N23b Easter 2008

NATURAL SCIENCES TRIPOS PART IB

Prof. M. E. McIntyre mem@damtp.cam.ac.uk

Mathematical Methods III: Small Oscillations and Group Theory Examples 2

1. Let Σ_3 be the permutation group for 3 objects. Show that $|\Sigma_3| = 6$, and that Σ_3 is isomorphic to D_3 . By considering the action of Σ_3 in permuting the components of a vector $(a, b, c)^{\mathsf{T}}$ in 3-dimensional Euclidean space \mathbb{R}^3 , or otherwise, show that the 3×3 unit matrix together with

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

provides a 3-dimensional faithful representation of Σ_3 , where the isomorphism is defined by mapping the cycles (23), (31), (12), (123) and (132) to the matrices in the order shown.

Consider the matrix

$$S = \begin{pmatrix} \alpha & 0 & 2\beta \\ \alpha & \sqrt{3}\beta & -\beta \\ \alpha & -\sqrt{3}\beta & -\beta \end{pmatrix}$$

and show that it has determinant $|S| = -6\sqrt{3} \alpha \beta^2$. Show that, for any nonzero α and β , the matrix products S^{-1} {matrices in first display above}S are equal to

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

respectively. [Hint: first premultiply by S, and use the nonvanishing of |S|.]

How are these transformed matrices related to the 2-dimensional faithful representation of D_3 derived as a worked example in the lecture notes? Show that any transformation of this form, i.e., pre- and post-multiplication by a nonsingular matrix and its inverse, always defines an isomorphism. [Show that it will always turn a matrix group into another such group with the same multiplication table.]

- 2. Show that the symmetries of a tetrahedron in 3-dimensional space, including reflections (mirror images), form a group isomorphic to the permutation group Σ_4 . Show that the same without reflections, i.e., the rigid rotations of a tetrahedron, is isomorphic to the alternating group A_4 , the subgroup of Σ_4 consisting of even permutations only. [A solution can be found on page 52 of the lecture notes.]
- 3. Use the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ a & b & c & d & e \end{pmatrix}$ to show that two permutations with (disjoint) cycle decompositions (123)(45) and (abc)(de) are in the same conjugacy class within Σ_5 . Generalize this example to show that two non-indentity permutations are in the same conjugacy

class, within Σ_5 , if and only if their cycle decompositions have the same cycle shape $(\cdot \cdot)$, $(\cdot \cdot)(\cdot \cdot)$, $(\cdot \cdot \cdot)$, $(\cdot \cdot \cdot)$, etc. Deduce that there are 7 conjugacy classes in Σ_5 .

4. Consider the following mappings from D_4 into or onto C_2 , with C_2 represented as $\{1, -1\}$:

$$\{I, R, R^2, R^3, m_1, m_2, m_3, m_4\} \mapsto \{1, 1, 1, 1, 1, 1, 1, 1, 1\}$$

$$\{I, R, R^2, R^3, m_1, m_2, m_3, m_4\} \mapsto \{1, 1, 1, 1, -1, -1, -1, -1\}$$

$$\{I, R, R^2, R^3, m_1, m_2, m_3, m_4\} \mapsto \{1, -1, 1, -1, 1, 1, -1, -1\}$$

$$\{I, R, R^2, R^3, m_1, m_2, m_3, m_4\} \mapsto \{1, -1, 1, -1, -1, 1, 1\}$$

$$\{I, R, R^2, R^3, m_1, m_2, m_3, m_4\} \mapsto \{1, -1, -1, 1, 1, -1, -1, 1\}$$

in the order displayed. Show that the first four are homomorphisms but that the last is not. Verify that the kernels of the first four mappings are all normal subgroups of D_4 , and that the kernel of the last mapping is not.

- 5. Show that Tr(AB) = Tr(BA). Deduce that $Tr(S^{-1}DS) = Tr D$. Let R_1 denote the 3×3 rotation matrix for a rotation by π about the direction (1,0,0), and R_2 the matrix for a rotation by π about the direction $\frac{1}{\sqrt{2}}(1,1,0)$. Verify that $Tr R_1 = Tr R_2$. Find an invertible matrix S, such that $S^{-1} R_1 S = R_2$. [Hint: It is easier to solve $R_1 S = SR_2$. Note that the answer is not unique.]
- **6.** For a group G show that for any $g_1 \in G$ the elements $\{h\}$ such that $hg_1h^{-1} = g_1$ form a subgroup H_{g_1} . Show that if $gg_1g^{-1} = g_2$ for some $g \in G$, then H_{g_1} is isomorphic to H_{g_2} . Show that the conjugacy class of g_1 has $|G|/|H_{g_1}|$ elements.
- 7. Let G be an abelian group with |G| elements. Show that each element of G forms a conjugacy class by itself. Deduce that there are |G| one-dimensional representations of G and no other irreducible representations. Find the one-dimensional representations of the cyclic group C_n .
- 8. Let $\mathbf{e}_1, \mathbf{e}_2$ be unit vectors in the plane separated by an angle of 120° , Δ the equilateral triangle with vertices $\mathbf{e}_1, \mathbf{e}_2$ and $\mathbf{e}_3 = -(\mathbf{e}_1 + \mathbf{e}_2)$ and Σ_3 the symmetry group of Δ . Calculate the matrices of the two-dimensional irreducible representation of Σ_3 by considering the action on vectors in the plane, taking \mathbf{e}_1 and \mathbf{e}_2 as basis vectors. Show that the traces of these matrices agree with those in the character table of Σ_3 . Verify that the orthogonality theorem

$$\sum_{g} d^{(\alpha)}(g)_{ij} d^{(\alpha)}(g^{-1})_{kl} = |G|/n_{\alpha} \delta_{il} \delta_{jk}$$

is satisfied in this case, as it must be.

9. Let D be a unitary representation of a finite group G and $\{\chi(g):g\epsilon G\}$ the character of D. Show that

$$\frac{1}{|G|} \sum_{g} \chi(g)^* \chi(g)$$

is a positive integer, equal to 1 if and only if D is irreducible.