
decreasing behaviour of (3.12a) as y increases towards y,, and the exponentially
decreasing behaviour of M as y decreases back towards 0.
The coefficients in (3.12a, b) have been chosen to make ¢ continuous across y = 0,
as was done in (2.16). This is necessary to match with (3.9).
For small y, (3.12) reduces to

={0(k, T)(1—ylogy+a, y+0(y*logy) (y>0), (3.13a)
Ok, T) (1+]y| logly|+a ly|+O0(ly|2loglyl)) (y<0), (3.13b)

where the coefficients

N e}

a.=|k|+log2|k|)+ {(2|1k|)+27 1}

See e.g. (13.1.6) and (13.4.17) of Abramowitz & Stegun (1965). Here v iz Euler’s
constant as before, and

v()y=1"0)/1(), (3.14)

the logarithmic derivative of the gamma function, more usually denoted by . Note
that to match with (3.9) we have

Cik, Ty = ¥,(k, T), (3.15)
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where ¥,(k, T) is the Fourier transform of ¥,(x,T). Furthermore, (3.13) shows that
the Cauchy principal value of the jump in the y-derivative q§y across y = 0 is

- -1 1
(,1=C(k,T) (@, +a.)=Ck,T) {2|k|—v(m>+v<m)},
= —nC(k, T) cot(2|kl) (3.16)
The last step uses the fact that
Hp) =~ )+ =~ cot (o),

from (6.3.5) and (6.3.7) of Abramowitz & Stegun (1965), or from logarithmic
differentiation of the well-known formula I'(p) I'(—p) = —p~'n cosec (pn). It follows
that, in order for ¢ to match the corresponding Fourier component of the inner
solution, the latter must satisfy

J[i, Q,Y, T)dY = —nC(k, T) cot(2|k|) (3.17)

As before, this result can be verified from the matching rules, in the same way as
(2.34).
The problem has now been reduced to solving the Fourier transform of

0 0
(3+ ¥ o) O+ Fau 5 (Y40 == B0, By, (3.18)

the relevant simplification of (3.7), with ¥,(k, 7)) given by (3.15) and (3.17). In the
next section we establish that this problem admits exponentially growing solutions
when the right-hand side of (3.18) is neglected, and calculate some representative
growth rates. The work of Haynes (1985) extends these results to the fully nonlinear
problem in which the right-hand side of (3.18) is not neglected. For the occurrence
of instability it is necessary that

T>T =1 (3.19)

(the right-hand side being the dimensionless counterpart of ¢ in figure 1), since
otherwise the basic (SWW) absolute vorticity gradient (Y + @, ), appearing in (3.18)
is monotoniec. In that case the analogue of Rayleigh’s inflection-point theorem rules
out unstable solutions of the type considered here, the situation shown in figure 2 (a)
being a case in point. We note in addition that Haynes (1985) uses a variant of the
Tollmien—Lin argument to prove that (3.19) is also a suffictent condition for instability
when the boundary is at a sufficiently large distance y,.

4. Linear instability and maximum growth rate

Neglecting the right-hand side of (3.18) we obtain a linear problem, so that
attention can be restricted to a single Fourier component. Taking Q(k, T) and C(k, T')
both proportional to exp (—ikcT), substituting this into (3.15) and into the Fourier
transform of (3.18) with the right-hand side neglected, and using (3.17), we get

J[w ar+¢y) Ya-;QA’) I(’i—fc =T cot (ﬁ) (4.1)

—o0



472 P. D. Killworth and M. E. McIntyre

(

Cat’s eyelid > 4

Ficure 4. Two sample profiles across the critical layer (solid curves) of minus the basic (SWW)
relative vorticity, —@,, calculated from Stewartson’s elliptic-function solution, and plotted on the
same scales as the undisturbed absolute-vorticity profile (dashed lines). The accompanying sketches
of the overall cat’s-eye configuration show where the cross-sections are taken. The tick marks on
the Y-axes show the positions of the bounding streamline or ‘cat’s eyelid’ on each section.
Note the reversed gradients of Y+, within the cat’s eyes. The times correspond to those of
figures 2 (c), (d). The accompanying sketches also show schematically the absolute vorticity contour
through the centre of the cat’s eye (for the precise shapes see figures 1c,d), while the shading
indicates the main regions of positive @, contributing to the Cauchy-principal-value integral in
(2.34). The right-hand sketch corresponds to near-perfect cancellation in the first Fourier
component, (2.35) with n = 1, of that integral, which in this problem implies a state of near-perfect
reflection.

The mathematical problem posed by (3.15), (3.17) and the linearized version of (3.18)

has thus been reduced to solving the transcendental equation (4.1) for the unknown

eigenvalue . .
¢=Rec+ilmc = c, +ic;,

say.

Typical examples of the Y-dependence of —§), are shown as the continuous curves
in figure 4. The sloping dashed lines show the undisturbed absolute vorticity gradient,
whose dimensionless value is unity; the existence of regions where —0@Q,/0Y > 1
implies changes in the sign of the absolute gradient (Y +@),)y. It is easy to see
graphically that such profiles admit eigensolutions with complex values of the phase
velocity ¢, implying exponential instability. For instance one may note the qualitative
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T=15v2:
Z —in —in —in 0 in in in
k 1.61 1.53 1.40 1.25 1.09 0.95 0.84
C; —0.67 —-0.13 0.20 0.35 0.43 0.58 0.91
¢ 0.154 0.273 0.382 0.435 0.398 0.290 0.163
ke, 0.247 0.418 0.536 0.542 0.434 0.275 0.137
T=242:
z
k 2.52 2.20 1.87 1.59 1.34 1.11 0.92
[ —0.06 0.43 0.66 0.63 0.48 0.41 0.60
¢ 0.245 0.379 0.525 0.610 0.586 0.459 0.305
kec; 0.618 0.835 0.982 0.967 0.783 0.508 0.282
T =3+2:
z
k 6.43 4.07 3.18 2.78 1.62 1.54- 1.16
cp 0.50 1.02 1.30 1.27 0.45 0.21 0.18
¢ 0.139 0.280 0.392 0.400 0.576 0.518 0.293
kecy 0.891 1.139 1.244 1.112 0.931 0.798 0.339

TABLE 1. Maximum growth rates ke¢; at various stages of development of the SWW solution
(T/+/2 = 1.5, 2,3, corresponding to figures 25, ¢, d respectively), and at various positions along the
SWW cat’s eye. Note that & = 0 is at the centre of the cat’s eye and that £ = 4 are at its corners.

shapes of the graphs against Y of the real and imaginary parts of the factor (¥ —¢)™!
in the integrand of (4.1). The real and imaginary parts are respectively odd and even
functions of Y —c,., whose shapes are invariant apart from shifts of origin (as ¢, is
varied) and of scale (as ¢, is varied). If the Y-scale is narrow enough (c; not too large),
then it is easy to see that the origin may be shifted so as to make the imaginary part
of the integral in (4.1) vanish, by taking the point ¥ = ¢. somewhere near the location
of a sign change in (¥ +@,)y. The real part of the integral will then agree with the
real-valued function on the right-hand side of (4.1} for some | k|, since the right-hand
side runs through all real values as | k| varies. Indeed, the form of the right-hand
side shows that there are an infinite number of such | k|’s; the largest will give the
fastest growth rate | k|c;. See also Haynes (1985, §2). Arguments of this kind can
be developed to predict a number of interesting properties of the spectrum of
instabilities, but we omit them for brevity since our main purpose is simply to
establish the existence of substantial growth rates, and then to return to the question
of possible implications for the evolution of the basic critical layer.

To find quantitative solutions, Stewartson’s elliptic-function solution was used to
generate numerical tables of @, for use in the left-hand side of (4.1), while the
contributions to the integral for large Y were handled analytically using the
asymptotic solution (2.33). Table 1 presents some typical results, confining attention
to the fastest growth rates kc; found for a given @, configuration. The program which
produced these results was spotchecked against some ‘brute force’ numerical
solutions of the linear instability problem, using a Taylor-series ordinary differential
equation solver (and without using matched asymptotic expansions). The results have
been checked yet again by the independently programmed calculations of Haynes
(1985). :

It is interesting that many of the dimensionless growth-rate values shown in table 1



474 P. D. Killworth and M. E. McIntyre

approach or exceed unity. This implies that the quantity dq defined in (3.5) is not
only a nominal scale for growth rates, but is also a reasonable guide numerically,
unlike what is often found in other shear-instability problems.

Many of the associated k-values are considerably in excess of unity, showing that
the fastest-growing instabilities often have a somewhat smaller radian wavelength
than the nominal scale 4/8 (itself much smaller than the SWW lengthscale £7*). The
fact that these fastest-growing k’s are not too small numerically, together with the
known asymptotic behaviour of the second confluent hypergeometric function, helps
to account for the fact, mentioned earlier, that the results are hardly changed by the
presence of a boundary even at the closest possible position allowed by (2.24). Even
in the latter case, it was found that most of the numbers in table 1 do not change at
all, the only exceptions being the smallest values of k, for which the disturbance
structure reaches furthest into the outer flow. In those cases, growth rates go down
slightly (in a few entries at the top right of table 1), by amounts of the order of a
few percent.

The demonstration that maximum growth rates have substantial values is sufficient
for our purposes. However, this does not mean that modes having different values
of k could not be important physically. For example, smaller values of ¥ may have
slower growth rates but may, on the other hand, reach larger saturation amplitudes,
or lead to substantial vorticity rearrangement in a different Y-interval. They could
thus be important in modifying the evolution of the critical layer. Evidence that this
may indeed be the case is provided by the fully nonlinear calculations of Haynes
(1985). One of the interesting properties of (4.1) is the form of the right-hand side,
which implies, as already mentioned, that for any given eigensolution there will be
an infinite sequence of further eigensolutions with smaller values of | k| and the same
value of ¢. A finite number of these may be consistent with the scale assumptions
and boundary constraints. (The smaller the value of | k|, the more important the
boundary constraint and the less justified the neglect of the M contribution to
(8.12a).) The eigensolutions in question have successively smaller growth rates, since
{k| is smaller and ¢ the same. But, again, some of them might grow to larger
amplitudes if boundary constraints permit.

Finally, we note that the disturbance structures implied by these unstable
eigensolutions are, indeed, qualitatively like those occurring in Béland’s numerical
simulations of Rossby-wave critical layers, particularly the simulation reported in
Béland (1976), which had the best resolution in the y-dimension. Figure 4 suggests
that this would have been the most difficult dimension to resolve numerically. Béland
presented a series of simulated streamline patterns, of which three are reproduced
in figure 5. Note that the short-wave disturbances in Béland’s figure extend well
outside the cat’s eyes, with wavy streamlines and imperceptible phase tilts, just as
predicted by the real-valued outer solution (3.12). The waviness penetrates further
out to the positive-y side (positive basic-flow velocity) than to the negative side. Our
solutions have the same property, as can be seen for instance by inspection of (3.11).
In Béland’s cat’s-eye region there are clear indications of the presence of closed
streamlines on the disturbance xz-scale, implying local nonlinearity. Again, this is
precisely as expected from (3.18).

It should be cautioned that disturbances with this structure could conceivably arise
from a different mechanism, namely resonant amplification, if boundary conditions
and parameter values happened to be tuned in such a way that the appropriate
harmonics of the basic Rossby wave were close to resonance (Warn & Warn 1978;
Ritchie 1985). Inspection of figure 5 suggests that more than one harmonic would
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(@) ®) ©

F1GURE 5. The last three panels from figure 4(c) of Béland (1976), showing the stream function at
three successive times for a fully nonlinear numerical simulation of a Rossby-wave critical layer,
the same simulation as the one referred to in figure 1. Perfect reflection was first achieved at around
the time corresponding to the middle panel.

have had to be close to resonance, in this case, in order to account for the short-wave
disturbance seen there. This is in contrast with the cases studied by Ritchie (1985),
in which only one harmonic was amplified significantly. It would be interesting to
repeat Béland’s simulation with more detailed diagnostics in order to check the point.
We note also that the value of 4 in the simulation was 0.25 in our units. A question
might therefore be raised as to whether the assumption g <€ 1 was sufficiently well
satisfied and in particular whether there was sufficient time for the instability
mechanism to operate in the simulation. It is not known at what finite values of g,
if any, the instability mechanism might be suppressed, but the large dimensionless
growth rates found in table 1 suggest to us that such suppression would not be very
likely at 4 = 0.25 although, again, the question merits further investigation.

5. A finite-amplitude conservation theorem for Rossby waves and other
disturbances to a parallel shear flow

We now return to the question of what can be said about the consequences of the
instability, recalling that in many cases where it arises, and in many other cases of
interest, the possibilities are restricted by the bound (1.3) on the time-integrated
absorptivity. The general proof of (1.3), to be given in §§6 and 7, depends on a
finite-amplitude conservation theorem, which we establish first, in this section, on
the assumption that the model equations (2.1}—(2.5) continue to hold, and then, in
§7, in a more general form allowing for diffusion and other forms of vorticity
transport.

There are two mathematical obstacles to a proof of (1.3) more general than that
given in §1.4. The first is the one already mentioned there, and illustrated by the
large-Y behaviour of (2.33). This is the fact that vorticity rearrangement is not
generally confined to a central region of width comparable to the true ‘mixing width’
b, defined by (1.13), and exemplified by the size of the bar at the centre of
figure 2 (d). Some vorticity rearrangement may go on in a far wider region, which may
include the entire outer region, as implied at the end of §2. The typical magnitude
of the vorticity fluctuations may die off as slowly as O(y '), with disastrous results
for simple estimates of the right-hand side of (1.7). The second and related difficulty
is that, even if there were no permanent rearrangement of vorticity outside the central
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region, we would still want to be able to deal with an z-dependent state in which the
contours of constant absolute vorticity ¢, i.e. material contours, undulate in some
manner throughout a relatively large region. The simple argument of §1.4 is
applicable only if such undulations have died away altogether outside the mixing
region, and so can at best apply only at ¢t = co, and then only in the case where the
incident Rossby wave has died away to zero after a certain time.

A way round these obstacles is provided by the use of the conservation theorem
to be proved here. The essential idea can be quickly appreciated by recalling some
well-known properties of the model equations (2.1)-(2.5). We revert to dimensional
variables since the results to be obtained do not depend on taking any particular
parameter limits, such as the small-e limit involved in the matched-asymptotic
theory. As in §1.4, an overbar will denote the Eulerian mean in the z-direction. This
is assumed to be well defined so that

0 — 0
(=2 ()=0 (5.1)

o

for all quantities ( ) of interest. Subscript zero will denote the initial fields, which
are functions of y alone. Thus ¢,(y) will denote, as before, the initial absolute vorticity
field, and u,(y) the initial shear flow. Departures from the Eulerian mean will be
denoted by primes, as before, and departures from the initial fields (‘excess values’)
will be denoted by subscripts ‘e’. Thus, for instance,

q(x,y.t) =gy, t)+q'(x.y,¢) (5.2)
= qo(y) + el 9. 2). (5.3)

Now consider the following two well-known consequences of (2.1)—(2.5). First,
equations (2.3)—(2.5) imply the exact identity

=— (W) =—v'¢, (5.4)

as is easily verified using (5.1). Second, (2.1), Dg/Dt = 0, after linearization about
either the initial or the Eulerian-mean state, implies the small-amplitude relation

0 — w2
190y 3 7 =—2'q. (5.5)

Both results were noted and used by Taylor (1915). In (5.5), 5 is the y-displacement
of a fluid element from its initial position, and g, denotes the gradient dg¢,/dy of
the initial vorticity profile g,(y). Equations (5.4) and (5.5) imply the z-averaged
conservation relation

I g
i 8oy 1) =3, (07) = 0 (5.6)

for inviscid, small-amplitude disturbances. Terms of the third order or higher in
disturbance amplitude have been neglected. This conservation relation is a special
case of what may be called a ‘generalized Eliassen—Palm relation’ (e.g. Edmon et al.
1980, and references). If we integrate it over any prescribed region

N SYS Y, (5.7)



Rossby-wave critical layers 4717

and over time from 0 to ¢, we obtain the following (approximate) expression for the
time-integrated absorptivity o(¢):

¢ Y2 —_
a(t) =f [wo [z dt =J 30y 7 dy. (5.8)
Y 31

The right-hand side is bounded whenever # and ¢,, are bounded in the region
¥, <y < y,. Moreover, it is convergent for large y,,y,. For the SWW solution, »?
diminishes away from the central region like |y |2, and ¢,, = f# = constant, which
is bounded. For any similar problem in which the incident Rossby wave is switched
on less abruptly we expect %% to be smaller still, if anything, for large | ¥ |. So we expect
no trouble at the periphery of the y-integration, no matter how large the interval
(41, ¥5)- There is no such simple way of bounding the integral on the right of (1.7)
when its limits of integration are large.

To turn this idea into a rigorous proof, we need an exact, finite-amplitude version
of the generalized Eliassen—Palm relation (5.6). This can be obtained, for the
non-diffusive case, if we define 3 appropriately and work at first with ¢, u,, etec.
instead of ¢',u’, ete. The mathematical device used is the same as that used by
Holliday & MclIntyre (1981) to obtain an exact, positive-definite expression for
‘available potential energy’ in an incompressible, stably stratified fluid, but its
application to Rossby waves appears to be new. Its use was suggested by the form
of the expression 1¢,, %%, which is the same as the small-amplitude expression for
available potential energy when y is vertical and ¢,(y) represents the basic density
stratification.

Consider the fluid element which finds itself at (z, ) at time ¢. Let the y-coordinate
of this element in the original, undisturbed shear flow be denoted by y,(z, y, ). Then
7 is defined by

That is, 3 is the y-displacement of a fluid element in the usual sense, except that it
is expressed as a function of the present rather than the initial position of the fluid

element.t We then have
Dy _Dy—y,) _Dy

V=% T DT D Dt (5.10)
where as before D/Dt = 0/0t+«0/0t+v0/0y. Also
9= 9,8) = ¢ulYo(2, 9, 1)} = ¢ly —7(*, 9, 1)}, (5.11)
because of the fact that Dg/Dt = 0. Now define
7
Aty = [ tgoty—)di. 5.12)

A(y,n) is a known function of y and 7, for any given initial vorticity profile g,(y).
It reduces to 1q,,7* when 7 is sufficiently small and g,(y) is a smooth function. It
has the property that

(aA(ng;_yO))yo-constant B (aAg;//’ 1])>11 * (aAéy"’, ”))u TR, 619

t P. B. Rhines has suggested to us that the two functional forms be distinguished from each other
by calling them ‘arrival’ and ‘departure’ displacements respectively. Thus the present y(x,y, ) is
an ‘arrival displacement’. It is related to the idea of ‘arrival diffusivity’ used for instance by
Haidvogel & Rhines (1983).

16-2
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as is easily verified. The right-hand side is equal to —g,, by (5.3) and (5.11). Hence,
from this and (5.10), D
D AW 1 = —ve e, (5.14)

the z-average of which may be compared to (5.5). Although it will not be used here,
we note for completeness the alternative functional form

Qe
A= Algeq0) = L W go+d0)— (g} dd, (5.15)

expressing 4 in terms of the values of ¢, and ¢, at a given place and time, where #(g,)
is the function inverse to g,(y), assumed monotonic. This purely Eulerian form is
possible, as Holliday & McIntyre point out, because by (5.11) ¢ contains all the
Lagrangian information relevant to (5.12), when ¢,(y) is monotonic and Dg/Dt = 0.
This provides an alternative route to (5.14), as is easily checked. It is emphasized,
however, that since we shall use the form (5.12) we shall not need to assume that
¢o(y) is monotonic.

The right-hand side of (5.14) suggests that we use the following analogue of (5.4):

) 0

@(ueve)'l'a(%ug—%vg) = —%e{e- (5.16)
This follows from equations (2.3)—(2.5) as before, but this time with no averaging
in z. Putting (5.14) and (5.16) together, expanding D/Dt, and again using (2.5),
Ou/0x+0v/0y = 0, we get the exact generalized Eliassen—Palm relation in the form

0 5 0

3 Ay, n) +a {(—3ul+L1v2+ (uy+u,.) AH@ {—uev+v, 4} = 0. (6.17)
In the following section we show how this conservation relation can be used to bound
a(t) under the conditions outlined in §1.3. Only the z-averaged form will actually be
needed; this is simply

0—4—— 0 —
aA(y,n)+@{—ueve+veA}—0. (5.18)

We note incidentally from (5.12) and (5.15) that the small-amplitude formulae
A ~1q,,1* ~ 1q,, 42 are exact in the special case q,, = f = constant.t

6. Proof of the bound (1.3) in the non-diffusive case
We now choose, as before, some fixed interval
NSYSY, (6.1)
in terms of which to define the time-integrated absorptivity

un=:w7mw. (6.2)

This will usually be taken to enclose the central critical-layer region by some suitable
margin. The best choice will depend on the problem of interest. In particular, it will
depend on the amplitude of the incident Rossby wave, which determines the width
of the central region within which substantial rearrangement of vorticity takes place.

+ Note added in proof: This case has previously been noted by Rhines (1977). It has also come
to light that the general finite-amplitude expression (5.15) is implicit in an important but largely
overlooked paper by Arnol’d (1966) on nonlinear hydrodynamical stability. The connexion will be
discussed in a forthcoming paper by McIntyre & Shepherd (1986), together with the interpretation
of expressions like (5.15) when #(g,) is not monotonic.
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As mentioned earlier, that width may be a sizeable fraction of the whole flow domain
in some large-amplitude cases of meteorological interest.

The assumptions needed in order to bound (6.2) are that the incident Rossby wave
have bounded amplitude, and that conditions (i)—(v) of §1.3 hold good. The meaning
of ‘bounded amplitude’ can now be made precise in terms of the displacement
function y(x, y, t) defined in (5.9). The essential requirement is that, within the fixed
interval (y,,y,), the displacement #(z,y,t) be uniformly bounded for all ¢, i.e. that

|7(x,9,0) | <B (4, <y <) (6.3)
for some constant B. For amplitudes that are not too large, a stronger assumption
of the type

|9z, y,)| B (—3{B<y<iB) (6.4a)
together with
B2
|7(2,y,0)] Sijy] WrSysTiBoriBsys<y) (6.4b)

may be appropriate. This will lead to a sharper bound than (6.3). The stronger
assumption (6.4) holds true of the SWW solution, for instance, if the boundaries of
the central region —1B < y < 1B are taken to be tangent to the extremities of the
cat’s eyes, so that B isidentified with the maximum width of the cat’s eyes. In general
we shall assume that

|9,y )| < 9.(y) W, <Sy<y, (6.5)

for some fixed, bounded function 7.(y). We shall also assume that the associated
values of ¢, namely ¢,(y —7), see (5.11), are themselves bounded, for y, < y < y,.

This latter assumption, together with (6.5), means that the factor dg,/dy in the
integrand of (5.12) is either bounded or contains delta functions of finite strength.
We exclude g, profiles more pathological than that: to be precise, we allow no more
than a finite number of delta functions. The function A(y, ) defined by (5.12) is then
self-evidently bounded, under (6.5).

Conditions (i) and (ii) of §1.3 are already expressed by the model equations and
require no comment. Conditions (iv) and (v) are satisfied trivially in the present,
non-diffusive case (provided that the initial profile ¢,(y) is finite valued, as is implied
by the assumption just made). Condition (iii) states that ‘the critical layer always
consists of the same material fluid elements’. This implies that there is a frame of
reference in which the critical layer does not drift sideways and in which there is no
net mass flux across a line ¥ = constant. We shall adopt this frame of reference so

that, in particular, b= 2o =0 (6.6)
and V=0, =10. (6.7)
Consequently u'v = U v, (6.8)

and we can use (5.18). Note that the assumption that there is no net mass flux across
aline y = constant is consistent with the assumption (6.5) that | 9(z, y, t) | is uniformly
bounded forall ¢. Since 7 has been defined as the displacement from the initial y-position
of a fluid element, and not from any kind of mean position, 7 would include any mean
sideways drift that occurred.

The construction of bounds on a(f) now proceeds in almost the same way as was
suggested by (5.6) and (5.8). From (5.18), (6.2), (6.7) and (6.8) we have

¢ Y, ¢
a(t) = L [wv' rdt = L dy A(y,ﬂ)+jo dt[vAY:. (6.9)
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This is the exact result corresponding to (5.8). Just as with the right-hand side of
(56.8), it is straightforward to bound A(y,7n) given our assumptions, as already
indicated. The only remaining problem is the extra term

t
—_[ divA(y, )
0

L ¢
=—lim ﬁf dxj dtvA(y,n) , (6.10)
L —L 0 Y=y

and its counterpart for y = y,, appearing on the right of (6.9). It is crucial to be able

to bound these terms uniformly for all ¢, despite the arbitrarily long integration time.
We can do this by using the fact that 4, by definition, is a function of y and 3

alone, together with incompressibility and the boundedness of 5(z, y,,¢) and y(z, y,, t)

implied by (6.3), (6.4) or (6.5). We have

Y=

9@y, O <7, 1902, 45,0 | < 95, (6.11)

say, where 5, and 7, are constants, respectively %.(y,) and 3.(y,) if (6.5) is assumed,
B?/4|y, | and B%/4y, if (6.4) is assumed, or both equal to B if (6.3) is assumed. In
view of the definition of %, this says that any fluid element crossing the line y = y,,
say, must have originated from somewhere in the interval

B~ SYSY+1, (6.12)

and similarly for an element crossing the line y = y,. Now, if a given fluid element
having area dm and initial position y, crosses the line y = y,, it will make a contribution

Ay, m)dm (6.13)

to the double integral on the right of (6.10), with y evaluated as y, and 5 as y, —y,.
Moreover, if the same element subsequently re-crosses the line ¥y = y, in the other
direction, there will be a further contribution to the double integral that exactly
cancels the previous contribution. Both y and 7 take exactly the same values, respec-
tively y, and y, —y,, on each occasion when the fluid element crosses or re-crosses
the line y = y,. Thus no matter how large ¢ becomes, each fluid element can never
make more than one contribution A(y,n)dm to the double integral on the right of
(6.10).

Now consider the total area [dm occupied by those fluid elements which were
initially in the interval (6.12) and which might therefore contribute to (6.10). This
area is 2y, per unit z-distance. It follows that

< 27, sup | Ay, )|, (6.14)
Y= 9l <m

t
f dtvA(y,n)
0

and similarly for y = y,. The right-hand side represents a finite @ prior: bound. The
supremum is taken over values of the function A(y, ), and that function is (@) known
a priori, for any given initial profile ¢,(y), and (b) takes finite values, under the
agsumptions made earlier in the paragraph containing (6.5).

We can now obtain bounds on a(?) itself, using (6.9) and (6.14) together with (6.3),
(6.4) or (6.5). From (6.5), for instance, we immediately obtain a bound in the general
form

Yy
la(t)| S amax = | dy sup [A(y,7)l
%1 Il <mely)

+29.(y,) sup Ay, |+29.(y,) sup |A(y, 7). (6.15)
gl € 9eyr) Il <mely2)
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Simpler expressions representing less sharp bounds can easily be deduced at need,
depending on the nature of the ¢,(y) profile and on how much more information we
are prepared to throw away. For example, if the initial gradient

|90y | S K (4, SY < ¥0), (6.16)
where K is a constant, then from (5.12) we have
| Ay, m)| < 3Kn®. (6.17)
If, further, (6.4) is assumed, then substitution into (6.15) gives
5 1 B 1B 1B\ 1/[/B\
aty) <jrp S 0SB L (B (2)], 6.18
2] <3 4 16|y,| 16y, 32\|ly,l/ 32\, (6-18)

Note in particular that the bound, and therefore a(¢) itself, is zero if the bound K on
qoy 1s zero. That is, if no (potential) vorticity gradient exists in the critical layer, and
if all the relevant conditions of §1.3 are satisfied, then, as already mentioned in §1,
the critical layer is a perfect reflector for all time ¢.

The same conclusion can be reached from (2.34)—(2.36), in cases where the standard
(matched-asymptotic) critical-layer theory applies, since @, + ¥ would be independent
of z if q,, were zero throughout the inner region.

It will be noticed that the simple bound (6.18) is much less sharp than (1.12). The
same is true of (6.15). This is mainly because, for the sake of simplicity, we have
thrown away information about the kinematically possible distributions of  within
the critical layer. Those distributions are restricted by incompressibility, which
implies in particular that not all the fluid elements can have their maximum possible
values of 9 simultaneously. However, although refinements taking this into account
are clearly possible we shall not pursue them here, both for the sake of brevity, and
also because a truly sharp bound is not to be expected in any case, for the reasons
explained below (1.10).

7. The finite-amplitude conservation theorem and the bound (1.3) in the
‘ diffusive’ case

We now take up the wider implications of conditions (iv) and (v} of §1.3.
Condition (v) says that ¢ has a bounded range of values, for all ¢, in the central region
of the critical layer where non-advective transport may take place. The way in which
this enters the heuristic argument given in §1.4 suggests that the bound (1.3) does
not really depend on having no non-advective transport.

The same conclusion can be reached from the following consideration, which also
serves to motivate the subsequent rigorous proof. For the purpose of evaluating an
integral in which ¢ appears linearly, like the right-hand side of (1.7), downgradient
transport processes like diffusion can be thought of as equivalent to rearrangement
of ¢ by a hypothetical, ‘fine-grain’ velocity field varying on very small lengthscales.
(In the case of ordinary diffusion, the fine-grain motion may be modelled in terms
of a random walk, and there are many other possibilities.) If the y-excursions involved
in the hypothesized fine-grain motion are bounded, as they would generally have to
be under condition (v), then 4 can evidently be bounded in just the same way as
before. We may simply regard the displacement field » as including the fine-grain
motion; it is still bounded and, therefore, so is | a(t)|.

Although the foregoing consideration makes the diffusive version of the result
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intuitively plausible, and could probably be made into a rigorous proof, it is not
straightforward to express mathematically since the functions describing the arbit-
rarily fine-grained velocity and displacement fields would be of an extremely
pathological kind. While this difficulty seems to be no more than a technical one, it
would nevertheless seem desirable to possess a proof in which the use of such functions
is not resorted to. It is, in fact, possible to recast the problem so that only
mathematically well-behaved functions are used. That is the purpose of the present
section. A bonus will be that the conditions under which a conservation relation like
(5.17) can be obtained are widened still further, so as to include the possibility of an
arbitrary time-integrated vorticity transport, whether downgradient, upgradient, or
unrelated to the gradient. It will be found, as expected, that the bound (1.3) holds,
provided always that the transport is not so persistently upgradient as to violate
condition (v) that the range of values of ¢ stays bounded. This is related to the fact
that upgradient transport can be thought of, if desired, as due to a hypothetical
fine-grain rearrangement process in which a suitably chosen initial fine-grained
arrangement is ‘undone’, so that the fine-grain spatial fluctuations in ¢ are reduced
in intensity by the hypothesized fine-grain motion.

The reader should recall at this point that some models of the mean effects of
three-dimensional turbulence can, in fact, exhibit upgradient vorticity transport, for
instance models in which the associated momentum transport is taken to be
equivalent to the effect of a (spatially variable) eddy viscosity.t Whether a given
turbulent transport model would satisfy condition (v), or not, can be answered only
by a detailed consideration of that model. Regarding eddy-viscosity models, as
usually understood, these imply a very special, and possibly unrealistic, relation
between momentum flux and strain rate, in which momentum is everywhere
transferred strictly down its gradient. As far as we are aware it is still an open question
whether such a relation is actually a good model of real three-dimensional turbulence.
In reality, the direction of transfer might be at a highly variable angle to the mean
gradient. It could also take place in the absence of any mean gradient. There is
certainly a strong presumption that downgradient momentum transfer is a bad model
of real two-dimensional turbulence, such as is of interest in astrogeophysical
applications (e.g. Starr 1968). There, downgradient (potential) vorticity diffusion is
expected to be a better model, if anything, than downgradient momentum diffusion
(e.g. Green 1970; Rhines 1979), although care must be taken, as always, to see that
the model does not tacitly assume the existence of local sources of momentum.

To make sure of this last point while retaining a degree of generality commensurate
with conditions (iv) and (v), and avoiding any kind of eddy-viscosity or other special
assumption about turbulent stresses, we take as our starting point the momentum
equation in its general two-dimensional form

Dug ooy, =—2.% .
Dt ei]fuj - ax1’+ axj (1’9‘7 - 152)’ (71)

where repeated suffixes are summed and where o, represents a stress, ‘turbulent’ or
otherwise, whose dependence on other variables will be left arbitrary for the moment.
A Coriolis term is included, with the Coriolis parameter f a function of x, so that model
fluid systems of astrogeophysicalinterest continue to beincluded. The two-dimensional

t A simple but sufficient example is that of a straight viscous jet surrounded by inviscid fluid.
As time goes on, vorticity tends to become more and more concentrated at the edges of the viscous
region.
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alternating tensor ¢; is defined by €, =€, =0, ¢, =—¢; = 1. The notations
(x,y) = x = (x,,z,) will be used interchangeably. Incompressibility is assumed, as
before, and (2.5) may be written

Vou=_—1=0. (7.2)

If we operate on (7.1) with ¢, 0/0z, and use (7.2) we get the relevant form of the
vorticity equation:

%+V'F=O, (7.3)
where F,=—¢y04 . (7.4)
Here ( ) , denotes o( )/0x;. The definition of ¢ is

q=ft+exu .

The fact that the second term in (7.3) takes the form of the divergence of a flux F
shows that, in any model governed by an equation of the form (7.1), ¢ is transported
conservatively. That is, ¢ cannot be created or destroyed by the effects of the stress
04, but is always redestributed in some way, the integral of q over an appropriate area
remaining constant.

To describe that redistribution in a sufficiently general manner, we consider the
contribution to ¢(x, t) which originated from the strip lying between ¥, and y, +dy,
in the initial state. Denote the contribution in question by

P(x,t; y) Go(ys) AYu - (7.5)
Then qg(x,t) = J.P(x,t; Ys) Go(Yx) AY s - . (7.6)

The range of integration in which P # 0 represents those parts of the initial domain
from which ¢ at (x,t) is supposed to have been transported. They will all be located
within a strip of finite width, under conditions (iv) ff. of §1.3. We shall choose P such
that

JP(x,t;y,,)dy,,, =1. (7.7)

This this is possible will be shown below. Note that in the non-diffusive case, with
advective transport only, we can take

P(x,t; yu) = 8{yx—y,(x, 1)}, (7.8)

which reproduces (5.11) when substituted into (7.6).
The corresponding contribution to the non-advective vorticity flux F will be
denoted by

R(x,; yx) go(ys) dyx, (7.9)

s0 that Fix,) = | Rex, 4 y0) galy) (7.10)
D

where EP(x,t;y*)+V'R(x,t;y*) =0 (7.11)

for fixed y,, and where, consistent with (7.7) and (7.11),

fR(x,t; ya)dys =0 (1.12)
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and R =0 forall x,tsuch that F= 0. (7.13)

The fact that R can be chosen to satisfy (7.12) will also be shown below.
Now consider the quantity

<Ay (5,0) = [ PLx,t; 3a) 49, y—y) s (7.14)
noting that in the non-diffusive case, (7.8), this reduces to
(4D (x,8) = Aly, y—yo(x, 1)} = Aly, 9(x, 1)} (7.15)
Define also
(S5 .0 = [ Rex.t:.34) A3, 5=90) . (7.16)

Using (7.11), we then have

D DAy, y—
E<A>+v-<s>=de*p(x,t;y*) 0=y

Y, constant

0A(y,y—
+J‘dy* Ry(x,t; y4) iay-y—*)
Yy Y. constant
where R, is the y-component of R. Noting also that, with y, constant,
DA(y,y—y«)/Dt = v3A(y, y—y4)/%y, and using (5.10), (5.13) with y, in place of y,,
(7.4) with j = 2, (7.8), (7.7), (7.10) and (7.12), we may rewrite (7.17) as

(7.17)

D 0
Di (AY+V(S) =—v, qe+m {ers Tia(x, 1)} (7.18)

Recalling the identity (5.16), we deduce the ‘diffusive’ generalization of the finite-
amplitude conservation relation (5.17):

2 <D+ o (—Ful bl g+ ot (A + () = o)

+56:; {—ue Ve +v.{A)+{8),+0,} =0.] (7.19)

Now o;; and {S) vanish outside the central region, by condition (iv) ff. of §1.3.
Therefore if y, +7, and y,—7, are chosen to lie outside that region, where 5, and 7,
are the amplitude bounds appearing in (6.11) ff., we immediately obtain results
analogous to (6.9), (6.15), etc. by integrating (7.19) in place of (5.17). Note that (7.8)
and (7.15) may be used when evaluating boundary terms like (6.10), or indeed
anywhere outside the central region, and that the boundary-term estimate (6.14)
therefore still applies. Thus we obtain (6.15), for instance, with the sole change that
(4> (x,t) replaces A{y, n(x,t)} in the first term on the right, over some range of
integration covering the central region. This bounds a(¢) just as before, provided that
the quantity {4) defined by (7.14) can be bounded within the central region.

Again, one can do this to varying degrees of refinement, depending upon how much
information one is prepared to throw away for the sake of getting simple-looking
inequalities. A key step will be to note that any vorticity redistribution satisfying
condition (v) of §1.3 can, in general, be represented in the central region by a bounded
redistribution function P. Then (A4} and hence a(t) can again be bounded by simple
estimates.
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For instance, suppose for the sake of definitiveness that the central region lies
within the interval —1 B <y < 1B, where B is a constant. By definition, this means
that all fluid elements affected by the non-advective vorticity transport remain within
the interval (—1B, 1 B) for all time ¢. As already indicated, we must then choose y,
and y, such that

Nt <—iB, (B <y,—7,. (7.20)

Given conditions (iii) and (iv) of §1.3, and the assumption of bounded wave amplitude
(in the particle-displacement sense of §6), one can always find constants B, ¥,, ¥,, 1., 9,
such that the foregoing statements are true. Now, for a fluid element in the central
region |y| < 1B, the range of integration with respect to y, in (7.14) may be taken
to be (—1B, 1B). Anticipating the boundedness of P, suppose that

BiP{x,t;y,)| <C forall {yl<iB,ly,l<iB (7.21)

(and for all z,t), where C is a finite constant. ' is dimensionless and may generally
be expected to be of order unity, for consistency with (7.7). Then, from (7.14),

<4 (x,8)] < C'I slugB |A(y,y—ya)| forall |y| <iB (7.22)
Yal <3

(and for all z,t). The analogue of (6.15) which now follows from (7.19) can be written

3B
Iac(t)l<<xmaxECJd dy sup |A(Yy,y—ys)l

-iB ] <‘}B

-iB Y,
+_[ dy sup |A(y,m)|+| dy sup |A(y,7)l
% Iyl €9e(y) iB tnl <gey)

+27, sup | A(y,,9)|+29, sup |[A(y, )l (7.23)
In<m l7l € 72

where 7,.(y) is the amplitude bound which applies outside the central region, as in
(6.5), and 7,,9, may be identified with #,(y,) and 7.(y,) as before.

It remains to verify that functions P(x, ¢; y,) and R(x,¢; y,) can indeed be chosen
so as to satisfy the foregoing conditions, particularly (7.7), (7.12), and boundedness
of | P|, for all x and y, belonging to the central region. The possibility of being able
to choose P and R in this way is immediately plausible from the fact that their
functional dependence upon y, adds an extra dimension to the space on which they
are defined, as compared to the space {x, t} on which the functions ¢ and F themselves
are defined. Clearly this allows an enormous latitude of choice, which, indeed, we have
already exercised in using (7.8) and (7.15) outside the central region (in the second
and third lines of (7.23)), and (7.6) with | P| bounded inside it (in the first line).t This
latitude of choice reflects the fact that there is no way of distinguishing vorticity
transported from one place from that transported from another, once the transport
has taken place. However, it might be thought that the conditions (7.7) and (7.12),
which correspond to incompressibility of the equivalent fine-grain rearrangement,

1t We note that P has therefore been taken to behave discontinuously whenever a fluid element
crosses y = 4B or y = —1B, and that R will have a correspondingly singular behaviour. We are at
liberty to use this device, which is adopted purely for mathematical convenience, because of the
conservation form of (7.19), which ensures that any such singular behaviour integrates out and does
not appear explicitly in (7.23). Other choices of P could be made: for instance one could use a
representation based everywhere on (7.26a) below, at the cost of complicating the second and third
lines of (7.23).
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impose a restriction on the nature of the transport, making it less general than what
is implied by (7.4). We now show that, on the contrary,

(1) the representations (7.6) and (7.10) are completely general, and can always be
chosen to satisfy (7.7), (7.12), and the boundedness of | P|, whenever g, + 0
somewhere in the central region, and

(2) the case g,, = 0 is also covered as a limiting case of (1), with consequences to
be noted at the end of the section.

To verify assertion (1) it is enough to exhibit just one example of a pair of functions
P and R, which represent a given g and F through (7.6) and (7.10), and which satisfy
the other requirements. The following example is chosen for mathematical simplicity.
More sophisticated choices could be made, depending on the detailed profile of g4(y);
this would be important if it were desired to make the bound (7.21) and hence (7.23)
as sharp as possible. For any g,(y) profile for which ¢,, + 0 in the central region, we
can always find two disjoint intervals I, and I, lying within that region such that

L 90(¥a) dYe = ¢, Ay, L 2(Y») AYx = 4y Ay, (7.24)
a b

where Ay, is the size of each interval, the sizes being taken equal for convenience,
and where the numbers ¢, and g¢,, representing average values of g, over each interval,
are unequal:

9% ¥ %- (7.25)

Given any pair of functions ¢(x,t) and F(x,t) satisfying (7.3) it is clear that (7.6),
(7.7), (7.10) and (7.12) will all hold if we choose

(0—9)/ (9, —2) Ay (ys€1,),
P(x,t; ys) ={ (@—92)/ (09— ) Ayx  (yx€Lp), (7.26a)

0 otherwise

F/(q,— ) Ays (ye€l,),
and R(x,t;y4) =\ F/(@r—92) Ay  (yu€ly), (7.26b)

0 otherwise.

This immediately vindicates assertion (1), since (7.26a) is bounded if condition (v)
of §1.3 holds, i.e. if the range of ¢ is bounded.

Now consider assertion (2), regarding the limiting case in which the initial gradient
qoy g0es to zero throughout the central region. This implies that (g, —g,) >0, so that
(7.25) fails. Two cases of interest can be distinguished. First, if | P| can be taken to
be bounded in the limit, so that (7.21) still holds, as would be true of ordinary diffusion
or any other gradient-dependent transport, then the first term on the right of (7.23)
vanishes in the limit, by (5.12), and so |a(¢)| is again bounded (and by a smaller
amount). We note moreover that if g,, vanishes throughout the entire region
[yo—72,y,+7,], then the entire right-hand side of (7.23) is zero, in this case of
bounded | P|. The critical layer is then a perfect refiector for all time, in the same
way as noted below (6.18).

The second case of interest is where | P| is unbounded in the limit. This possibility
must be reckoned with because the general form (7.4) of the vorticity transport
permits a flux in the absence of any gradient. In fact there is no reason why such
a flux should not actually occur in some cases, for instance as a result of transport
by inhomogeneous, three-dimensional (but statistically two-dimensional) turbulence,
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leading to the creation of two-dimensional gradients in the central region where there
were none initially. It still follows, nevertheless, that |«(t)| is bounded, albeit no
longer necessarily zero, if condition (v) of §1.3 holds. If we take the limit defined by

|goy| = 0(9), 60 (7.27)

so that (g, —gq,) = O(8), then (7.264a) is O(6~1) in the same limit if the range of ¢ is
bounded. Thus C = O(6~1) in (7.21). But (5.12) and (6.5) show that A = O(8) so that
the first term on the right of (7.23) is still bounded in the limit. The boundedness
of | a(t}| again follows.

We thank P. H. Haynes for valuable and generous help with both the analysis and
the numerical computations. Further assistance with the latter was kindly provided
bydJ. Smith,J. Wheeler, and J. Venn. We are grateful to D. G. Andrews, P. B. Rhines
and an anonymous referee for constructive comments.

Appendix. The time-integrated absorptivity predicted by the SWW solution

We now calculate the limiting value &(c0), say, of the dimensionless time-integrated
absorptivity &(7) implied by the SWW vorticity field

Qsww(d, Y, T) = Y+Q,&, Y, T). (A1)

By definition, Qsww(&, Y, T)satisfies (2.31) underaninitial condition of nodisturbance,
@, = 0. Equation (2.31), it will be recalled, states that stw is advected by the
leading-order velocity field, whose stream function is (2.32), i.e.

Y= ¥(& Y)=—1Y+cosé. (A 2)

We may proceed from Stewartson’s elliptic-function solution for Q4w or directly
from first principles; the latter is easier. The quantity of interest is the large-time
limit of

a(T) _——J dY.f dz YQ,(#, Y, T), (A 3)

as can be seen for instance by analogy with the right-hand side of (1.7). This form
is used rather than the form found in §6 because we wish to turn to computational
advantage the fine-grain spatial structure in ¢, (£, ¥, T), which develops for large T
(and which becomes infinitely fine in the limit 7' 00). Since the form (A 3) is a linear
functional of Ql(a?, Y, T), the fine-grain structure will average out, more and more
accurately as T'— c0.

Regarding the use of (A 3), it is important to note that, in order for the double
integral to be equal to the time-integrated Reynolds-stress jump (1.1), the
Z-integration must be performed before letting the limits of the Y-integration tend
to infinity. This can be seen by referring again to the analogy with (1.7). Provided
that the £ integration is performed first, the manipulations go through in exactly the
same way as in (1.7), since averaging the integrands with respect to £ makes them
small enough at large | Y|, as we shall see shortly, for the Y integration by parts to
be valid and the Y integration in (A 3) convergent. To show that the integrated term
vanishes when | Y| 00 it is convenient to use (2.33), (5.18), (6.7), (6.8) and (6.14)
together with the £-averaged #-momentum equation and the fact that the conserved
density A ~ 189 = O(Y ?)as| Y|— c0.

Now consider the ribbon-like region R(¥,8%) lying between two neighbouring
streamlines of (A 2) having the values ¥ and ¥ +3¥, where 0¥ is small but fixed
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as T'-> 0. On each streamline within R, the time for a fluid element to travel through
one period of the streamline pattern varies continuously across R because of the basic
shear. Consequently, after a sufficiently long time — the smaller the value of 3%, the
longer the time required — the value of Qg averaged across R, at any given &, will
tend to the area average of stw over the whole ribbon R. Call this average Qg(P).

As the notation indicates, it is a function of ¥ alone. Once @y (%) has been calculated,

we can evaluate &(c0) by substituting

Qr{¥(£ Y)}—Y (A 4)

for @, in (A 3). This amounts to using in place of the actual vorticity field
Qsww(®, Y, T) a vorticity field from which the (infinitely) fine limiting structure has
been averaged out. This procedure is justifiable because the other factor Y in the
integrand of (A 3) is a smooth function.

We note that the implied limiting process is not uniform as the centre (£, Y) = (0,0)
of the cat’s eye is approached. For any finite 7', no matter how large, there is always
some neighbourhood N, of (0,0) within which the local strain rate is so small that
the absolute vorticity contours are rotated but not significantly sheared. However,
the area of N, shrinks to zero as 7> co. Therefore, since @, is bounded in magnitude,
N, contributes nothing to (A 3) in the large-time limit. (N, has dimensions O(7"%)
in both the &- and Y-directions. It is this, incidentally, that gives rise to the O(T2)
behaviour of [#'v"] mentioned in §1.1, as can be seen by considering the contribution
from N, to the integral (2.35).)

Outside the cat’s eyes (—o0 < ¥ < —1), @r(¥) can be evaluated from the initial
condition as

- © oY [ 3Y |

Qr(P) = J‘_" Yay,dx/ ; awdx, (A 5)
where Y is regarded as a function of £ and ¥ as defined by (A 2). Differentiating (A 2)
at constant £, we have

oY _ o\ vl 0 —1
= (a_v;> =—Y1=—{2(cos £— W)} 3, (A 6)
= —Im¥{1 —m sin? (1¢)} 3, (A7)
. -2 (A8)
where m=1_y

Therefore the numerator of (A 5) is just —2n, and the denominator is recognizable
as —2m? times the first complete elliptic integral

i dé
Km) = L (1 —m sin? @) (A 9)
in the notation of Abramowitz & Stegun (1965, 17.3.1). Hence, outside the cat’s eyes,
Qr(¥P) = £rmH{K(m)} ™, (A 10)

where the sign is chosen to make QR{ Y, Y)} an oddAfunction of Y, positive when
Y is positive. Inside the cat’s eyes (—1 < ¥ < 1), @g(¥) is zero, by symmetry,
because each ribbon R(¥,8¥) is a closed loop symmetrical about the #-axis.
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Using symmetry to get rid of the lower half of the range of Y-integration in (A 3),
and making the substitution (A 4), we now have

[*) T -
&(o0) = -Ho de di Y(Qp—
-1t

—_—_%Ldefﬂdi:Y( ‘K() ) (A 11)

Here H(1 —m) defined to be 1 when m < 1, i.e. outside the cat’s eyes, and 0 when
m > 1, i.e. inside the cat’s eyes. The &-integration is to be carried out at fixed Y (and
not, it should be noted, at fixed ¥); and

o2
m=m&Y) = 1—5G 7
~4Y24+0(Y%) as Y—>o0. (A 12)
Also m-é=gy(1+1_;,§’”+0(y—4)) as Y- o0. (A 13)

We note from (A 9) that
K(m) = In{l +im+O(m?)} asm->0
=in{l+ Y 24+0(Y %)} as Y->o0. (A 14)
Thus (for Y > 0),
YQg(¥) = n YmH{K(m))

1—cos®

Y2

- Y2<l + +0 Y-4)) {1—i+0(y—4)}. (A 15)

Y2
We see from this that the integrand of (A 11) is O(Y2) after averaging with respect
to £, which verifies that the Y-integration is then convergent.

The rest is routine calculation. We find from (A 11) that

in

0

a(o0) =—8J

0

where E(m) is the second complete elliptic integral
in
E(m) = J‘ (1—m sin20)t d6 (A 17)
0

in the notation of Abramowitz & Stegun (1965, 17.3.3). The second integral in (A 16)
has the value %; the first was evaluated numerically and found to be equal to
—0.10278. Thus

&(00) = 8x0.10278+g—:x0.66667 = 3.0858, (A 18)

of which the dimensional equivalent is (1.2). The first term is the contribution to
(A 11) from outside the cat’s eyes, and the second term the contribution from within
them.
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P. H. Haynes (personal communication) has derived the following alternative
expression for &(o0):

a(00) = =8 || mAGRLK () ~ (1L~ dm) dm +1v/2, (4 19)

Numerical evaluation of this expression confirms the value 3.0858, which provides
an excellent check on the original computation from (A 16).
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