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ABSTRACT

The effects of enforcing local mass conservation on the accuracy of non-Hamiltonian potential-vorticity-
based balanced models (PBMs) are examined numerically for a set of chaotic shallow-water f-plane vortical
flows in a doubly periodic square domain. The flows are spawned by an unstable jet and all have domain-
maximum Froude and Rossby numbers Fr ~0.5 and Ro ~1, far from the usual asymptotic limits
Ro — 0, Fr — 0, with Fr defined in the standard way as flow speed over gravity wave speed. The PBMs
considered are the plain and hyperbalance PBMs defined in Part I. More precisely, they are the plain-88,
plain-yy, and plain-6y PBMs and the corresponding hyperbalance PBMs, of various orders, where “order”
is related to the number of time derivatives of the divergence equation used in defining balance and
potential-vorticity inversion. For brevity the corresponding hyperbalance PBMs are called the hyper-88,
hyper-vy, and hyper-6y PBMs, respectively. As proved in Part I, except for the leading-order plain-yy each
plain PBM violates local mass conservation. Each hyperbalance PBM results from enforcing local mass
conservation on the corresponding plain PBM. The process of thus deriving a hyperbalance PBM from a
plain PBM is referred to for brevity as plain-to-hyper conversion. The question is whether such conversion
degrades the accuracy, as conjectured by McIntyre and Norton.

Cumulative accuracy is tested by running each PBM alongside a suitably initialized primitive equation
(PE) model for up to 30 days, corresponding to many vortex rotations. The accuracy is sensitively measured
by the smallness of the ratio € = |[|Qpgm — Opello/l| Opell,, Where Opgy and Opp denote the potential
vorticity fields of the PBM and the PEs, respectively, and || ||, is the L, norm. At 30 days the most accurate
PBMs have € ~ 10~2 with PV fields hardly distinguishable visually from those of the PEs, even down to tiny
details. Most accurate is defined by minimizing € over all orders and truncation types 85, yy, and &y.
Contrary to Mclntyre and Norton’s conjecture, the minimal € values did not differ systematically or sig-
nificantly between plain and hyperbalance PBMs. The smallness of e suggests that the slow manifolds
defined by the balance relations of the most accurate PBMs, both plain and hyperbalance, are astonishingly
close to being invariant manifolds of the PEs, at least throughout those parts of phase space for which
Ro =< 1 and Fr =< 0.5.

As another way of quantifying the departures from such invariance, that is, of quantifying the fuzziness
of the PEs’ slow quasimanifold, initialization experiments starting at days 1, 2, ... 10 were carried out in
which attention was focused on the amplitudes of inertia—gravity waves representing the imbalance arising
in 1-day PE runs. With balance defined by the most accurate PBMs, and imbalance by departures there-
from, the results of the initialization experiments suggest a negative correlation between early imbalance
and late cumulative error e. In such near-optimal conditions the imbalance seems to be acting like weak
background noise producing an effect analogous to so-called stochastic resonance, in that a slight increase
in noise level brings PE behavior closer to the balanced behavior defined by the most accurate PBMs when
measured cumulatively over 30 days.
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1. Introduction

The problem of local mass conservation in non-
Hamiltonian potential vorticity (PV)-based balanced
models, called PBMs for brevity, was addressed in Mo-
hebalhojeh and Mclntyre (2007, hereafter Part I). It
was proved that the highly accurate “plain PBMs” stud-
ied previously by Mclntyre and Norton (2000, hereafter
MNO00), and by Mohebalhojeh and Dritschel (2001,
hereafter MDO1), all violate local mass conservation
and therefore exhibit velocity splitting. It was then
shown how to construct a new class of PBMs, called
hyperbalance equations or hyperbalance PBMs, that
exactly satisfy local mass conservation and are there-
fore free of velocity splitting, and free of an internal
inconsistency related to velocity splitting (Mohebal-
hojeh 2002). Hyperbalance equations are natural gen-
eralizations of the Bolin—-Charney balance equations to
an arbitrary formal order of accuracy. They are con-
structed by taking a plain PBM of given type and order,
then incorporating it into a generalized Bolin—Charney
procedure in a certain way. This process, which we call
plain-to-hyper conversion, preserves the formal order
of accuracy.

The formal order is not to be confused with asymp-
totic order in a small-parameter limit (e.g., Warn et al.
1995), nor with actual numerical accuracy. Here we
consider numerical accuracies for chaotic vortical flows
such as that in Fig. 1 whose Froude and Rossby num-
bers, numerically around 0.5 and 1, respectively, cannot
be considered asymptotically small. The numerical ac-
curacies nevertheless exhibit what might be called
“quasi-asymptotic behavior.” This means that the error
€ goes through a minimum as the formal order is in-
creased, where € measures the difference between PBM
and PE (primitive equation) behavior. For a given flow
over a given time interval there is therefore a “most
accurate” PBM of given type.

Questions about the smallest attainable € values are
of interest, not only for improving our understanding of
the fluid dynamics of atmospheres and oceans, but also
for understanding the best design of numerical algo-
rithms to cope simultaneously with balance and imbal-
ance in model atmospheres and oceans (e.g., Mohebal-
hojeh and Dritschel 2000, 2004). Regardless of numeri-
cal errors, however, the € values attainable are limited
by the imbalance due to the spontaneous-adjustment
emission of inertia—gravity waves by unsteady vortical
flows, a physically real and ubiquitous phenomenon. It
was this consideration that led MNOO to conjecture
that, in view of the local mass adjustments involved in
spontaneous-adjustment emission, the most accurate
balanced models should be expected to violate local
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mass conservation as well as energy and momentum
conservation. In other words, MNOO argued that there
should be a trade-off between accuracy and local mass
conservation. The numerical experiments reported
here were designed, therefore, to test MNOO’s conjec-
ture as part of a first attempt to examine the numerical
accuracies of hyperbalance PBMs, in flow regimes like
that of Fig. 1. This in turn required extreme care with
issues of numerical error, especially truncation error, so
as to deliver numerical accuracies able to detect slight
departures from local mass conservation.

The paper is organized as follows. Section 2 summa-
rizes the equations governing plain and hyperbalance
PBMs for three different truncations of arbitrary order.
Section 3 describes the numerical methods. Section 4
demonstrates that those methods are delicate enough
to discriminate between local mass conservation and its
violation. Section 5 specifies the initialization of the
PEs used as the standard of accuracy, and makes a
preliminary assessment of the accuracy of the plain-86
and hyper-66 PBMs defined in Part I and section 2,
suggesting that plain-to-hyper conversion can some-
times degrade accuracy but sometimes improve it. Sec-
tion 6 confirms that suggestion with a detailed inter-
comparison across all the plain and hyperbalance PBMs
of the first to fifth orders. Section 7 presents a comple-
mentary assessment of accuracy using initialization ex-
periments that estimate levels of imbalance. Section 8
presents some brief concluding remarks.

2. Plain and hyperbalance PBMs: Equations

The PEs to be used as the standard of accuracy are
the f-plane shallow-water equations, (2.1a)-(2.1c) of
Part I, in a doubly periodic domain with no bottom
topography. Apart from implicit numerical diffusion all
the models share the same PV conservation equation

aQ
E_ _V.VQ9

2.1
where v is the velocity and where Q is the exact PV
given by the formula of Rossby (1936),

3

o) Hig'd (2.2)

Here fis the Coriolis parameter, { the relative vorticity,

H the area-mean layer depth, g the acceleration due to
gravity, and ® the geopotential anomaly.

For the plain PBMs, the PV inversion operators are

defined by Egs. (4.1) of Part I, which we rewrite as:
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F1G. 1. Maps of PV at (a) t = 0, (b) t = 5, (¢) t = 10, and (d) ¢ = 15 days from one of the most accurate PBMs, the third-order plain-88
PBM with semi-Lagrangian time stepping on a 256 X 256 grid. These maps are practically indistinguishable from the corresponding
maps from the PEs. The Coriolis parameter f = 4 day '. A single 27 X 2 cell of the doubly periodic domain is shown; the Rossby
length or radius L, = c¢/f = 0.50 in the same length units, so that the domain-crossing time is 1 day at the gravity wave speed ¢ = (gH )"?
based on the area-mean layer depth H. In (a) the PV values run from (f/47H ) times 1.11 to 25.04, the contour interval being 2 in (a),
and 1 in (b), (c), and (d); selected contours are labeled.

8 =L = VU = V(v DY) = —gH8Y "V = V- (vO) 4,
n=1,..., M+1)  (23a) n=1,..., M) (2.3¢)
== = v Vi = vag Vi, =2 X VYL + VY e

n=1,..., M) (2.3b) (n=0,..., M), (2.3d)
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where z is the unit vertical vector and M a nonnegative
integer, together with

f+8a=(Q+qa)H+g '®,) (2.4)
and either the 85 truncation of order M + 1 with M = 0,

3 =0
5(M+1) — O

Al >

(2.5a)
(2.5b)

or the yy truncation of order M — 1 with M = 1,

M = -V . (v-Vy)M-D (2.6a)
M = —V . (v Vv, (2.6b)
or the &y truncation of order M with M = 0,
3 =0 (2.7a)
BN = —V . (v V)42, (2.7b)

Superscripts (7) denote diagnostic estimates of nth time
derivatives; for further explanation see (4.3), (5.1),
(5.2), and (5.3)ff. Part I. The nominal orders M + 1,
M — 1, and M have no absolute significance and are
defined purely for consistency with the conventions es-
tablished in MNOO and MDO01. When M = 0, Egs. (2.3b)
and (2.3c) are empty sets of equations and are therefore
absent from (2.3). The suffix A7 has the same meaning
as in Part I, namely that the variables are regarded as
auxiliary variables within the PV inversion process. The
velocity field v resulting from the plain PV inversion,
that is, from solving the foregoing equations when the
PV field Q(x) is given, is defined by

v =vadx Q0

where v,; = v§) = vg)}d, + vg)}x. As explained below
Eq. (5.6) of Part I, the small quantity g 4, in (2.4), to be
called the “PV offset,” is independent of the spatial
coordinate x and is determined as part of the plain
inversion calculation when the total mass and the far-
field or boundary Kelvin circulation are specified. The
corresponding plain PBM consists of the PV inversion
operator just defined together with the prognostic
equation (2.1). For the most accurate plain PBMs, ¢ 4, is
often small enough to be lost in the numerical noise. It
is, however, conceptually important because it mea-
sures the internal inconsistency pointed out in Mohe-
balhojeh (2002). When total mass and far-field or
boundary Kelvin circulation are held constant, plain
PBM evolution makes g,; vary in time even though
constant in space. Because we insist that DQ/Dt = 0
when the velocity field v is given by (2.8), we generally
have D(Q + q,4;)/Dt # 0. In a plain PBM, there is no
single velocity field that both advects and evaluates the
PV exactly.

(2.8)
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As shown in section 6 of Part I, each plain PBM may
be converted to a corresponding hyperbalance PBM as
follows. We replace (2.8) by

v =v{x; OO}, (2.9)

where v = v), + VV 2?5 and § is defined by the im-
plicit elliptic equation

L=V (v)) — V?V - (vd) + %Q (v-V0O)
DO ’

(2.10)

with{ = ¢,, = (D and ® = &, = ®Y) in (2.2) and in
(2.10) and with

R= R{x; O()}
= _8%)1 -V [(VAILIJ + VAIX) ) V("Ahp + VAIX)]'
(2.11)

Here, as in Part I, £is the modified Helmholtz operator
gHV? — f? and O signifies variational differentiation,
with O the corresponding inner product involving inte-
gration over the physical domain; see Eq. (3.8) of Part
I. Thus the hyperbalance PBM is defined by (2.9)-
(2.11) together with (2.1)—(2.3) and a truncation, such
as (2.5), (2.6), or (2.7), for some nonnegative integer M.
As verified in Part I the velocity field v defined by (2.9)
now conserves mass locally, advects Q via (2.1), and
evaluates Q via (2.2).

For computational purposes it will be found conve-
nient to specify the total mass and far-field or boundary
Kelvin circulation, ab initio, to match those of the PE
run used as the standard of accuracy. We must then
replace (2.2) by (2.4), remembering that { = {,; and
® = @ 4,. This no longer represents any internal incon-
sistency because, provided that the advecting velocity is
still given by (2.9), we now have a g4, that is exactly
constant in time as well as space. Thus the replacement
of (2.2) by (2.4) does no more than adjust Q by an
additive constant so as to make it consistent with the
specified mass and circulation. Within the hyperbalance
equations this is no more than a change of notation,
merely replacing the symbol Q by the symbol (Q +
qa;)- We have DQ/Dt = 0 and D(Q + q,,)/Dt = 0
simultaneously, and there is no internal inconsistency.
So any failure of g ,; to be constant in a numerical run
will be entirely due to rounding or truncation error.

3. Numerical setup and methodology

The geometry of the experiments is a [—m, 7| X
[—ar, 7] doubly periodic box, allowing pseudospectral
computation via fast Fourier transforms (FFTs) both
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for the PBMs and for the PEs used as the standard of
accuracy; details for the PEs may be found in Mohe-
balhojeh and Dritschel (2000). The Rossby length or
radius L, = c/f is specified in the same length units,
where the Coriolis parameter f is set to 47 and the
gravity wave speed ¢ = (gH)"? is based on the area-
mean layer depth H, which will be held constant to
keep total mass constant. The Kelvin circulation
around the boundary will likewise be held constant at
the value 8f, corresponding to zero relative circulation
or zero domain area-average relative vorticity. For
most of the experiments L, = 0.50, though in order to
expose certain sensitivities we also use L, = 0.51, 0.52,
..., 0.59, 0.60. In all cases the domain maximum
Froude and Rossby numbers are somewhere near Fr =
1/2 and Ro ~1; for example, when L, = 0.50 we have
Fr ~ 0.52 and Ro ~ 1.0. Because the angular velocity of
the background rotation is 2, the unit of time is 1 day,
which is also the domain-crossing time for a gravity
wave when L, = 0.50.

The test flows (e.g., Fig. 1) are similar to those ex-
tensively reported in Dritschel et al. (1999), Mohe-
balhojeh and Dritschel (2000), and Dritschel and Mo-
hebalhojeh (2000). For the initial conditions the PV is
first prescribed in a contour representation, then con-
verted to a grid representation that is used to initiate all
PBM runs. In this sense all the PBM runs have identical
initial conditions. In its contour representation the ini-
tial PV field has a zigzag profile in the y direction, with
piecewise constant gradients, undulated by a small-
amplitude disturbance. The disturbance uses a super-
position of Fourier harmonics in the x direction, with
wavenumbers 2 and 3. The maximum and minimum PV
values in the zigzag profile, O = 25.04 and 1.11, are on
contours (not shown in Fig. 1a) that undulate around
y = 0.5, respectively." The L, norm of Q at initial
time ¢t = 0 is ||Q|l, = 13.7 and stays nearly constant
during all of the most accurate integrations, typically to
within a few percent. The jet undergoes a rapid rollup
evolution by which at + = 5 well-defined vortices are
formed (Fig. 1b). The subsequent evolution is domi-
nated by vortex interactions.

The plain inversions for the PBMs, including the
third-order plain-66 PBM that produced Fig. 1, are all
performed pseudospectrally using FFTs to move be-
tween regular grids in spectral space and physical space
as in MDO1. Linear operations are done on the spectral

! Figure 1a actually represents the gridded PV. The correspond-
ing contour representation can be found at top left of Fig. 2a of
Dritschel et al. (1999). The zigzag profile of unperturbed PV at
t = 0 can be found in Fig. 1a of Dritschel et al. (1999) and in Fig.
la of Mohebalhojeh and Dritschel (2000).
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grid, for instance taking derivatives, inverting Lapla-
cians V? as in (2.3d), and inverting the modified Helm-
holtz operators £ that arise from substitution of (2.3b)
and (2.3¢) into (2.3a). The multiplications to evaluate
nonlinear terms are done on the physical grid without
dealiasing. The linear and nonlinear operations are per-
formed alternately in an iterative loop, taking advan-
tage of the speed of the FFT and the smoothness of the
inverse operators V-2 and L. Iterations are termi-
nated when the ith and (i + 1)th iterates of both ®,,
and 8 4, are close enough, more precisely when || ®U], —
LTI < kg and |84, — 847 V]I, < K5y where ||+ |l
denotes the maximum or L., norm and where kg, and
Kg are preassigned small numbers. We take kg4, in the
range [107'2, 107'°] gH and kg in the range [107'°,
107®). All are exceedingly small fractions of typical val-
ues. For instance, in the example of Fig. 1 we have
(gH) | P 440l = 0.38,0.43,0.46,0.53 at ¢ = 0, 5, 10, 15,
respectively, and ||84,]l.. = 0.22, 0.29, 0.19, 0.39. Strin-
gent convergence criteria are, however, essential if our
accuracy tests are to be meaningful.

To advect Q across the physical grid we have used
two different time stepping algorithms. These are the
contour-advective semi-Lagrangian (CASL) algorithm
of Dritschel and Ambaum (1997) and a standard semi-
Lagrangian (SL) algorithm. The SL algorithm used
here involves a backward trajectory computation using
the midpoint method (Temperton and Staniforth 1987)
for all the grid points, and a bicubic Lagrange interpo-
lation to update Q values on the physical grid.

To integrate the hyperbalance equations we must
deal with ®{x; Q(-)}, the nonlocal function appearing in
(2.10) and (2.11). Except in the lowest-order cases there
is no known analytic, closed form expression for R rep-
resenting the nonlocal dependence of ® upon the Q
field. Still less is there any such expression for the varia-
tional derivative DR/DQ appearing in the diagnostic
equation (2.10). However, exploiting the fact that the
time evolution defined by the hyperbalance equations
entails that the actual rate of change of R at fixed x,
under that evolution, is equal to —(DR/DQ) © (v - VQ),
we have developed an iterative time stepping technique
to avoid having to deal directly with the variational
derivative. A brief account of the technique and the
solution procedure for a hyperbalance PBM is given
next. Since on the numerical level that we are forced to
deal simultaneously with PV inversion and time evolu-
tion, we need to make time dependences explicit and
will therefore use notations such as Q = Q(x, t) from
here onward.

The procedure involves an outer loop and two inner
loops. Given a Q field, inner loop (1) solves the plain
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PV inversion equations, that is, (2.3)-(2.4) together
with (2.5) or another truncation, using the iterative
pseudospectral method already described. To keep the
boundary circulation at its specified value 8=f we need
to allow g4; # 0, in case Q is imperfectly specified and
in any case to allow the computational system to toler-
ate rounding and truncation errors, wherever they may
occur. Inner loop (2) similarly solves (2.10) for & when
all other fields and the last term are given. As with
inner loop (1), the process has to be iterative because
the unknowns appear implicitly. In the case of (2.10), &
appears explicitly on the left but also implicitly in the
first two terms on the right, through (2.9).

Before starting the outer loop at the current time ¢,
with given Q(x, t), a preliminary call to inner loop (1) is
made. It produces the fields

éAI(Xa t)’ vAIl];(X7 [)7 8AI(X7 t)7 VAIX(X7 [)7 85;)1(X7 [)7

and ® 4 (x, 7) together with a value for g ;. These are all
held fixed throughout the subsequent running of the
outer loop, whose sole purpose is to evaluate the (DR/
DQ) © (v-VQ) and & fields. We denote successive
guesses for 8 by 8! and the corresponding contribu-
tions to (2.9) by v, going into the kth cycle of the
outer loop. To start the loop we take as first guess
81 = 8 ,,(x, 1), already available from the preliminary
call to inner loop (1). The kth cycle of the outer loop
consists of the following stages:

(i) Advect Q forward in time using the current guess
for the velocity field v = v, + vI¥. A short time
step is used, a fraction « of the time step Ar used
for time stepping the PBM, the value of a being
chosen from numerical experimentation on the
convergence of the outer loop. Denote the result
by O¥(x, t + aAr).

(ii) Call inner loop (1) with Q = QW(x, t + «Ar).
Denote the resulting fields by (%)(x, t + «Ar),
v[ﬂd,(x, t + alr), 3%)(x, t + aAr), VL{‘}X(X, t + alt),
8)M(x, t + aAr), and ®X)(x, t + aAr). The new
value of g4, is discarded.

(iii) Use the foregoing to evaluate {(DR/DQ) O
(v- VO as [-®[x; QMI(, 1 + adr)} + R[x;
(., H}]/(aAr) from (2.11).

(iv) Call inner loop (2) to obtain 8" and vi¥"' by
solving (2.10). The termination criterion at the jth
iteration is || 811 — glETLIH) < ko for some
preassigned small number kg,.

(v) Check for numerical convergence of the outer
loop. If its termination criterion is not satisfied
then go back to stage (i) above. The termination
criterion is taken to be |81 — 8%"1|| < k45 for
some preassigned small number kg;.
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Values of kg, and ks; will both be taken in the range
[107%, 1077]. To keep computational costs within
bounds, values toward the higher ends of the ranges
assigned to kg, K1, Ksp, and kg3 have been used for the
fourth- and fifth-order PBMs, and toward the lower
ends for the first-, second-, and third-order PBMs. The
main time step Az = 0.002 in all cases, and a = 0.25
except in some of the fourth- and fifth-order cases
where o = 0.125.

4. Numerics and local mass conservation

It was proved in Part I, section 4, that for M = 2
every plain PBM violates local mass conservation.
However, it demands extreme care to see this violation
numerically. In this section we establish that with the
foregoing values of kg, K51, K, and kg3 and with suf-
ficiently fine grids our numerical procedures are, in-
deed, accurate enough for the purpose. (Readers will-
ing to take that assertion on faith can skip this section.)

During the time integration of each PBM, departures
from local mass conservation are measured by comput-
ing a mass residual:

. hn+l _ hnfl
m =T AA.

res A7 + H8" + V- (vh)",

4.1)

where h stands for g~'® and the unbracketed super-
script n denotes a value at the nth time step. As with all
the other nonlinear terms in our computations, the
term V- (vh) in (4.1) is evaluated pseudospectrally
without dealiasing. Thus when m,., = 0 we have a dis-
crete analog of the local mass-conservation equation,
(2.1c) of Part I. The time step Ar = 0.002 is dictated by
accuracy considerations in the PE time integrations,
which use semi-implicit time stepping but in which we
want to represent inertia—gravity waves accurately.
Such At values are significantly smaller than the values
demanded by PV advection in the PBMs. We use the
same small value A7 = 0.002 in the PBMs 1) because the
mass residual is sensitive to Az, and 2) because we want
comparisons between PBMs and the parent PEs to be
done in as consistent a way as possible.

We have examined the behavior of m,., under both
CASL and SL advection. It turns out that the CASL
algorithm is unsuitable for assessing the accuracy of
local mass conservation. This is because its ability to
cope with sharp-edged PV distributions has a price in
terms of noisiness in the way it handles mass rearrange-
ment. The noise has properties that are far from obvi-
ous; a brief discussion is given in the appendix.

In the main part of the paper, therefore, we use only
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FIG. 2. The L, norm of mass residual vs time for resolutions n, = 128, 256, 512, and 1024. The results are for (left) the
Bolin—Charney SL PBM, equivalently the first-order hyper-68 PBM, and (right) the third-order plain-86 SL PBM.

the SL algorithm. Being slightly diffusive, it keeps the
PV distributions slightly smoother and gives the numer-
ics a better chance to converge toward the continuum
limit. In the hyperbalance equations, the diffusion now
implicit in the prognostic equation slightly changes the
term (DR/DQ) © (v - VQ). But that change is automati-
cally taken into account at stage (iii) of the numerical
procedure since the SL algorithm is, of course, used at
stage (i) as well as in the main time stepping.

The left-hand panel of Fig. 2 presents the L, norm
[|m,ell» of the mass residual for the Bolin—-Charney SL
PBM, equivalently the first-order hyper-86 PBM (Part
I, footnote 4), at resolutions corresponding to n, = 128,
256, 512, 1024 grid points across the domain. The first
10 days of integration are shown and the initial condi-
tion is the same as in Fig. 1. By comparison with the
results for the corresponding CASL PBM (appendix,
Fig. A1), the mass residual is markedly smoother and
smaller, and it decreases as resolution 7, increases. A
systematic decrease of ||m,.l|, by a factor of 2 to 3 at
each doubling of resolution is observed. The results for
the L, norm of mass tendency (not shown) exhibit con-
vergence in the sense of negligible sensitivity to reso-
lution. We approximate the mass tendency dk/dt as the
first term on the rhs of (4.1), written Ak/At for brevity,
throughout. The smallness of |71, can be judged by
comparing it with [|Ah/At||,. Over the 10-day runs the
ratio ||m,el|o/ || Ah/At||, has typical values of the order of
0.01, 0.003, 0.001, 0.0004, respectively, for n, = 128, 256,
512, 1024.

Also shown in Fig. 2, on the right, are the corre-
sponding results for the third-order plain-686 SL PBM.
This PBM has special interest since it will prove to be
one of the most accurate for the test flows. The plain
PBM exhibits an irregular behavior with no systematic
decrease. This is just what we expect from what was
proved in section 4 of Part I for high-order plain PBMs,
for which M = 2. That is, in the continuum limit, the
Bolin—Charney model conserves mass locally but high-
order plain PBMs do not; that is, such plain PBMs have
nonvanishing mass residuals.

In Fig. 3, ||m,ll, is shown against time for seven
PBMs all at resolution n, = 256. The PBMs are the
Bolin-Charney model (heavy solid curves duplicating
the dash—dot curve on the left of Fig. 2—note the dif-
ferent scales at left and right in Fig. 3) together with the
first- to fifth-order plain-66 PBMs and the third-order
hyper-66 PBM (thin solid curve on the left in Fig. 3).
Since the Bolin—Charney model and the third-order hy-
per-86 PBM both conserve mass locally, that is, have
vanishing mass residual in the continuum limit, the
heavy solid and thin solid curves measure the effects of
rounding and truncation errors, here dominated by
truncation error. The violation of local mass conserva-
tion by the first-, second-, and third-order plain-66
PBMs shows up clearly, being most conspicuous in the
first-order case, the dashed curve high on the left. Ex-
cept for a brief period between days 4 and 6, the fourth-
and fifth-order plain-88 ||m,.||, values shown on the
right are close to the Bolin—Charney values. At this
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order plain-85 (dash-dotted), the third-order plain-85 (dotted), and the third-order hyper-86 (thin solid) PBMs. (right) The fourth-order
plain-88 (dash—dotted) and the fifth-order plain-66 (dashed) PBMs. For ease of comparison, in the right panel the results for the
third-order plain-86 and Bolin—-Charney PBMs have been replotted. Recall that the Bolin—-Charney PBM is the same as the first-order

hyper-66 PBM (Part I, footnote 4).

resolution, for the fourth and fifth orders the con-
tinuum-limit values of ||m,.||, are evidently being
masked by numerical truncation error. By contrast, the
dotted and thin-solid curves on the left clearly show
that the resolution n, = 256 is good enough to see the
effect of plain-to-hyper conversion for the third-order
68 PBM truncation, as well as the more dramatic effect
at first order (for which the conversion produces the
Bolin-Charney model, that is, takes the high dashed
into the low heavy curve). As expected—and this is
another powerful check on the correctness of the nu-
merical codes—the conversion succeeds in making
[[m,.ll, decrease to values close to that for the Bolin—
Charney model, that is, to values governed solely by
rounding and truncation error.

5. PE initialization and preliminary comparisons

Before embarking on a systematic assessment of
PBM accuracy we need to consider how to initialize the
PE runs that serve as the standard of accuracy. We have
experimented extensively with initialization methods.
Details are omitted for brevity. Not surprisingly, the
experiments confirmed that there is great sensitivity to
initialization. The main result was, however, that no
systematic bias or disadvantage arose from using con-
sistent initialization in the sense that the PBM whose
accuracy is being judged is also used to initialize the

PEs. Some further questions regarding initialization
and inertia—gravity wave activity in the PEs will be in-
vestigated in section 7. In addition to using consistent
initialization throughout, we now extend the time span
of each run to 30 days and reduce the sensitivity to
initialization by starting from the same initial jet but
with an undulation 10 times smaller than that in Fig. 1.
Resolution is n, = 256 throughout.

We begin by asking whether plain-to-hyper conver-
sion has any obvious systematic effect, such as the deg-
radation of accuracy expected from MNOO’s argument.
Of course it might also be argued that better conserva-
tion should improve accuracy. Since it was known from
the start that the third-order plain-66 PBM often per-
forms exceedingly well in parameter regimes like that
of Fig. 1, with order unity Froude and Rossby numbers,
we begin by looking at the cumulative effect on accu-
racy, over 30 days, of plain-to-hyper conversion in the
third-order 86 case. At the same time we check for
sensitivity to parameter conditions.

We measure accuracy using the dimensionless quan-
tity

”QPBM B QPE||2

=T o,

(5.1)

where Qpgy and Qpg denote the PV fields of the PBM
and the PEs, respectively, and ||- - -||, is the L, norm.
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FI1G. 4. The relative errors e(¢) in PV for the third-order plain-85 (thin solid) and hyper-88 (thick solid) PBMs. Consistent initialization
and resolution n, = 256 are used throughout. The results are for (a) L, = 0.52, (b) L, = 0.54, and (c) L, = 0.56. Corresponding results
for L, = 0.55 and 0.60 can be seen as pairs of dashed curves at top left and right, respectively, of Fig. 6 below.

This is an exceedingly sensitive measure of accuracy. It
will be found that the best-performing PBMs yield val-
ues € ~1072 after 30 days. Such small values are pos-
sible only if the two PV fields match each other very
closely, down to tiny details.

Figure 4 shows €(7) for three pairs of runs out of a
sequence in which the Rossby length L, is varied
slightly, taking the eleven values L, = 0.50, 0.51,
0.52, ..., 0.60. Although the Froude and Rossby num-
bers change somewhat across this range of L, values,
they are anything but small and it is reasonable to re-
gard all of these runs as being in much the same pa-
rameter regime. Perhaps surprisingly, we see that plain-
to-hyper conversion does not always degrade accuracy.
Nor does it always improve it.

The case L, = 0.54 (middle panel of Fig. 4) shows a
definite improvement, when judged on cumulative ac-
curacy, contrary to what might be expected from
MNO0’s argument. Other cases, such as L, = 0.52 (left
panel), also L, = 0.55, 0.59 (not shown in Fig. 4), in-
dicate no clear advantage for either PBM, though for
L, = 0.55 (dashed curves at top left in Fig. 6 below) the
hyperbalance PBM has the advantage at later times.
Yet others, such as L, = 0.56 (right panel), also L, =
0.50, 0.51, 0.53, 0.57, 0.58, 0.60, show to varying degrees
an advantage of the plain over the hyperbalance PBM.
For instance in the case L, = 0.60 (dashed curves at top
right in Fig. 6 below) the plain PBM could be said to
win, though only by a fine margin, for nearly the whole
time span. In the case L, = 0.50 (solid curves at top left
in Fig. 5 below) the plain wins by a substantial margin.
Especially when looking at the right panel of Fig. 4 one
might be tempted to say that, on average, the plain
PBM has a slight advantage over the hyperbalance
PBM. But no such conclusion is supported when the

other orders and truncations are looked at systemati-
cally, as is done next.

6. A systematic intercomparison of PBMs

Figure 5 presents the €(f) behavior for a complete set
of 30 runs each over 30 days, at L, = 0.50, covering all
three truncations from first order to fifth order. All are
at resolution n, = 256. We continue to focus mainly on
cumulative errors over 30 days, that is, on the best-
performing PBMs as measured by €(30). The quasi-
asymptotic behavior is evident, with third- or fourth-
order performing best. Very similar quasi-asymptotic
behavior will be shown by the different measures of
accuracy considered in section 7. We conclude that
there is no point in going to higher order than fifth.

Among the cases represented in Fig. 5 we see that
there are just two best performers, one plain and the
other hyperbalance. They are the third-order plain-86
PBM (thin solid curve at top left) and the fourth-order
hyper-yy PBM (heavy dashed curve at middle right),
for both of which €(30) is very close to 102 It should
be remembered, of course, that the nominal orders are
defined purely for consistency with earlier published
work and have no absolute significance. All that mat-
ters is the best performance, as defined by minimizing e
over all available PBMs.

If it were computationally feasible to consider frac-
tional orders and a much larger set of different trunca-
tions, then one would probably find a minimum value
of €(30) that is somewhat smaller than 10”2, However,
the results of Fig. 5, along with similar results for other
cases, are enough to suggest that in the present param-
eter regime such an €(30) value would not be drastically
smaller.
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Fi1G. 5. The thin curves show €(7) for the plain PBMs of (left) first to third order, and (right) fourth and
fifth order. The thick curves are for the corresponding hyperbalance PBMs: the (top) 85, (middle) yy, and
(bottom) &y truncations. Insets give formal orders of accuracy as defined in the text. L, = 0.50 throughout.
Also shown are the results for the QG model (dotted curve at upper left) and the zeroth-order plain-dy
PBM (dotted curve at bottom left). At large time, in this case, the two best performances are those of the
third-order plain-66 PBM (thin solid curve at upper left) and the fourth-order hyper-yy PBM (thick dashed
curve at middle right), with the plain-83 best by a very small margin. As before, the resolution is n, = 256.

1803



1804

A reviewer has asked how the balanced models
based on geostrophic balance perform. For this we have
presented in Fig. 5 the €(f) behavior for the standard
quasigeostrophic (QG) model® (dotted curve at upper
left) and the zeroth-order plain-8y PBM (dotted line at
bottom left), which is the same as the balanced model
introduced by Bleck (1974). It is clear that these models
fall well short of the accuracy achieved by the best-
performing PBMs.

Figure 6 shows two other cases, L, = 0.55 on the left
and L, = 0.60 on the right. At large times, the best
performance for L, = 0.55 is that of the fourth-order
plain-88 PBM (thin solid curve at upper left) and for
L, = 0.60 the fourth-order hyper-yy PBM (thick solid
curve at middle right). Notice that these two PBMs
differ from the two best performers in Fig. 5, though
once again we have minimum €(30) values close to
1072 It seems clear by now that, in order to get sub-
stantially smaller € (30) values, one would have to go to
parameter regimes with substantially smaller Froude or
Rossby number.

Another feature of interest both in Fig. 5 and in Fig.
6 is that judgments made from €(30) seem to be robust
over a large part of the time span, in many cases the
entire time span following the first 5 days or so when
the jet instability grows and saturates, though in the
L, = 0.55 case it is only the latter part following the
first 15 days (top left in Fig. 6).

In summary, three main points have emerged. First,
plain-to-hyper conversion can either improve or de-
grade the performance of a particular PBM, depending
on the flow considered. There are some systematic ef-
fects when €(30) is above its minimum but, more im-
portantly, no systematic effects near the minimum. Sec-
ond, no particular PBM is the overall winner in all
cases. The PBM or PBMs that minimize €(30) are not
the same PBMs in all cases, even when we confine at-
tention to similar flows in similar parameter regimes.
Third, near minimum €(30) there is no systematic pref-
erence for plain PBMs over hyperbalance PBMs, as far
as accuracy is concerned. So accuracy is not a counter-
vailing consideration against the theoretical advantages
of the hyperbalance equations.

7. Initialization experiments

Hitherto we have paid little attention to the earlier
stages, the first few days when the jet instability grows
and saturates and goes over into the chaotic vortex re-

2The QG balanced model inverts and advects the linearized
PV, O, = { — fh/H using geostrophic balance.
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gime. The transition is of course conspicuous in all the
€(t) plots, as the break in error growth rates shortly
after day 5. Also noticeable, in a majority of the best-
performing cases, is a crossover suggesting a negative
correlation between early and late error. Quite often,
the PBMs with the smallest late e values have early €
values slightly larger than those of their nearest com-
petitors. Examples can be seen in Figs. 5 and 6 at
middle right and in Fig. 5 at top left, though Fig. 6 at top
left is exceptional up to day 4.

Let us look more closely, then, at what is going on in
the early stages near the beginning of the chaotic vortex
regime. Some of the early error, though of course not
all of it, must be due to slight imbalance in the PEs. To
estimate such imbalance we have carried out what
might be called initialization or slow-quasimanifold-
fuzziness experiments (MDO1). By comparison with the
30-day experiments, these experiments provide a more
or less instantaneous view of the dynamics.

More precisely, the experiments are done using
short, here 1-day, SL time integrations as follows. For a
given PV field at some initial time ¢ = ¢;, usually taken
as 5 days, a PV inversion is done using the inversion
operator that defines one of the PBMs, plain or hyper-
balance. The resulting fields are used to initialize the
PEs, which are then integrated forward to time ¢ = ¢; +
1, which we find to be sufficient for the generation of
imbalance as well as sufficient to allow inertia—gravity
waves to propagate well away from their sources. Re-
call that the domain-crossing time for a gravity wave is
of the order of 1 day. Resolution n, = 256 is used
throughout. During the time integration, the PEs’ state
vector X = {u, v, (g/H)"?h} is stored at equal time
intervals, which we take as 0.1 day. At the end of each
such time interval the PV field given by the PE inte-
gration is inverted, using the same PBM as before, to
give another state vector Xy, = {Upar Voar (&/H ) *hpa).
This represents a state more or less close to balance
depending on the choice of PBM. The difference
Ximp = X — X, gives us, correspondingly, a more or
less accurate estimate of the imbalance. To measure its
magnitude we use the same linearized energy norm as
in MDO1, the square of that norm being averaged over
the time interval (¢, t; + 1),

1 ti+1 T ™
”Ximb“2 = |:§ HJ J f (uizmb + vizmb
17 —ar —Aar

g 172
+ ﬁhfmb> dx dy dt] .

Note that this is a slight redefinition of the symbol
|-+ -Il,, which in the preceding sections involved only
spatial averaging and only a single scalar field.

(7.1)
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Fi1G. 6. The thin and thick curves show €(¢) for plain and hyperbalance PBMs of second to fourth order in
(left) the case L, = 0.55, and (right) L, = 0.60. The first- and fifth-order PBMs (not shown) all perform less
well, just as was found in the L, = 0.50 case, Fig. 5. At large times, the best performance for L, = 0.55 is that
of the fourth-order plain-88 PBM (thin solid curve at upper left), and for L, = 0.60 the fourth-order hyper-yy
PBM (thick solid curve at middle right).
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Figure 7 presents || X;,,;, ||3 in this new sense for all the
42 PBMs of first to seventh order, for L, = 0.50 and
t; = 5. In all cases the initial PV at ¢t = 5 is taken from
the SL integration of the third-order plain-66 PBM. For
orders higher than the seventh, none of the PV inver-
sions converged. Not surprisingly, these estimates of
imbalance reach their minima, broadly speaking, for
those PBMs that have already been seen to perform
best on cumulative accuracy. The minima can be re-
garded as our best estimates of the truly irreducible
imbalance associated with the fuzziness of the PEs’
slow quasimanifold.

But there are other aspects less obvious at first sight.
Consider the third-order points plotted in the left panel
of Fig. 7 and recall the crossover behavior seen in the
top left panel of Fig. 5. The same PBM that conspicu-
ously has the smallest late errors in this case, the third-
order plain-86 PBM, induces the greater early imbal-
ance in the PEs. The corresponding hyperbalance PBM
has, conversely, larger late errors and smaller early im-
balance, in this particular case. There is a similar
though less conspicuous relation between the middle
panel of Fig. 7 and the middle right panel of Fig. 5
except that plain and hyper are interchanged.

The crossover might seem paradoxical at first sight.
However, it can be made sense of if we suppose that,
for the best performing PBMs, which induce low levels
of imbalance in the PEs, the imbalance might be acting
as background noise in the PE integrations—noise so
weak that slightly increasing it brings the PE behavior
closer to PBM behavior, in the manner of so-called
stochastic resonance (e.g., Hasselmann 1976). This calls
for further investigation.

The initialization experiments provide us with an en-
semble of PV distributions, for each of which we have
available the pairs of balanced states produced by plain
and hyperbalance inversion. It is interesting to ask how
close those pairs of states might be to each other, as
measured by the norm (7.1). We have therefore com-
puted the quantity [|Xpap)y = Xpainllo Where Xoq )
and Xy, ) denote the balanced states produced by
plain and hyperbalance PV inversion, respectively, for a
given order and truncation type. When values of
1 Xbai(py — Xpaiqnll2 are plotted in the manner of Fig. 7
(plots omitted for brevity), we again see the quasi-
asymptotic behavior, with deep minima this time all at
fourth order, in the L, = 0.50 case, reaching exceed-
ingly small numerical values <10~%.

These smallest values are numerically far smaller
than typical values of the corresponding mean imbal-
ance [ Ximpllz = Y2(Ximo@ll2 + 1 Ximba ll2)- For in-
stance, for the fourth-order &y truncation we find a
deep minimum in the ratio || Xy, — Xbal(h)||2/||Ximb||%,
with a value of 0.02. Away from the minimum, the val-
ues on either side reach ~0.2 at first order and ~0.3 at
seventh order. We may say that, at optimal order,
fourth in this case, the slow manifolds of the plain and
hyperbalanced PBMs very nearly coincide. Similar re-
sults are found for the other truncation types.

The departure of PE from PBM behavior is initiated
by the term v, - VO in the PV equation, where v, is
the velocity field in X,,;,- Figure 8 shows a measure of
this, the quantity || vi,, - VO/|VO]||,. It shows a pattern
similar to that in Fig. 7. Of course there are further
terms contributing to the departure of PE from PBM
behavior. Once the Q field of the PEs has departed
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third-order plain-66 SL PBM at ¢t = 5.

from that of the PBM, by an amount Q' say, there will
be an additional contribution v’ - VQ due to the differ-
ence between inverting Q + Q' and inverting Q. The
intercomparisons in section 6 reveal the combined, cu-
mulative effects of the terms contributing to the depar-
ture.

8. Concluding remarks

Perhaps the most important result of this study—
aside from confirming yet again the astonishing accu-
racy of high-order PBMs outside their regimes of as-
ymptotic validity—is the point made at the end of sec-
tion 6, namely, that on the present numerical evidence,
which is quite extensive, MNOO’s conjecture appears to
be wrong. In other words, there appears to be no sys-
tematic trade-off between local mass conservation and
accuracy. Therefore, accuracy is not a countervailing
consideration against the theoretical advantages of the
hyperbalance equations.

Of course MNOO’s arguments against energy and mo-
mentum conservation still hold. The spontaneous-
adjustment emission of inertia—gravity waves by un-
steady vortical motions is a physically real, and ubiqui-
tous, phenomenon. It must contribute to the energy and
momentum budgets of PE evolution. However, the
quantification of such budgets and their PBM counter-
parts remains a challenge for future work, and will
surely require at least as much numerical delicacy as
was required in the present study.

Other questions for future work include testing the
idea of quasi-stochastic resonance hinted at by the
curve crossovers in Figs. 5 and 6, when compared with

the third- and fourth-order imbalances shown in the left
and middle panels of Fig. 7. It would be interesting to
do the converse experiment of seeing whether adding
weak random noise to an accurate PBM might in some
circumstances increase its accuracy still further, mim-
icking the v;.,;, - VO contribution to the PV evolution
described by the PEs. It also remains, as always, a chal-
lenge to widen still further the parameter regime, espe-
cially on the side of larger Froude and Rossby numbers
Fr, Ro in order to push the envelope of the balance
concept and its ultimate limitations. The dependence of
minimum error € upon Fr and Ro is not obvious once
we are outside the standard asymptotic regimes in
which Fr — 0, Ro — 0.

Finally, as mentioned in section 3, we have carried
out some experiments using the CASL instead of the
SL algorithm. The CASL algorithm is able to describe
realistically sharp-edged PV distributions and has ad-
vantages when dealing with nearly frictionless flows,
such as occur in the real atmosphere and oceans, for
which one would like to avoid the use of numerical
models with artificial diffusion. There is nothing obvi-
ously pathological about the PV inversion operation
itself when applied to sharp-edged PV distributions.
However, as was also mentioned in section 3, the ability
to handle sharp-edged PV distributions seems to exact
a price in terms of noisiness in the way it handles mass
rearrangement, in current implementations at least.
Furthermore, it does so in ways that are not well un-
derstood at present, impacting large as well as small
scales. The appendix gives a brief discussion. This story
will no doubt continue, since the challenge to cope si-
multaneously with balance and imbalance in model at-
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Bolin—Charney CASL PBM.

mospheres and oceans will continue to be important,
and CASL-type methods will remain advantageous for
handling the nearly balanced flows with sharp-edged
PV distributions.
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APPENDIX

CASL and Local Mass Conservation

We briefly explain why the CASL algorithm, despite
its other virtues, proved unsuitable for assessing the
accuracy of local mass conservation. The reason is noise
in the mass residual m,, defined in Eq. (4.1). The noise
has properties that are not all a priori obvious, as is now
shown.

Figure Al presents the L, norms of mass tendency
and mass residual, || Ah/At||, (upper curves) and || m1,]|»
(lower curves), versus time for the Bolin—Charney
PBM with the CASL algorithm for advecting PV. The
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results for four spatial resolutions determined by the
number of grid points in each direction n, = 128, 256,
512, 1024 are shown. The noticeable features are (i) the
growth of mass residual with time, (ii) a substantial
high-frequency noise in the mass residual, and (iii) the
slow rate of decrease of mass residual with resolution.
These features are all, in one way or another, responses
of the grid-based part of the algorithm for the PBM to
the growth in complexity and sharpness of gradients of
PV in the CASL simulations. Given that we are dealing
with a balanced model here, the second feature, that is,
the presence of high frequency noise, may come as a
surprise. In fact what it shows is that a substantial re-
arrangement of mass takes place in the CASL PBM,
merely to cope with and maintain sharp gradients of
PV. Evidence is provided in Fig. A2 that, surprising as
it may seem, this rearrangement is predominantly a
large-scale effect in the CASL PBMs. Indeed, the L,
norm of mass tendency is rather insensitive to resolu-
tion. Recall that in the continuum limit, the Bolin—
Charney model has zero mass residual. The results for
mass residual obtained for the third-order plain-68
CASL PBM (not shown) tell us that even the high reso-
lution of n, = 512 is not sufficient to obtain a mass
residual noticeably higher than that for the Bolin—
Charney CASL PBM. More generally, for the CASL
algorithm, prohibitively high resolutions are needed in
order to detect levels of mass residual in the plain
PBMs that are noticeably higher than in their counter-
part hyperbalance PBMs. It should be noted that a
smoother version of the contour to grid conversion part
of the CASL has recently been implemented by D. G.
Dritschel (2005, personal communication). However, the
latter, smoother, version still leads to similar results for the
mass residual, though with some shift to smaller values.
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F16. A2. The power spectrum of mass residual at t = 10 for the
third-order plain-866 (dashed), and hyper-88 (solid) SL PBMs.
Also shown is the power spectrum for the third-order plain-66
CASL PBM (dotted). Both scales are logarithmic.

We note that the high rates of numerical mass rear-
rangement in the CASL PBMs is the counterpart of the
phenomenon of the false generation of imbalance in the
CASL for the primitive shallow-water equations in
(Q, h, 8) representation (Mohebalhojeh and Dritschel
2000). As demonstrated in Dritschel et al. (1999) and
Mohebalhojeh and Dritschel (2000), this false genera-
tion has little effect on the PV itself and can be sub-
stantially decreased if the primitive equations are in-
stead solved in representations like (Q, 8, y) or (Q, 9,
98/dt), depending on the regime of flow. Here y = f{ —
gV?h is the ageostrophic vorticity multiplied by f. The
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[ | =——hyper-33
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10 : - . 107

b — plain- ‘ ‘ ‘
I E= g

Nominal order

3
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F1G. A3. As in Fig. 7 but the initial PV is that obtained from the third-order plain-66 CASL PBM.
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end result is that the CASL algorithm can achieve
higher accuracy than the SL algorithm on both the vor-
tical and the gravity wave parts of the flow. On the
same basis, we can expect higher accuracy of the CASL
PBMs over the SL PBMs as well.

As a comparison of the structure of mass residual
between the CASL and SL PBMs, on the one hand, and
between the plain and hyperbalance PBMs, on the
other, we present the power spectrum of mass residual
at time ¢ = 10 for the third-order plain-66 SL and CASL
PBMs and the third-order hyper-88 SL PBM (Fig. A2).
The spectrum for the CASL is clearly steeper than that
for the SL. That is, the response to sharper gradients of
PV present in CASL compared with SL generate mass
rearrangements with larger values and, as already
noted, significantly larger [sic] scales. For the SL algo-
rithm, the success of hyperbalance PBM in decreasing
[[77,.]l» shows itself mainly at large scales. The conver-
sion from the plain-66 PBM to the hyper-66 PBM
leaves the small scales of mass residual unchanged. This
insensitivity is another artifact of the numerics arising
from the rounding and truncation errors. The sharp
spike at the small-scale end is due to the two-grid-
interval noise resulting from the aliasing effect of the
pseudospectral computation of the derivatives. Since
the noise has almost no effect on the time evolution of
PV, no attempt has been made to dealias the PBM
codes, as already mentioned.

The counterpart to Fig. 7 may be of some interest. It
is shown as Fig. A3. The only difference between this
and Fig. 7 lies in the initial conditions at = ; = 5. Here,
a sharp-edged PV distribution is used at ¢t = 5; the
remainder of the initialization experiment is performed
using SL integration. So the rather large differences
between Figs. 7 and A3 are entirely due to the initial
PV distribution.
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