
Restarts subject to approximate sharpness:

A parameter-free and optimal scheme for first-order methods

Ben Adcock, Matthew J. Colbrook, Maksym Neyra-Nesterenko

Abstract

Sharpness is an almost generic assumption in continuous optimization that bounds the dis-
tance from minima by objective function suboptimality. It leads to the acceleration of first-order
methods via restarts. However, sharpness involves problem-specific constants that are typically
unknown, and previous restart schemes reduce convergence rates. Moreover, such schemes are
challenging to apply in the presence of noise or approximate model classes (e.g., in compressive
imaging or learning problems), and typically assume that the first-order method used produces
feasible iterates. We consider the assumption of approximate sharpness, a generalization of
sharpness that incorporates an unknown constant perturbation to the objective function er-
ror. This constant offers greater robustness (e.g., with respect to noise or relaxation of model
classes) for finding approximate minimizers. By employing a new type of search over the un-
known constants, we design a restart scheme that applies to general first-order methods and
does not require the first-order method to produce feasible iterates. Our scheme maintains the
same convergence rate as when assuming knowledge of the constants. The rates of convergence
we obtain for various first-order methods either match the optimal rates or improve on previ-
ously established rates for a wide range of problems. We showcase our restart scheme on several
examples and point to future applications and developments of our framework and theory.

Keywords: First-order methods, Restarting and acceleration, Approximate sharpness, Convex
optimization, Convergence rates, Inverse problems

Mathematics Subject Classification: 65K0, 65B99, 68Q25, 90C25, 90C60

1 Introduction

First-order methods are the workhorse of much of modern continuous optimization [6, 10, 24, 59].
They are widely used to solve large-scale problems because of their excellent scalability and easiness
of implementation. However, standard first-order methods often converge slowly, for instance, when
applied to nonsmooth objective functions or functions lacking strong convexity. This has motivated
a large amount of work on speeding up such methods [11,30,48,55,60,64,65].

Recently there has been significant interest in using restarts to accelerate the convergence of
first-order methods [1,13,27,33,34,37,39,44,46,47,49,52,57,61,62,66,68,69,71]. A restart scheme
repeatedly takes the output of an optimization algorithm instance as the initial point of a new
instance or “restart”, and additionally may reselect the algorithm parameters before executing the
new instance. Under the right conditions, the objective error and feasibility gap decay faster for
the restarted scheme than for the underlying (unrestarted) first-order method.

2Corresponding author: m.colbrook@damtp.cam.ac.uk
DAMTP, Centre for Mathematical Sciences, University of Cambridge, UK

1

However, as discussed below, existing restart schemes either require somewhat restrictive as-
sumptions in which various constants are known, or attain suboptimal convergence rates. This
paper overcomes these limitations. We introduce a general restart scheme that applies to a broad
class of convex optimization problems, generalizes and improves upon various existing schemes, and
leads to optimal complexity bounds for a wide range of problems.

1.1 The problem

We consider the general convex optimization problem

min
x∈Q

f(x), (1.1)

where f : D → R is a proper, closed convex function with non-empty effective domain D ⊆ Cn, and
Q ⊆ Cn is a closed, convex set with Q ⊂ D. Let f̂ denote the optimal value of (1.1) and X̂ ⊂ Q
denote its set of minimizers, where we assume that X̂ is non-empty.

Our key assumption is that f satisfies the following approximate sharpness condition

d(x, X̂) ≤

(
f(x)− f̂ + gQ(x) + η

α

)1/β

, ∀x ∈ D, (1.2)

for a metric d on Cn and some constants α > 0, β ≥ 1, η ≥ 0. We slightly abuse notation by
defining d(x, S) := infz∈S d(x, z) for a set S ⊆ Cn. Here, gQ : D → R+ is a function satisfying

gQ(x) = 0 ⇐⇒ x ∈ Q

and for any sequence {xm} ⊂ D, d(xm, Q)→ 0 implies g(xm)→ 0. In this paper, we assume that
the function gQ is known, but that the constants η, α and β (or a subset thereof) are unknown.

We refer to gQ as the feasibility gap function and f − f̂ as the objective (function) error.
To formulate a restart scheme that accelerates an optimization algorithm solving (1.1), we

assume that f satisfies (1.2), and that we have access to an optimization algorithm Γ : R++ ×
R++ ×D → D that defines a map (δ, ε, x0) 7→ x, with the property that

d(x0, X̂) ≤ δ =⇒ f(x)− f̂ + gQ(x) ≤ ε, where x = Γ(δ, ε, x0). (1.3)

In essence, for an initial value x0 within distance δ of an optimal solution, the algorithm produces
an output x that is ε-suboptimal, i.e., f(x) − f̂ ≤ ε, and ε-feasible, i.e., gQ(x) ≤ ε, for (1.1).
Assumption (1.3) is a generic condition that appear in typical convergence analysis of first-order
methods. In Section 4, we describe various examples of first-order optimization methods that yield
algorithms satisfying this assumption. See also [66].

The algorithms Γ we consider in this paper are iterative. We define the cost function CΓ :
R++ × R++ → N, where CΓ(δ, ε) represents an upper bound on the number of iterations Γ needs
to compute x = Γ(δ, ε, x0) for any starting value x0 satisfying d(x0, X̂) ≤ δ. One can generalize
this framework to also consider cost in terms of floating point operations or other measures of time
complexity. It is assumed that CΓ is nondecreasing in its first argument and nonincreasing in its
second argument. Examples are given in Section 4 for various first-order methods.

1.2 Motivations

The assumption (1.2) is much weaker than typical assumptions for acceleration, such as strong
convexity. It can be considered an approximate version of the sharpness condition considered in [69]

2

(see (1.6)). We discuss its links to other error bounds in Section 1.4. There are two key differences
between (1.2) and sharpness. First, we do not assume that the sharpness condition is exact, i.e.,
we have an additional η ≥ 0 term that controls the approximation. This is very important in many
applications and for noisy data, and provides greater robustness of our results. For example, when
considering sparse recovery, (1.2) covers both noisy measurements and approximately sparse vectors
[27], which is more realistic than exact sparse recovery from noiseless measurements. Second, we do
not require iterates of our algorithm to be feasible, and this is captured by the additional feasibility
gap function gQ. This adds further flexibility and efficiency when selecting the first-order method
for the restart scheme (e.g., the primal-dual algorithm considered in Section 4.5).

The other key motivation for this work is that we do not assume knowledge of the constants
α, β, and η. When these parameters are known, it is relatively straightforward to derive a restart
scheme. However, the constants are rarely known in practice. For example, sharpness holds for
general subanalytic convex functions [17], but the proof of this result uses topological arguments
that are far from constructive. As another example, in a sparse recovery problem, η depends on the
noise level and the sparsity level of the unknown vector, neither of which are typically known. In
some applications, one may have bounds for one or more of these constants. Nevertheless, if such
bounds are loose – for instance, global bounds may be highly pessimistic near minimizers – this
can lead to inefficient schemes. Our method obviates the need for such bounds. However, it also
allows the user to input such prior information (e.g., exact values of or ranges for the constants) if
these are available.

1.3 Contributions

The following theorem, which follows directly from the results presented in Section 3, summarizes
our main convergence rates result.

Theorem 1.1. Let α, β and η be (unknown) approximate sharpness constants of f in (1.2).
Consider Algorithm 2 for fixed a, b > 1, r < 1, α0 > 0, β0 ≥ 1 and the choices of schedule criterion
and assignment functions described in Section 3.2. Then running Algorithm 2 with

t & K(ε), ε→ 0+,

(total inner) iterations, where K(ε) is given in (3.3), implies that

f(x(t))− f̂ + gQ(x(t)) ≤ max{η, ε}.

Let β∗ = bdlogb(β/β0)eβ0. If, in addition, CΓ satisfies

CΓ(δ, ε) ≤ Cδd1/εd2 + 1, C, d1, d2 > 0, (1.4)

for all δ, ε > 0, then we have

K(ε) ≤ Ĉ

{
ε
d1/β∗−d2
0 dlog(ε0/ε)e , if d2 ≤ d1/β∗,

εd1/β∗−d2 dlog(ε0/ε)e , if d2 > d1/β∗,
(1.5)

where Ĉ is independent of ε (but depends on r, a, b, α, β∗, α0, β0, d1 and d2). Explicit forms for Ĉ
in (1.5) are given in Section 3.

A few comments are in order. First, note that ε is not a parameter of the algorithm: it is only
used to describe the algorithm’s behavior as the number of iterations increases. Second, it is possible

3

i

j

k

Unknown α and β

0 1 2 3 4 5

0

10

20

30

40

50

j

k

Known α

-5 0 5

0

10

20

30

40

50

i

k

Known β

Figure 1: Level curves of h = 50 for the schedule criterion functions h in Corollary 3.3 (left panel), Corol-
lary 3.4 (middle panel) and Corollary 3.5 (right panel) with c1 = c2 = 2. The level curves describe the search
order. The red dots show the corresponding indices (i, j, k) in the set defined in (3.4). The index i indicates
the parameter search value aiα0 for α. The index j indicates the parameter search value bjβ0 for β. The
height (i.e., k) indicates the total number of inner iterations for a fixed (i, j).

for a problem (1.1) to satisfy the approximate sharpness condition (1.2) for different parameters
α, β and η, which may give different convergence rates and constant Ĉ in (1.5). If so, Theorem 1.1
says that for a given accuracy threshold ε ≥ η, we can take the best rate of convergence/iteration
bound over different approximate sharpness constants. Third, Theorem 1.1 does not guarantee a
decrease of the objective function error below η as ε → 0+. This is quite reasonable in practice.
For example, in the case of sparse recovery from noisy measurements, η is the magnitude of the
noise level. Therefore there is little benefit in decreasing the objective function error below η, since
the error in the recovered vector will generally be O (η). Fourth, the assumption in (1.4) is generic
for convergence rates of first-order methods. We present some examples in Section 4. The +1 term
is included in (1.4) since we often have a bound of the form

CΓ(δ, ε) ≤
⌈
Cδd1/εd2

⌉
.

Finally, the parameters α0 > 0 and β0 ≥ 1 in Algorithm 2 are estimates for the true α, β. If no
estimates are known, we can set α0 = β0 = 1. We also include the case that either or both of α
and β are known in our analysis (see the Corollaries in Section 3.2). The parameter r ∈ (0, 1) is a
scale factor that adjusts the parameters of the first-order method at each restart. As we discuss in
Section 2, a good choice is r = e−1/d2 .

Our scheme performs a grid search over parameters α, β using the bases a, b > 1. The order of
the search is based on a so-called schedule criterion (see Definition 3.1 and Fig. 1). This new idea
allows flexibility depending on which parameters are known and which are unknown, and leads to
a unified framework for proving convergence results (e.g., using Theorem 3.2). We postpone the
details until Section 3, but, in particular, this new framework allows us to search over a nonuniform
grid (Corollary 3.3) that searches more in iteration space as opposed to parameter index space (see
left panel of Fig. 1). This is key to developing a search method for unknown parameters that does
not suffer from reduced convergence rates.

Suppose now that η . ε. When Algorithm 2 is applied with a suitable first-order method, it leads
to optimal1 complexity bounds for a wide range of different convex optimization problems, without
knowledge of α and β. Table 1 summarizes some of these bounds and the following correspond to
an example for each row:

1By optimal, we mean optimal in the number of oracle calls to f , its gradient (where appropriate) or suitable
proximal maps. For the first-order methods we discuss, this number will always be bounded by a small multiple of
the number of iterations.

4

Objective function class/structure Asymptotic bound for K(ε) Example method

L−smooth
See Definition 4.2

(NB: must have β ≥ 2)

β = 2:
√
L/α · log(1/ε) Nesterov’s method

d1 = 1, d2 = 1/2
See Section 4.1β > 2:

√
L

α1/β∗ ·
1

ε1/2−1/β∗

(u, v)−smoothable
See Definition 4.5

β = 1:
√
ab
α · log(1/ε) Nesterov’s method

with smoothing
d1 = 1, d2 = 1
See Section 4.2β > 1:

√
ab

α1/β∗ ·
1

ε1−1/β∗

Hölder smooth, parameter ν ∈ [0, 1]
See Definition 4.8

(NB: must have β ≥ 1 + ν)

β = 1+ν: M
2

1+3ν
ν

α
2

(1+3ν)

· log(1/ε) Universal fast
gradient method

d1 = (2 + 2ν)/(1 + 3ν)
d2 = 2/(1 + 3ν)
See Section 4.3β > 1+ν: M

2
1+3ν
ν

α
2+2ν

β∗(1+3ν)

· 1

ε
2(β∗−1−ν)
β∗(1+3ν)

f(x)=q(x)+g(x)+h(Bx), q is Lq−smooth,
supz∈dom(h) infy∈∂h(z) ‖y‖ ≤ Lh,

‖B‖ ≤ LB

β = 1: LBLh+Lq
α · log(1/ε) Primal-dual algorithm

d1 = 1, d2 = 1
See Section 4.4β > 1: LBLh+Lq

α1/β∗ · 1
ε1−1/β∗

f(x)=q(x)+g(x)+h(Bx), q is Lq−smooth,
supz∈dom(h) infy∈∂h(z) ‖y‖ ≤ Lh,

‖A‖ ≤ LA, ‖B‖ ≤ LB ,
Q={x : Ax ∈ C}, gQ(x)=κ infz∈C‖Ax− z‖

β = 1: κLA+LBLh+Lq
α · log(1/ε) Primal-dual algorithm

with constraints
d1 = 1, d2 = 1
See Section 4.5β > 1: κLA+LBLh+Lq

α1/β∗ · 1
ε1−1/β∗

Table 1: Asymptotic cost bounds (as ε ↓ 0 for η . ε) and suitable first-order methods for Algorithm 2 when
applied to different classes of objective functions. Note that whenever the bound is a polynomial in log(1/ε),
we have β∗ = β.

� For L-smooth functions (Definition 4.2) with β = 2, a well-known lower bound for the subclass
of strongly convex smooth functions is O(

√
L/α log(1/ε)) [54]. If β > 2 then the optimal

lower bound is O(
√
Lα−1/β/ε1/2−1/β) [53, page 26]. In both cases, we achieve these optimal

bounds with our algorithm using, for example, Nesterov’s method. This is an improvement
(by at least a factor of log(1/ε)) over the restart scheme presented in [66].

� Suppose that the objective function f is Lf -Lipschitz and has linear growth. Such functions
are (1, L2

f/2)-smoothable (Definition 4.5). When β = 1, the combination of our algorithm and
Nesterov’s method with smoothing has complexity O (log(1/ε)). This is an improvement over
the restart scheme presented in [66], which has complexity O

(
log2(1/ε)

)
for such functions.

Similarly, for general (u, v)-smoothable objective functions, we improve (by at least a factor
of log(1/ε)) on the results over the restart scheme presented in [66].

� For Hölder smooth functions (see Definition 4.8), the bound in Table 1 matches (with β
replaced by β∗) the optimal bound from [53, page 26]. This is an improvement (by at least a
factor of log(1/ε)) over the restart scheme presented in [66].

� There is little work on optimal rates for saddle point problems, a challenge being that there
are different measures of error (see [70]). Hence we cannot claim that the final two rows of

5

Table 1 yield optimal rates. Nevertheless, they yield significantly faster convergence rates
than unrestarted first-order methods for saddle point problems.

Finally, it is worth pointing out two straightforward generalization of the assumptions in Sec-
tion 1.1 where our algorithms and results also hold.

First, the approximate sharpness condition (1.2) can be further generalized to consider any fixed
set Y ⊆ D as opposed to X̂. This is expressed as

d(x, y) ≤
(
f(x)− f(y) + gQ(x) + η

α

)1/β

, ∀x ∈ D, y ∈ Y,

where α, β, η, and gQ are defined the same way as in the (1.2). With a suitable generalization
of (1.3), much of the work presented here can be extended to this general setting. Note that this
is of particular interest whenever the exact minimizer of the associated optimization problem is
not desired. In sparse recovery, the ground truth vector being recovered from noisy measurements
is often not the minimizer of the associated optimization problem (e.g., see Section 5 or [27]).
It is sufficient when the recovered vector’s measurements match the original measurements up to
a noise level. Similarly, when training overparameterized models in machine learning, e.g., deep
neural networks, a balance between training error and generalization error is preferred as opposed
to solely minimizing the training error.

Second, our restart procedure for unknown constants always decreases the sum of the objective
and feasibility gap functions after each restart. Moreover, we only make use of (1.2) in our analysis
each time we restart, so it suffices that we only need (1.2) to hold in the sublevel set

{x ∈ D : f(x) + gQ(x) ≤ f(x0) + gQ(x0)}

for a starting vector x0 ∈ D.

1.4 Connections with previous work

Recently, there has been a large amount of work on adaptive first-order methods [33, 34, 37, 39,
52, 62, 71]. Adaptive methods seek to learn when to restart a first-order method by trying various
values for the method’s parameters and observing consequences over a number of iterations. A
catalyst for this body of work was provided by Nesterov [57], where he designed an accelerated (line
search) method for L-smooth objective functions f (see Section 4.1) with an optimal convergence
rate O(

√
L/ε) without needing L as an input. In the same paper, Nesterov considered strongly

convex objective functions with a grid search for approximating the strong convexity parameter.
By narrowing the class of objective functions, this led to an adaptive method with a dramatically
improved convergence rate (O(log(1/ε)) vs. O(1/

√
ε)), even without having to know the Lipschitz

constant or strong convexity parameter.
The complexity of first-order methods is usually controlled by smoothness assumptions on the

objective function, such as Lipschitz continuity of its gradient. Additional assumptions on the
objective function such as strong and uniform convexity provide, respectively, linear and faster
polynomial rates of convergence [55]. Restart schemes for strongly convex or uniformly convex
functions have been studied in [44, 49, 53, 57]. However, strong or uniform convexity is often too
restrictive an assumption in many applications.

An assumption more general than strong or uniform convexity is sharpness:

d(x, X̂) ≤

(
f(x)− f̂

α

)1/β

, ∀x ∈ Q, (1.6)

6

also known as a Hölderian growth/error bound or a Lojasiewicz-type inequality. For example,
Nemirovskii and Nesterov [53] linked a “strict minimum” condition similar to (1.6) (with known
constants) with faster convergence rates using restart schemes for smooth objective functions. For
further use of Lojasiewicz-type inequalities for first-order methods, see [7, 18, 19, 36, 45]. Hölderian
error bounds were first introduced by Hoffman [43] to study systems of linear inequalities, and
extended to convex optimization in [8,20,21,51,67]. Lojasiewicz showed that (1.6) holds generically
for real analytic and subanalytic functions [50], and Bolte, Daniilidis, and Lewis extended this
result to nonsmooth subanalytic convex functions [17]. However, the proofs of these results use
topological arguments that are far from constructive. Hence, without further case-by-case analysis
of problems and outside of some particular cases (e.g., strong convexity), we cannot assume that
suitable constants in (1.6) are known.

An example of (1.6) for β = 1 was considered in [68] (see also [16]), where the authors use a
restarted NESTA algorithm [12] for the exact recovery of sparse vectors from noiseless measure-
ments. The approximate sharpness condition (1.2) was first considered in [27] for the case of β = 1,
and known α and η, to allow the recovery of approximately sparse vectors from noisy measurements
and further related examples. Here the parameter η > 0 is crucial, both in practice and to allow
analysis. See also [1, 61]. Though similar to the sharpness condition in (1.6), our more general
assumption in (1.2) differs in two important ways, discussed above. First, we do not assume that
the sharpness condition is exact (η > 0), and, second, we do not require iterates of our algorithm
to be feasible (the function gQ). It is also important to re-emphasize that, in this paper, we do not
assume that the approximate sharpness constants are known.

The η term in (1.2) is expected and natural. For example, in [28] it was shown that there
are well-conditioned recovery problems for which stable and accurate neural networks exist, but
no training algorithm can obtain them. The existence of a training algorithm depends on the
amount/type of training data and the accuracy required. However, under certain conditions, one
can train an appropriate neural network: [28] links trainability to a special case of (1.2), and links
the accuracy possible via training to the corresponding η term. In the setting of inexact input,
the noise parameter appears as a limitation on the ability of an algorithm [9]. These phenomena
occur even if the algorithm is only expected to work on a restricted class of inputs that are ‘nice’
or ‘natural’ for the problem under consideration. The results of [9, 28] lead to the phenomenon of
generalized hardness of approximation (see also [38]), where it is possible to obtain solutions up
to some threshold, but beyond that threshold it becomes impossible. This threshold is strongly
related to η in the standard cases.

Most restart schemes are designed for a narrow family of first-order methods, and typically
rely on learning approximations of the parameter values characterizing functions in a particular
class (e.g., learning the Lipschitz constant L when f is assumed to be L-smooth, or the constants
α and β in (1.6)). There are two notable exceptions related to the present paper. First, Roulet
and d’Aspremont [69] consider all f possessing sharpness, and having Hölder continuous gradient
with exponent 0 < ν ≤ 1. The restart schemes of [69] result in optimal complexity bounds
when particular algorithms are employed in the schemes, assuming scheme parameters are set
to appropriate values that, however, are generally unknown in practice. However, for smooth f
(i.e., ν = 1), [69] develops an adaptive grid search procedure within the scheme to accurately
approximate the required values, leading to an overall complexity that is optimal up to logarithmic
factors. Second, Renegar and Grimmer [66] provide a simple scheme for restarting (generic) first-
order methods. Multiple instances are run that communicate their improvements in objective value
to one another, possibly triggering restarts. Their restart scheme only depends on how much the
objective value has been decreased and does not attempt to learn parameter values. The scheme
in [66] leads to nearly optimal complexity bounds for quite general classes of functions. This method

7

Notation Meaning

f Proper convex function
D Effective domain of f
Q Closed, convex subset of Rn or Cn
gQ Sharpness feasibility gap function, identically zero on Q

f̂ Minimum value of objective function over Q

X̂ Set of minimizers of f
d Metric on Rn or Cn
η Sharpness gap constant
α Sharpness scaling constant
β Sharpness exponentiation constant
δ Distance bound between initial point to optimum points
ε Bound on sum of objective function error and feasibility gap
εj Sum of objective function error and feasibility gap at jth restart initial point
Γ Optimization algorithm
CΓ Cost function that outputs the number of iterates
φ Mapping of current algorithm step to parameter subscripts (i, j, k)
h Function defining classes of maps φ as abstract execution order of restart scheme
χC Indicator function of a set C (χC(x) = 0 if x ∈ C, χC(x) =∞ otherwise)
‖·‖ Unless otherwise stated, the Euclidean norm on Cn or the induced 2-norm on Cm×n
〈·, ·〉 Unless otherwise stated, the Euclidean inner product on Cn
〈·, ·〉R Unless otherwise stated, 〈x, y〉R = Re (〈x, y〉) for x, y ∈ Cn
R+ Non-negative real numbers
R++ Positive real numbers
N0 Non-negative integers {0} ∪ N

Table 2: Notation used throughout the paper.

differs quite significantly from ours in that it does not assume an underlying sharpness condition
(1.6) (although such a condition is used in the analysis to obtain explicit complexity bounds).
However, as observed previously, by assuming (1.2) we are able to obtain better and essentially
optimal rates that avoid additional factors of log(1/ε). Moreover, in contrast to [66], our method
is independent of the total number of iterations, and we do not need to specify the total number
of iterations in advance. Further, we also address the practical case of approximate sharpness and
allow the case of infeasible iterates (the convergence analysis of [66] relies on η = 0 and that iterates
are feasible).

1.5 Notation and outline

For ease of reference, Section 1.5 outlines the notation used throughout the paper. The remainder
of this paper is organized as follows. In Section 2, we introduce a restart scheme in the case where
η is unknown, but α and β are known. This transpires to be significantly simpler than the general
case. Next, in Section 3 we introduce and analyze the full restart scheme when all three constants
are potentially unknown. In Section 4, we apply this restart scheme to different problems with
various first-order methods, leading, in particular, to the results described in Table 1. Next, in
Section 5 we present a series of numerical experiments illustrating the restart schemes in different
applications. Finally, we end in Section 6 with conclusions and open problems.

8

Algorithm 1: Restart scheme for unknown η.

Input : Optimization algorithm Γ for (1.1), initial vector x0 ∈ D, upper bound ε0 such
that f(x0)− f̂ + gQ(x0) ≤ ε0, constants α > 0 and β ≥ 1 such that (1.2) holds
(for possibly unknown η ≥ 0), r ∈ (0, 1), and number of restart iterations t ∈ N.

Output: Final iterate xt approximating a solution to (1.1)
1 for k = 0, 1, . . . , t− 1 do
2 εk+1 ← rεk ;

3 δk+1 ←
(

2εk
α

)1/β
;

4 z ← Γ (δk+1, εk+1, xk);
5 xk+1 ← argmin {f(x) + gQ(x) : x = xk or x = z};

6 end

2 Restart scheme for unknown η but known α and β

To formulate a restart scheme within the setup of Section 1.1, observe that the approximate sharp-
ness condition (1.2) relates d(x, X̂) to the objective function error f(x)−f̂ and feasibility gap gQ(x).
The upper bound in the approximate sharpness condition can be used as δ for the algorithm Γ, and
ε set as a rescaling of the previous sum of objective error and feasibility gap f(x)− f̂+gQ(x). How-

ever, in practice, we may not know the exact values of the objective error f(x)− f̂ and feasibility
gap gQ(x). It is, instead, enough to know upper bounds for these quantities.

We first consider the case where α, β are known, but η is unknown. This simpler case provides
insight into the solution of the full problem considered in Section 3. We define a restart scheme
under this assumption in Algorithm 1. Using (1.2) and Γ, it is easy to see inductively that for any
t with εt ≥ η, Algorithm 1 produces iterates x0, x1, . . . , xt ∈ D that satisfy

f(xk)− f̂ + gQ(xk) ≤ εk,

d(xk, X̂) ≤

(
f(xk)− f̂ + gQ(xk) + η

α

)1/β

≤
(
εk + η

α

)1/β

≤
(

2εk
α

)1/β

, 0 ≤ k ≤ t.
(2.1)

In addition, the total number of inner iterations used in Algorithm 1 is at most

t−1∑
k=0

CΓ

((
2εk
α

)1/β

, εk+1

)
.

Under further assumptions about the function CΓ, we can show that the iterates produced by the
restart scheme yield linear (if d2 = d1β) or fast algebraic (if d2 > d1β) decay of f(xk)− f̂ + gQ(xk)
in k down to a finite tolerance proportional to η. Hence, this property holds for both the objective
error f(xk)− f̂ and feasibility gap gQ(xk). We state and prove this in the following theorem. Note
that these additional assumptions are not arbitrary and will appear in our examples later.

Theorem 2.1. Consider Algorithm 1 and its corresponding inputs. For any ε ∈ (0, ε0), if we run
Algorithm 1 with t ≥ dlog(ε0/ε)/ log(1/r)e, then

f(xt)− f̂ + gQ(xt) ≤ max{η, ε}. (2.2)

Suppose, in addition, that for all δ, ε > 0, CΓ satisfies

CΓ(δ, ε) ≤ Cδd1/εd2 + 1, C, d1, d2 > 0.

9

Then the total number of iterations of Γ needed to compute an xt with (2.2) is at most

⌈
log(ε0/ε)

log(1/r)

⌉
+

C2d1/β

αd1/βrd2
·


1−rdlog(ε0/ε)/log(1/r)e|d2−d1/β|

1−r|d2−d1/β| · 1

ε
d2−d1/β
0

, if d2 < d1/β,⌈
log(ε0/ε)
log(1/r)

⌉
, if d2 = d1/β,

1−rdlog(ε0/ε)/log(1/r)e|d2−d1/β|
1−r|d2−d1/β| · 1

εd2−d1/β
, if d2 > d1/β.

(2.3)

Note that the cases in (2.3) match in the limit d2 − d1/β → 0.

Proof of Theorem 2.1. The statement of the theorem is unchanged if we assume that ε ≥ η. Hence,
we may assume without loss of generality that ε ≥ η. Let s = dlog(ε0/ε)/ log(1/r)e, then εs−1 =
rs−1ε0 ≥ ε ≥ η. It follows that we are in the regime where (2.1) holds and hence

f(xs−1)− f̂ + gQ(xs−1) ≤ εs−1, d(xs−1, X̂) ≤
(

2εs−1

α

)1/β

.

Then by line 4 of Algorithm 1 and the choice of s, we have

f(z)− f̂ + gQ(z) ≤ εs ≤ ε, z = Γ(δs, εs, xs−1).

Due to the argmin taken in Algorithm 1, (2.2) follows. The total number of iterations, T , needed
to reach such an xs is bounded by

T ≤
s−1∑
k=0

CΓ

((
2εk
α

)1/β

, εk+1

)
≤ s+ C

s−1∑
k=0

(2εk)
d1/β

αd1/βεd2k+1

= s+
C2d1/β

αd1/βrd2

s−1∑
k=0

1

ε
d2−d1/β
k

.

In the case that d2 = d1/β, then ε
d2−d1/β
k = 1 and we obtain

T ≤ s+
C2d1/β

αd1/βrd2
s =

(
1 +

C2d1/β

αd1/βrd2

)⌈
log(ε0/ε)

log(1/r)

⌉
.

If d2 6= d1/β, we use that εk = rkε0 and sum the geometric series to obtain

T ≤
⌈

log(ε0/ε)

log(1/r)

⌉
+

C2d1/β

αd1/βrd2
1− rdlog(ε0/ε)/log(1/r)e(d1/β−d2)

1− rd1/β−d2
1

ε
d2−d1/β
0

. (2.4)

If d2 > d1/β, then since ε0 ≥ ε/rs−1, we have ε
d2−d1/β
0 ≥ εd2−d1/βrd2−d1/β/rs(d2−d1/β). Substituting

this into (2.4) and rearranging yields

T ≤
⌈

log(ε0/ε)

log(1/r)

⌉
+

C2d1/β

αd1/βrd2
1− rdlog(ε0/ε)/log(1/r)e(d2−d1/β)

1− rd2−d1/β
1

εd2−d1/β
.

The result follows by considering the three separate cases in (2.3).

Remark 2.2 (How to choose r). Suppose that d2 = d1/β and that⌈
log(ε0/ε)

log(1/r)

⌉
≤ 2

log(ε0/ε)

log(1/r)
.

Using this new bound instead, the total number of iterations T performed by Γ is bounded by

T ≤
⌈

log(ε0/ε)

log(1/r)

⌉
+
C2d1/β+1

αd1/β
log(ε0/ε)

r−d2

log(1/r)
.

10

Hence T is bounded by an ε-dependent constant times r−d2/ log(1/r), which can be minimized
analytically by choosing r = e−1/d2. Note that the optimal r here does not depend on the approximate
sharpness constants. Therefore, one has

T ≤ dd2 log(ε0/ε)e+
Ced22d1/β+1

αd1/β
log(ε0/ε)

This is meaningful in terms of choosing one less parameter, namely r for Algorithm 1.
An optimal value of r can also be found for the case d2 > d1/β. However, this optimal value

depends on ε in a complicated manner. In the limit ε ↓ 0, the optimal choice is

r =

(
d2

2d2 − d1/β

) 1
d2−d1/β

,

which does depend on the sharpness constant β. As d2 − d1/β ↓ 0, this choice converges to the
choice r = e−1/d2, that is obtained when d2 = d1/β. Similarly, if d2 < d1/β, then the optimal choice
depends on ε in a complicated manner but converges to the choice r = e−1/d2 as d2 − d1/β ↑ 0.

In any of these cases, the same argument for optimal r applies to the algorithms in Section 3.
In the case that β is unknown, we recommend the choice r = e−1/d2. �

3 Restart scheme for unknown α, β and η

In the event that the constants α, β of (1.2) are unknown, we introduce a logarithmic grid search on
each of α and β, running multiple instances of Algorithm 1, and aggregating results that minimize
the objective error and feasibility gap. Even if suitable global α and β are known, the following
algorithm is useful since it also takes advantage of sharper versions of (1.2) that only hold locally
around optimal points.

3.1 The algorithm

To introduce the algorithm, we need some additional notation and definitions. This will allow us
to define a new general scheme for logarithmic grid searches, with examples given in Section 3.2.

Definition 3.1. Consider an infinite subset S ⊆ Z×N0×N. Let h : R+×R+×R++ → R++ be a
function that is nondecreasing in its first and second arguments, and strictly increasing in its third
argument. We call such an h a schedule criterion function, or simply a schedule criterion. Given a
schedule criterion h, an h-assignment over S is a bijection φ : N→ S satisfying

h(|i′|, j′, k′) ≤ h(|i|, j, k) ⇐⇒ φ−1(i′, j′, k′) ≤ φ−1(i, j, k), (3.1)

for all (i, j, k), (i′, j′, k′) ∈ S. N

Let a, b > 1 be constants. Our algorithm employs logarithmic search grids for the unknown
parameters α and β. Specifically, we consider the values αi = aiα0 for i ∈ Z and βj = bjβ0 for
j ∈ N0, where we assume that α0, β0 are additional inputs with α0 > 0 and β ≥ β0 ≥ 1. In essence,
our algorithm applies the restart scheme described in Algorithm 1 with the values αi and βj for
each i and j. However, it does so according to a particular schedule, specified by the functions h
and φ. The schedule criterion and assignment together control the execution order of Algorithm 1
instances for each i and j. Note that the lower bound β0 in the definition of the βj is to capture
additional knowledge that may be available (see, e.g., the examples in Section 4), and may be set

11

Algorithm 2: Restart scheme for unknown α, β and η in (1.2) via grid search.

Input : Optimization algorithm Γ for (1.1), bijection φ as in Definition 3.1, initial vector
x(0) ∈ D, upper bound ε0 such that f(x(0))− f̂ + gQ(x(0)) ≤ ε0, constants
a, b > 1, r ∈ (0, 1), α0 > 0, β0 ≥ 1 and total number of inner iterations t ∈ N.

Output: Final iterate x(t) approximating a solution to (1.1).
1 Initialize x(0) = x0, Ui,j = 0, Vi,j = 0, εi,j,0 = ε0 for all i ∈ Z, j ∈ N0;
2 for m = 0, 1, . . . , t− 1 do
3 (i, j, k)← φ(m+ 1) ;
4 αi ← aiα0, βj ← bjβ0, U ← Ui,j , V ← Vi,j ;
5 εi,j,U+1 ← rεi,j,U ;
6 if 2εi,j,U > αi then

7 δi,j,U+1 ←
(

2εi,j,U
αi

)min{b/βj ,1/β0}
;

8 else

9 δi,j,U+1 ←
(

2εi,j,U
αi

)1/βj
;

10 end
11 if V + CΓ (δi,j,U+1, εi,j,U+1) ≤ k then

12 z(m) ← Γ
(
δi,j,U+1, εi,j,U+1, x

(m)
)
;

13 x(m+1) ← argmin
{
f(x) + gQ(x) : x = z(m) or x = x(m)

}
;

14 Vi,j ← V + CΓ (δi,j,U+1, εi,j,U+1);
15 Ui,j ← U + 1;

16 else

17 x(m+1) = x(m) ;
18 end

19 end

to 1 if no such knowledge is available. Similarly, the constant α0 centers the search grid for α and
can be set to 1.

Our algorithm is presented in Algorithm 2. It proceeds as follows. At step m ∈ {0, . . . , t − 1}
it first applies the bijection φ to obtain the tuple (i, j, k) = φ(m + 1). The first two entries give
the approximate sharpness parameter values αi = aiα0 and βj = bjβ0. The final entry k is a
counter, which is an upper bound for the total number of iterations used by the algorithm for
these parameter values. We also have two further counters associated with each double (i, j). The
counter Vi,j counts the total number of inner iterations of Γ used by the restart scheme with these
parameters. The second counter Ui,j counts the number of completed restarts (outer iterations)
corresponding to these parameters.

Having obtained a tuple (i, j, k) = φ(m+ 1), the algorithm proceeds as follows. First, much as
in line 2 of Algorithm 1, it updates the first scaling parameter in line 5. Then, reminiscent of line
3 of Algorithm 1, it updates the other scaling parameter in lines 6-10. This step is more involved,
a complication that arises because the true parameter β is unknown.

The next lines, lines 11-16, are similar to lines 4-5 of Algorithm 1. The main difference is the
inclusion of the if statement, which is done to control the computational cost. It stipulates that a
restart be performed (line 12) if the total cost (including the proposed restart) does not exceed the
counter k (line 11). If this is not the case, then no restart is performed, and the algorithm moves
on to the next step.

12

We now present a general result on this algorithm. It relates the total number of inner iterations
of Γ used by Algorithm 2 to produce a solution within a desired error to intrinsic properties of the
schedule criterion function h. With this in hand, we derive explicit bounds for specific choices of h
in Section 3.2.

Theorem 3.2. Let S ⊆ Z × N0 × N be an infinite subset, h be a schedule criterion, and φ an
h-assignment over S. Let α, β and η be approximate sharpness constants of f in (1.2). Consider
Algorithm 2 for fixed a, b > 1. Define the (unknown) indices

I = bloga(α/α0)c, J = dlogb(β/β0)e

and the corresponding constants

α∗ = aIα0 ≤ α, β∗ = bJβ0 ≥ β.

Then for q ∈ N we have

δI,J,q =

[
max

{
1,

2rq−1ε0
α∗

}]min{b/β∗,1/β0} [
min

{
1,

2rq−1ε0
α∗

}]1/β∗

(3.2)

Now, for any ε ∈ (0, ε0), let

K(ε) := K(ε, α, β, η) =

dlog(ε0/ε)/ log(1/r)e∑
q=1

CΓ (δI,J,q, r
qε0) (3.3)

and suppose that (I, J,K(ε)) ∈ S. Then the total number of inner iterations of Γ needed by
Algorithm 2 to compute x(t) with

f(x(t))− f̂ + gQ(x(t)) ≤ max{η, ε},

is bounded by the cardinality of the set{
(i′, j′, k′) ∈ S : h(|i′|, j′, l′) ≤ h (|I|, J,K(ε))

}
. (3.4)

In addition, if CΓ satisfies

CΓ(δ, ε) ≤ Cδd1/εd2 + 1, C, d1, d2 > 0, (3.5)

for all δ, ε > 0, then we have

K(ε) ≤
⌈

log(ε0/ε)

log(1/r)

⌉
+ max


(

2ε0
α∗

)d1 min
{
b−1
β∗

, 1
β0
− 1
β∗

}
, 1

×
C2d1/β∗

α
d1/β∗
∗ rd2

·


1−rdlog(ε0/ε)/log(1/r)e|d2−d1/β∗|

1−r|d2−d1/β∗| · 1

ε
d2−d1/β∗
0

, if d2 < d1/β∗,⌈
log(ε0/ε)
log(1/r)

⌉
, if d2 = d1/β∗,

1−rdlog(ε0/ε)/log(1/r)e|d2−d1/β∗|
1−r|d2−d1/β∗| · 1

εd2−d1/β∗
, if d2 > d1/β∗.

(3.6)

13

Proof. Since εi,j,q−1 = rq−1ε0 for all q ∈ N, (3.2) must hold by considering the two separate cases
defining δI,J,q. Similar to the proof of Theorem 2.1, we may assume without loss of generality that
ε ≥ η. Note that, due to (1.2),

d(x, X̂) ≤

(
f(x)− f̂ + gQ(x) + η

α∗

)1/β

, ∀x ∈ D. (3.7)

Now consider the following adapted version of the iterates in Algorithm 1:

1 for p = 0, 1, . . . do
2 εp+1 ← rεp ;
3 if 2εp > α∗ then

4 δp+1 ←
(

2εp
α∗

)min{b/β∗,1/β0}
;

5 else

6 δp+1 ←
(

2εp
α∗

)1/β∗
;

7 end
8 z ← Γ (δp+1, εp+1, xp);
9 xp+1 ← argmin {f(x) + gQ(x) : x = xp or x = z};

10 end

It is easy to see inductively that for any l with εl ≥ η the above produces iterates {x0, x1, . . . , xl} ⊂
D satisfying

f(xp)− f̂ + gQ(xp) ≤ εp, d(xp, X̂) ≤ δp+1, 0 ≤ p ≤ l.

The only difference to the previous argument for Algorithm 1 is the use of (3.7), and the fact that

(
f(xp)− f̂ + gQ(xp) + η

α∗

)1/β

≤
(

2εp
α∗

)1/β

≤


(

2εp
α∗

)min{b/β∗,1/β0}
, if 2εp > α∗(

2εp
α∗

)1/β∗
, otherwise.

Here, we use the fact that β ≥ β0 in the first case.
In Algorithm 2, each Ui,j plays the role of the index p in the above iterates (i.e., counting the

number of restarts for a fixed (i, j)) and Vi,j counts the total number of inner iterations that have
been executed by the algorithm Γ for the approximate sharpness constants given by the double
index (i, j). The fact that we take minimizers of f + gQ across different indices does not alter the

above inductive argument, since the argument only depends on bounding the value of f − f̂ + gQ.
Moreover, since h is strictly increasing in its final argument and satisfies (3.1), the counter index k
counts successively through N for any fixed (i, j) as the for loop in Algorithm 2 proceeds. It follows
that if φ(m+ 1) = (I, J, k), VI,J + CΓ

(
δI,J,UI,J+1, εI,J,UI,J+1, x

(m)
)
≤ k and εI,J,UI,J ≥ η, then

f(x(m+1))− f̂ + gQ(x(m+1)) ≤ εI,J,UI,J+1 = rUI,J+1ε0. (3.8)

Hence, for Algorithm 2 to produce an iterate with

f(x(t))− f̂ + gQ(x(t)) ≤ max{η, ε}, (3.9)

14

it is sufficient to reach an m with φ(m+ 1) = (I, J, k) such that

k ≥
dlog(ε0/ε)/ log(1/r)e∑

q=1

CΓ (δI,J,q, εI,J,q) = K(ε) (3.10)

and execute the resulting restart. To see why this is the case, notice that if k satisfies this inequality,
then the number of restart iterations performed by the algorithm for the parameter values (I, J)
is at least dlog(ε0/ε)/ log(1/r)e. Plugging this into (3.8) gives the desired bound (3.9).

Now consider the set in (3.4). Due to (3.1), we notice that this set is equivalent to

{(i′, j′, k′) ∈ S : φ−1(i′, j′, k′) ≤ m+ 1},

where φ(m + 1) = (I, J,K(ε)). Notice that if a tuple (i′, j′, k′) belongs to this set, then (i′, j′, k′′)
belongs to the set for every 1 ≤ k′′ ≤ k′. Thus, the number of terms in this set corresponding to
the pair (i′, j′) is precisely the total number of inner iterations performed by the algorithm at the
corresponding parameter values up to step m. We immediately deduce that the cardinality of the
set (3.4) is a bound for the total number of inner iterations performed by the algorithm across all
parameter values up to step m, as required.

To finish the proof, we must show that (3.6) holds under the additional assumption (3.5) on CΓ.
Suppose first that δI,J,q > 1, then

CΓ (δI,J,q, r
qε0) ≤ C

(
2rq−1ε0
α∗

)d1 min{b/β∗,1/β0}
(rqε0)−d2 + 1

≤ C
(

2ε0
α∗

)d1[min{b/β∗,1/β0}−1/β∗](2rq−1ε0
α∗

)d1/β∗
(rqε0)−d2 + 1

=
C

rd2

(
2ε0
α∗

)d1[min{b/β∗,1/β0}−1/β∗](2

α∗

)d1/β∗ (
rq−1ε0

)−d2+d1/β∗ + 1.

Similarly, if δI,J,q ≤ 1, then

CΓ (δI,J,q, r
qε0) ≤ C

rd2

(
2

α∗

)d1/β∗ (
rq−1ε0

)−d2+d1/β∗ + 1.

From (3.10), it follows that

K(ε) ≤
⌈

log(ε0/ε)

log(1/r)

⌉
+max

{(
2ε0
α∗

)d1[min{b/β∗,1/β0}−1/β∗]

, 1

}
· C2d1/β∗

α
d1/β∗
∗ rd2

·
d log(ε0/ε)

log(1/r)
e−1∑

k=0

1

(rkε0)d2−d1/β∗
.

We now note that the only difference between this bound for K(ε) and the bound for T in the proof
of Theorem 2.1 is the factor that maximizes over the terms in curly brackets and the replacement
of α and β by α∗ and β∗, respectively. The result now follows by using the same arguments as in
the proof of Theorem 2.1.

3.2 Choices of schedule criterion functions and assignments

The total number of inner iterations of Γ needed for Algorithm 2 depends on the choice of h and
φ. We examine some choices and state them as corollaries. Examples are shown in Fig. 1.

15

Corollary 3.3 (Unknown α and β). Suppose that S = Z× N0 × N and let

h(x1, x2, x3) = (x1 + 1)c1(x2 + 1)c2x3, c1, c2 > 1

be a schedule criterion with h-assignment φ. Then for any ε ∈ (0, ε0), running Algorithm 2 with

t ≥ 2c1c2τ/[(c1 − 1)(c2 − 1)], τ = (|bloga(α/α0)c|+ 1)c1(|dlogb(β/β0)e|+ 1)c2K(ε),

where K(ε) is as in (3.3), implies that

f(x(t))− f̂ + gQ(x(t)) ≤ max{η, ε}.

Proof. It suffices to prove that the stated lower bound on t is an upper bound for the cardinality of
the set (3.4) from Theorem 3.2. We do this by finding an upper bound on the number of solutions
to nc11 n

c2
2 n3 ≤ τ where n1, n2, n3 ∈ N. By directly counting, the number of solutions is bounded by

τ1/c1∑
n1=1

(
τ

n
c1
1

) 1
c2∑

n2=1

τ

nc11 n
c2
2

≤ τ
∞∑

n1=1

1

nc11

∞∑
n2=1

1

nc22
.

We have that
∞∑

n1=1

1

nc11
≤ 1 +

∫ ∞
1

dx

xc1
=

c1

c1 − 1
.

It follows that the number of solutions is bounded by τc1c2/((c1−1)(c2−1)). Each counted solution
(n1, n2, n3) defines at most two tuples (i′, j′, k′) in the set (3.4), namely i′ = ±(n1− 1), j′ = n2− 1,
k′ = n3. In reverse, each tuple (i′, j′, k′) of the set (3.4) is always associated with a single solution
(n1, n2, n3), namely n1 = |i′| + 1, n2 = j′ + 1, n3 = k′. It then follows that that the set (3.4) is
bounded by 2τc1c2/((c1 − 1)(c2 − 1)).

We compare the cost in Corollary 3.3 to that of Theorem 2.1 under the assumption (3.5). Let
K̂(ε) be the cost in (2.3).

K(ε) . K̂(ε)

{
1, if β = β∗ or d2 ≤ d1/β∗,

1
εd1(1/β−1/β∗) , otherwise.

(3.11)

It follows that if β = β∗ or d2 ≤ d1/β∗, the cost of Algorithm 2 is of the same order as K̂(ε). If
neither of these hold, then the cost of Algorithm 2 is of the order of ε−d1(1/β−1/β∗) times the cost of
Algorithm 1. Note that the order of this extra algebraic dependence can be made arbitrarily small
by taking b close to 1, at the expense of a factor in the term τ that grows as logb(β/β0)c2 .

We now consider the cases where either α or β is known.

Corollary 3.4 (Known α). Suppose that α = aiα0. Let S = {i} × N0 × N and h(x1, x2, x3) =
(x2 + 1)c2x3, c2 > 1, be a schedule criterion. Then given any h-assignment φ and any ε ∈ (0, ε0),
running Algorithm 2 with

t ≥ c2τ/(c2 − 1), τ = (|dlogb(β/β0)e|+ 1)c2K(ε),

where K(ε) is as in (3.3), implies that

f(x(t))− f̂ + gQ(x(t)) ≤ max{η, ε}.

16

Proof. The result follows after modifying the proof of Corollary 3.3 as follows. First, find an upper
bound to the number of solutions to nc22 n3 ≤ τ for n2, n3 ∈ N. Now find the correspondence
between the solutions and the tuples (i′, j′, k′) of (3.4), where i′ is now fixed.

For the case of known β, we alter Algorithm 2 by removing the if statement in line 6 and always
using the update rule in line 9.

Corollary 3.5 (Known β). Suppose that β = β0 is known, S = Z × {0} × N and h(x1, x2, x3) =
(x1 + 1)c1x3, c1 > 1, is a schedule criterion. Then given any h-assignment φ and any ε ∈ (0, ε0),
running Algorithm 2 and

t ≥ 2c1τ/(c1 − 1), τ = (|bloga(α/α0)c|+ 1)c1K(ε),

where K(ε) is as in (3.3), implies that

f(x(t))− f̂ + gQ(x(t)) ≤ max{η, ε}.

Proof. Similar to the previous proof, the result follows after modifying the proof of Corollary 3.3.
First, find an upper bound to the number of solutions to nc11 n3 ≤ τ for n1, n3 ∈ N. Now find the
correspondence between the solutions and the tuples (i′, j′, k′) of (3.4), where j′ is now fixed.

Remark 3.6 (How to choose a, b). In the case of Corollary 3.5 and assuming (3.5), we can select
an optimal value of a. From Corollary 3.5 and α∗ ≥ α/a, the part of τ that depends on a is
bounded by O((|bloga(α/α0)c|+ 1)c1ad1/β). We can upper bound this further by both dropping the
floor function and, then dropping the +1 in brackets. We are then led to minimizing

| loga(α/α0)|c1ad1/β = | log(α/α0)|c1ad1/β/ log(a)c1 .

Under these assumptions, the optimal value of a is ec1β/d1. Note that in the case of Corollary 3.4,
there is no clear optimal choice for b since the optimal choice is ε-dependent. �

Remark 3.7 (How to choose c1, c2). For Corollaries 3.3 and 3.5, an optimal choice of c1 > 1
exists but it depends on the unknown parameter α. To see this, minimize the lower bound of t in
the aforementioned corollaries with respect to c1, noting that the only term in τ that depends on c1

is (|bloga(α/α0)c|+ 1)c1. Assuming α0 6= α, this gives

c1 =
1 +

√
1 + 4

log(|bloga(α/α0)c|+1)

2
.

By the same reasoning, for Corollaries 3.3 and 3.4 and β0 6= β, the optimal choice of c2 > 1 depends
on the unknown parameter β and is given by

c2 =
1 +

√
1 + 4

log(|dlogb(β/β0)e|+1)

2
.

Intuitively, if α0 is far from α then c1 should be closer to 1, and similarly for β0 and β regarding
c2. In the absence of prior knowledge, we recommend a sensible default such as c1 = c2 = 2. �

Finally, to emphasize the generality of our algorithm, we consider the case where α and β are
known to lie within explicit ranges. In this case, we modify set S based on these ranges and choose
a schedule criterion function h(x1, x2, x3) depending on x3 only. The following result is immediate.

17

Corollary 3.8 (Known ranges for α, β). Suppose we have integers

imin ≤ imax, 0 ≤ jmin ≤ jmax,

for which
α ∈ [aiminα0, a

imaxα0], β ∈ [bjminβ0, b
jmaxβ0].

Let
S = {imin, imin + 1, . . . , imax} × {jmin, jmin + 1, . . . , jmax} × N,

and h(x1, x2, x3) = x3 be a schedule criterion. Then given any h-assignment φ and any ε ∈ (0, ε0),
running Algorithm 2 with

t ≥ (imax − imin + 1)(jmax − jmin + 1)K(ε),

where K(ε) is as in (3.3), implies f(x(t))− f̂ + gQ(x(t)) ≤ max{η, ε}.

Note that Algorithm 2 is sequential. However, one can readily devise a parallel implementation
that runs Algorithm 1 in parallel over each pair (i, j) and then minimizes f + gQ over all instances
at the end of the process.

4 Examples

In this section, we present various examples of first-order methods that can be used in our restart
scheme for different problem settings. In particular, we describe the methods that lead to the
various results in Table 1. We do this by explicitly deriving a method Γ : R++×R++×D → D that
satisfies (1.3) and give an explicit bound for the cost function CΓ(δ, ε, x0) of the form Cδd1/εd2 + 1
for suitable d1 and d2.

Remark 4.1 (Optimization over C). In convex analysis and continuous optimization, it is standard
to consider function inputs lying in a finite-dimensional vector space over R. The results described
below are extended to C, but this treatment does not always arise in the original papers for the
first-order methods. We are interested in the domain of f being a subset of Cn. Hence, we consider
the natural isomorphism between Cn and R2n given by: if z = x + iy ∈ Cn with x, y ∈ Rn, then
z 7→ (x, y). We refer to z as the complex representation and (x, y) as the real representation. Now,
one proceeds to do convex analysis and continuous optimization in the real representation, then
express the results in the equivalent complex representation. Fortunately, not much needs to change
(at least symbolically) when switching between real and complex representations.

For example, the Euclidean inner products 〈·, ·〉 have to be substituted with their real part, i.e.,
〈·, ·〉R := Re 〈·, ·〉. Another example pertains to the differentiability of f . Specifically, for x, y ∈ Rn,
we say that f is differentiable at z = x+ iy ∈ D ⊆ Cn if and only if Re (f) is (real) differentiable at
(x, y). To define the gradient, denote ∇x and ∇y as the vector of partial derivatives corresponding
to variables x and y, respectively. Then ∇f := ∇xRe (f) + i∇yRe (f), noting that because f is
real-valued, we have Im (f) ≡ 0. Other parts of convex analysis, such as convexity, functions,
proximal mappings, subgradients, and so on, also extend to a complex vector domain by applying
the definitions to the real representation of complex vectors. �

18

Algorithm 3: Nesterov’s method

Input : An L-smooth function f and closed, convex set Q ⊆ Cn as in (1.1), prox-function
p(·;x0) with strong convexity constant σp and unique minimizer x0 ∈ Q,
sequences {γj}∞j=0 and {τj}∞j=0, and number of iterations N .

Output: The vector xN , which estimates a minimizer of (1.1).
1 z0 ← x0

2 for j = 0, 1, . . . , N − 1 do

3 xj+1 ← argmin
x∈Q

L
2 ‖x− zj‖

2
`2 + 〈∇f(zj), x− zj〉R

4 vj ← argmin
x∈Q

L
σp
p(x;x0) +

∑j
i=0 γi〈∇f(zi), x− zi〉R

5 zj+1 ← τjvj + (1− τj)xj+1

6 end

4.1 Nesterov’s method for L-smooth functions

For our first example, we consider Nesterov’s method [56], an accelerated projected gradient descent
algorithm for general constrained convex optimization problems. Specifically, the algorithm aims
to solve (1.1) in the special case when f is convex and L-smooth:

Definition 4.2. A function f : Cn → R is L-smooth over Q ⊆ Cn if it is Fréchet differentiable in
an open set containing Q, and for all x, y in this set, its gradient ∇f has the Lipschitz property

‖∇f(x)−∇f(y)‖`2 ≤ L‖x− y‖`2 . N

Nesterov’s method is given in Algorithm 3. The algorithm uses the notion of a prox-function
p. Here p : Q→ R is a proper, closed and strongly convex function with strong convexity constant
σp > 0, that, in addition, satisfies minx∈Q p(x) = 0. Let x0 = argminx∈Qp(x) be the unique
minimizer of p. To make this dependence explicit, we write p(·) = p(·;x0). A common and simple
choice of prox-function is p(x;x0) = 1

2‖x− x0‖2`2 with σp = 1. This will be useful when we express
Nesterov’s method with smoothing, in terms of Γ. We now state Nesterov’s main result that gives
a bound for f(xk)− f(x), for any x ∈ Q.

Lemma 4.3 (Nesterov’s theorem). Let Q ⊆ Cn be nonempty, closed and convex, f a convex L-
smooth function over Q. In addition, let p : Q→ R be a proper, closed and strongly convex function
over Q with strong convexity constant σp > 0 with minx∈Q p(x) = 0. Then Algorithm 3 with

γj =
j + 1

2
, τj =

2

j + 3
, x0 = argmin

x∈Q
p(x),

generates a sequence {xk}∞k=1 ⊂ Q satisfying

f(xk)− f(x) ≤ 4Lp(x;x0)

k(k + 1)σp
, ∀x ∈ Q. (4.1)

Lemma 4.3 consists of two modifications of [56, Theorem 2]. First, we do not assume Q is
bounded, as the results in the original work do not use this. Second, we allow x ∈ Q instead of
x ∈ X̂. The proof in the original work does not use the optimality of x, and only requires x to
be feasible. We utilize this property when considering Nesterov’s method with smoothing. The
following is now immediate.

19

Proposition 4.4. Let Q ⊆ Cn be nonempty, closed and convex, f a convex L-smooth function over
Q (Definition 4.2). Given input (δ, ε, x0) ∈ R+×R+×Q, let Γ(δ, ε, x0) be the output of Algorithm 3
with

p(x;x0) =
1

2
‖x− x0‖2`2 , γj =

j + 1

2
, τj =

2

j + 3
, N =

⌈
δ
√

2L√
ε

⌉
.

Then (1.3) holds with gQ ≡ 0. Specifically,

f(Γ(δ, ε, x0))− f̂ ≤ ε, ∀x0 ∈ Q with d(x0, X̂) ≤ δ, (4.2)

where d is the metric induced by the `2-norm. It follows that we can take

CΓ(δ, ε) =

⌈
δ
√

2L√
ε

⌉
. (4.3)

Proposition 4.4 shows that we can take d1 = 1 and d2 = 1/2 in the cost bound (3.5) for
Nesterov’s method (without smoothing). If f is L−smooth and satisfies (1.2) with η = 0, then
β ≥ 2. It follows that we can take β0 = 2. Theorem 3.2 now implies the rates in the first row of
Table 1.

Several other remarks are in order. First, in Nesterov’s method, the iterates xj are always
feasible since the corresponding update step returns a point in Q. Thus in Proposition 4.4 we do
not have to define gQ since Γ trivially satisfies (1.3) with gQ ≡ 0. Finally, in Nesterov’s method,
the requirement x0 ∈ Q can be relaxed. For instance, we only require f is L-smooth over the union
of Q and an open neighborhood of x0 for some L > 0 to start with x0 /∈ Q.

4.2 Nesterov’s method for (u, v)-smoothable functions

We can extend Nesterov’s method to solve (1.1) without assuming that f is differentiable. This is
done via smoothing. For this, we need the following definition from [10, Definition 10.43] (extended
to functions with complex-vector domains).

Definition 4.5. Let u, v > 0. A convex function f : Cn → R is called (u, v)-smoothable if for any
µ > 0 there exists a convex differentiable function fµ : Cn → R such that

1. fµ(x) ≤ f(x) ≤ fµ(x) + vµ for all x ∈ Cn

2. fµ is u
µ -smooth over Cn

The function fµ is referred to as a 1
µ -smooth approximation of f with parameters (u, v), and µ is

referred to as the smoothing parameter. N

Smoothing is a framework that approximates f arbitrarily closely by a family of smooth func-
tions, i.e., functions with Lipschitz gradients. This means that we can apply Nesterov’s method to
a smooth approximation of f , and also analyze the objective error in terms of f . The following
provides a modified version of Lemma 4.3 for (a, b)-smoothable f , and is proven in Appendix A.1.

Lemma 4.6. Let f : Cn → R be a convex (u, v)-smoothable function. Given any µ > 0, let fµ be a
1
µ -smooth approximation of f with parameters (u, v). Then taking Q, p, γj, τj, x0 as in Lemma 4.3
and applying Algorithm 3 to the function fµ produces a sequence {xk}∞k=1 satisfying

f(xk)− f(x) ≤ 4up(x;x0)

µk(k + 1)σp
+ vµ, x ∈ Q. (4.4)

20

The following proposition shows that Nesterov’s method with smoothing can be formulated as
an algorithm Γ in our framework, and is proven in Appendix A.1.

Proposition 4.7. Let Q ⊆ Cn be nonempty, closed and convex, and f : Cn → R a convex (u, v)-
smoothable function (Definition 4.5). Given input (δ, ε, x0) ∈ R+ × R+ × Q, let Γ(δ, ε, x0) be the
output of Algorithm 3 applied to function fµ with

µ =
ε

2v
, p(x;x0) =

1

2
‖x− x0‖2`2 , γj =

j + 1

2
, τj =

2

j + 3
, N =

⌈
2
√

2uv · δ
ε

⌉
.

Then
f(Γ(δ, ε, x0))− f̂ ≤ ε, ∀x0 ∈ Q satisfying d(x0, X̂) ≤ δ,

where d is the metric induced by the `2-norm. It follows that we can set

CΓ(δ, ε, x0) =

⌈
2
√

2uv · δ
ε

⌉
.

This result shows that we can take d1 = 1 and d2 = 1 in (3.5) in the case of Nesterov’s method
with smoothing. Theorem 3.2 now implies the rates in the second row of Table 1.

The following discussion considers a standard example of smoothing that is closely related to
proximal maps, from [10, Theorem 10.51]. If f : Cn → R is convex and Lipschitz continuous
with Lipschitz constant Lf , then it is (1, L2

f/2)-smoothable. In particular, the Moreau envelope

with parameter µ > 0 is a 1
µ -smooth approximation of f with parameters (1, L2

f). Given a convex
function f : Cn → R and µ > 0, the Moreau envelope of f is the function

Mµ
f (x) = min

y∈Cn

{
f(y) +

1

2µ
‖x− y‖2`2

}
. (4.5)

The number µ is referred to as the smoothing parameter. The Moreau envelope Mµ
f is well-defined,

and the minimization problem defined in (4.5) has a unique solution corresponding to proxµf (x),

i.e., the proximal map of µf at x [10, Theorem 6.3]. The Moreau envelope of f is also 1
µ -smooth

over its domain, where for any x we have

∇Mµ
f (x) =

1

µ
(x− proxµf (x)).

Examples of Moreau envelopes of functions can be found in [10, Section 6.7].

4.3 The universal fast gradient method

We next consider Hölder smooth functions, which are a natural way of interpolating between
nonsmooth and smooth objective functions.

Definition 4.8. A function q : Cn → R is Hölder smooth over Q ⊆ Cn with parameter ν ∈ [0, 1] if

‖∇q(x)−∇q(y)‖`2 ≤Mν‖x− y‖ν`2 , ∀ x, y ∈ Q,∇q(x) ∈ ∂q(x),∇q(y) ∈ ∂q(y). N

We consider the universal fast gradient method [58] for the problem

min
x∈Q

f(x), f(x) := q(x) + g(x), (4.6)

21

Algorithm 4: Universal fast gradient method

Input : ε > 0, L0 > 0, φ0(x) = 0, y0 = x0, A0 = 0.
Output: The vector xN , which estimates a minimizer of (4.6).

1 for k = 0, 1, . . . , N do
2 vk ← proxφk,Q(x0)

3 ik ← −1
4 do
5 ik ← ik + 1
6 Compute ak+1,ik from the equation a2

k+1,ik
= 1

2ikLk
(Ak + ak+1,ik).

7 Ak+1,ik ← Ak + ak+1,ik

8 τk,ik ← ak+1,ik/Ak+1,ik

9 xk+1,ik ← τk,ikvk + (1− τk,ik)yk
10 Choose a subgradient ∇q(xk+1,ik) ∈ ∂q(xk+1,ik).

11 φ̂k+1,ik(x)← ak+1,ik [〈∇q(xk+1,ik), x〉R + g(x)]
12 x̂k+1,ik ← proxφ̂k+1,ik

,Q(vk)

13 yk+1,ik ← τk,ik x̂k+1,ik + (1− τk,ik)yk
14 while q(yk+1,ik)>q(xk+1,ik)+〈∇q(xk+1,ik), yk+1,ik−xk+1,ik〉R+2ik−1Lk‖yk+1,ik−xk+1,ik‖

2
`2 + ε

2τk,ik
15 xk+1 ← xk+1,ik , yk+1 ← yk+1,ik , ak+1 ← ak+1,ik , τk ← τk,ik
16 Ak+1 ← Ak + ak+1, Lk+1 ← 2ik−1Lk
17 φk+1(x)← φk(x) + ak+1[q(xk+1) + 〈∇q(xk+1), x− xk+1〉R + g(x)].

18 end

where q is a proper convex function that is Hölder smooth for some ν ∈ [0, 1], and g is a closed
convex function whose proximal map,

proxcg,Q(x) = argmin
y∈Q

{
c · g(y) +

1

2
‖x− y‖2`2

}
,

is straightforward to compute. The iterates of the universal fast gradient method are summarized
in Algorithm 4.

Lemma 4.9 (Theorem 3 of [58]). Let Q ⊆ Cn be nonempty, closed and convex, q a proper convex
function that is Hölder smooth for some ν ∈ [0, 1] and Mν < ∞ (Definition 4.8), and g a closed
convex function. Then Algorithm 4 generates a sequence {xk}∞k=1 ⊂ Q satisfying

f(xk)− f̂ ≤
(

22+4νM2
ν

ε1−νk1+3ν

) 1
1+ν d(x0, X̂)2

2
+
ε

2
, ∀x ∈ Q, (4.7)

where d is the metric induced by the `2-norm.

By choosing k to match the two terms on the right-hand side of (4.7), the following proposition
is immediate.

Proposition 4.10. Let Q ⊆ Cn be nonempty, closed and convex, q a proper convex function is
Hölder smooth for some ν ∈ [0, 1] and Mν ≥ 0 (Definition 4.8), and g a closed convex function.
Given input (δ, ε, x0) ∈ R+ × R+ ×Q, let Γ(δ, ε, x0) be the output of Algorithm 4 with

N =

2
2+4ν
1+3νM

2
1+3ν
ν δ

2+2ν
1+3ν

ε
2

1+3ν

 .
22

Algorithm 5: Primal-dual algorithm for the problem (4.8).

Input : Initial vectors x0 ∈ Cn and y0 ∈ Cm, proximal step sizes τ, σ > 0, number of
iterations N , matrix B ∈ Cm×n, and routines for appropriate proximal maps.

Output: Final ergodic average XN approximating a solution to (4.8).

1 Initiate with x(0) = x0, y
(0)
1 = y0, X0 = 0, and Y0 = 0.

2 for j = 0, . . . , N − 1 do

3 x(j+1) ← proxτg
(
x(j) − τB∗y(j) − τ∇q(x(j))

)
;

4 y(j+1) ← proxσh∗
(
y(j) + σB(2x(j+1) − x(j))

)
;

5 Xj+1 ← 1
j+1

(
jXj + x(j+1)

)
;

6 Yj+1 ← 1
j+1

(
jYj + y(j+1)

)
;

7 end

Then
f(Γ(δ, ε, x0))− f̂ ≤ ε, ∀x0 ∈ Q satisfying d(x0, X̂) ≤ δ,

where d is the metric induced by the `2-norm. It follows that we can set

CΓ(δ, ε, x0) =

2
2+4ν
1+3νM

2
1+3ν
ν δ

2+2ν
1+3ν

ε
2

1+3ν

 .
Proposition 4.10 shows that we can take d1 = (2 + 2ν)/(1 + 3ν) and d2 = 2/(1 + 3ν) for the

universal fast gradient method. Note that if q satisfies both (1.2) for η = 0 and Definition 4.8, then
β ≥ 1 + ν [69]. Therefore, we take β0 = 1 + ν. Theorem 3.2 now implies the rates in the third row
of Table 1.

4.4 The primal-dual iteration for unconstrained problems

We now consider Chambolle and Pock’s primal-dual algorithm [23, 25]. The primal-dual hybrid
gradient (PDHG) algorithm is a popular method to solve saddle point problems [22,31,63]. Consider
the problem

min
x∈Cn

f(x), f(x) := q(x) + g(x) + h(Bx), (4.8)

where: B ∈ Cm×n with ‖B‖ ≤ LB; q is a proper, lower semicontinuous, convex function, and is
Lq-smooth; and g, h are proper, lower semicontinuous, convex functions whose proximal maps are
straightforward to compute. We also use the standard Euclidean metric for d in (1.2) and write
the primal-dual iterates in their simplified form accordingly.

The saddle-point problem associated with (4.8) is

min
x∈Cn

max
y∈Cm

L(x, y) := 〈Bx, y〉R + q(x) + g(x)− h∗(y). (4.9)

The primal-dual iterates are summarized in Algorithm 5, where the output is the ergodic average
of the primal-dual iterates. Note that the primal-dual algorithm allows us to easily deal with the
matrix B, which can be difficult with other first-order methods. If τ(σL2

B + Lq) ≤ 1, then [25,
Theorem 1] shows that for any x ∈ Cn and y ∈ Cm,

L (Xk, y)− L (x, Yk) ≤
1

k

(
‖x− x(0)‖2

τ
+
‖y − y(0)‖2

σ

)
. (4.10)

The following lemma is a simple consequence of this bound and is proven in Appendix A.2.

23

Lemma 4.11. Consider the primal-dual iterates in Algorithm 5. If τ(σL2
B + Lq) ≤ 1, then

f(Xk)− f(x) ≤ 1

k

(
‖x− x(0)‖2

τ
+
‖y − y(0)‖2

σ

)
, ∀x ∈ Cn, y ∈ ∂h(BXk). (4.11)

We can take the infimum over y ∈ ∂h(BXk) on the right-hand side of (4.11) to obtain

f(Xk)− f(x) ≤ 1

k

(
‖x− x(0)‖2

τ
+

supz∈dom(h) infy∈∂h(z) ‖y − y(0)‖2

σ

)
, ∀x ∈ Cn. (4.12)

To bound the right-hand side, we take y(0) = 0 and consider the case where h is such that there
always exist points y in the subdifferential of h for which ‖y‖ is not too large. Note that this
always holds if, for example, h is Lipschitz continuous and its domain is open [10, Theorem 3.61].
The following proposition now shows how this falls into the framework of our restart scheme and
is proven in Appendix A.2.

Proposition 4.12. Suppose that

sup
z∈dom(h)

inf
y∈∂h(z)

‖y‖ ≤ Lh <∞. (4.13)

Given input (δ, ε, x0) ∈ R+ × R+ × Cn, let Γ(δ, ε, x0) be the output of Algorithm 5 with

y0 = 0, τ =
δ

LBLh + δLq
, σ =

Lh
δLB

, N =

⌈
δ

ε
(2LBLh + δLq)

⌉
.

Then
f(Γ(δ, ε, x0))− f̂ ≤ ε, ∀x0 with d(x0, X̂) ≤ δ. (4.14)

It follows that we can take

CΓ(δ, ε, x0) =

⌈
δ

ε
(2LBLh + δLq)

⌉
. (4.15)

Assuming that δ is bounded, Proposition 4.12 shows that we can take d1 = 1 and d2 = 1 for
the primal-dual algorithm. Theorem 3.2 now implies the rates in the fourth row of Table 1.

4.5 The primal-dual iterations for constrained problems

We now consider primal-dual iterations, but for the constrained problem

min
x∈Cn

f(x) + χC(Ax), f(x) := q(x) + g(x) + h(Bx), (4.16)

with the same assumptions on q, g, h and B as in Section 4.4, but now with the additional term
χC(Ax). Here, C is a closed and non-empty convex set, χC is its indicator function of C and
A ∈ Cm′×n with ‖A‖ ≤ LA. This fits into our framework with the choice

Q = {x ∈ Cn : Ax ∈ C}, gQ(x) = gQ(κ;x) = κ · inf
z∈C
‖Ax− z‖,

for κ > 0. Note that κ is an additional parameter that can be chosen to balance the rate of
reduction in the feasibility gap versus the objective function error. It is possible to formulate a
projected version of the primal-dual iteration. However, like with Nesterov’s method, this is only

24

Algorithm 6: Primal-dual algorithm for the constrained problem (4.16).

Input : Initial vectors x0 ∈ Cn, [y0]1 ∈ Cm and [y0]2 ∈ Cm′ , proximal step sizes
τ, σ1, σ2 > 0, number of iterations N , matrices B ∈ Cm×n and A ∈ Cm′×n, and
routines for appropriate proximal maps.

Output: Final ergodic average XN approximating a solution to (4.16).

1 Initiate with x(0) = x0, y
(0)
1 = [y0]1, y

(0)
2 = [y0]2, X0 = 0, [Y0]1 = 0, and [Y0]2 = 0.

2 for j = 0, . . . , N − 1 do

3 x(j+1) ← proxτg

(
x(j) − τB∗y(j)

1 − τA∗y
(j)
2 − τ∇q(x(j))

)
;

4 y
(j+1)
1 ← proxσ1h∗

(
y

(j)
1 + σ1B(2x(j+1) − x(j))

)
;

5 y
(j+1)
2 ← y

(j)
2 + σ2A(2x(j+1) − x(j))− σ2PC

(
y

(j)
2 /σ2 +A(2x(j+1) − x(j))

)
;

6 Xj+1 ← 1
j+1

(
jXj + x(j+1)

)
;

7 [Yj+1]1 ← 1
j+1

(
j[Yj]1 + y

(j+1)
1

)
;

8 [Yj+1]2 ← 1
j+1

(
j[Yj]2 + y

(j+1)
2

)
;

9 end

possible when the projection onto Q can be easily computed. In this section, we consider a primal-
dual iteration for (4.16) that only involves computing the projection onto the set C, at the price of
producing non-feasible iterates.

The saddle-point problem associated with (4.16) is

min
x∈Cn

max
y1∈Cm

max
y2∈Cm′

LC(x, y1, y2) := 〈Bx, y1〉R+q(x)+g(x)−h∗(y1)+〈Ax, y2〉R−sup
z∈C
〈z, y2〉R. (4.17)

The primal-dual iterates are summarized in Algorithm 6, where, again, the output is the ergodic
average of the primal-dual iterates. We have included three proximal step sizes τ , σ1 and σ2, which
correspond to the primal variable and the two dual variables, respectively. To compute the proximal
map associated with the second dual variable, we use Moreau’s identity to write

proxσ2χ∗C (y) = y − σ2PC(y/σ2),

where PC denotes the projection onto C (with respect to the standard Euclidean norm).
If τ(σ1L

2
B +σ2L

2
A +Lq) ≤ 1, then a straightforward adaption of [25, Theorem 1] shows that for

any x ∈ Cn, y1 ∈ Cm and y2 ∈ Cm′ ,

LC (Xk, y1, y2)− LC (x, [Yk]1, [Yk]2) ≤ 1

k

‖x− x(0)‖2

τ
+
‖y1 − y(0)

1 ‖
2

σ1
+
‖y2 − y(0)

2 ‖
2

σ2

 . (4.18)

We now have the following lemma and resulting proposition, both of which are proven in Ap-
pendix A.3.

Lemma 4.13. Consider the primal-dual algorithm in Algorithm 6 with y
(0)
2 = 0. If τ(σ1L

2
B +

σ2L
2
A + Lq) ≤ 1, then for any κ > 0

f(Xk)− f(x) + gQ(κ;Xk) ≤
1

k

‖x− x(0)‖2

τ
+
‖y1 − y(0)

1 ‖
2

σ1
+
κ2

σ2

 , ∀x ∈ Q, y1 ∈ ∂h(BXk).

(4.19)

25

Proposition 4.14. Suppose that

sup
z∈dom(h)

inf
y∈∂h(z)

‖y‖ ≤ Lh <∞. (4.20)

Given input (δ, ε, x0) ∈ R+ × R+ × Cn, let Γ(δ, ε, x0) be the output of Algorithm 6 with

[y0]1 = 0, [y0]2 = 0, τ =
δ

κLA + LhLB + δLq
, σ1 =

Lh
δLB

, σ2 =
κ

δLA
, N =

⌈
δ (2κLA + 2LhLB + δLq)

ε

⌉
.

Then
f(Γ(δ, ε, x0))− f̂ + gQ(κ; x̂) ≤ ε, ∀x0 with d(x0, X̂) ≤ δ. (4.21)

It follows that we can take

CΓ(δ, ε, x0) =

⌈
δ (2κLA + 2LhLB + δLq)

ε

⌉
. (4.22)

Assuming that δ is bounded, Proposition 4.14 shows that we can take d1 = 1 and d2 = 1 for
the primal-dual algorithm. Theorem 3.2 now implies the rates in the final row of Table 1.

5 Numerical experiments

We implement several numerical experiments for the general restart scheme (Algorithm 2) applied
to three different problems. The first is a simple sparse recovery problem modeled as QCBP, which is
solved using the primal-dual iteration for constrained problems (Algorithm 6). Second, we consider
image reconstruction from Fourier measurements via TV minimization. The reconstruction is
computed using NESTA [12], where NESTA is an accelerated projected gradient descent algorithm
derived from Nesterov’s method (Algorithm 3) with smoothing. Third, we perform feature selection
on three real-world datasets. This selection is done by solving a SR-LASSO problem on the data
with unconstrained primal-dual iterations (Algorithm 5).

Before discussing the examples in turn, we make some general remarks about the implemen-
tation. First, we use the schedule criteria from Section 3.2, and for parameters we always set
c1 = c2 = 2, b = e, r = e−1, and a = ec1β/d1 for unknown α but known β (Corollary 3.5), other-
wise a = ec1/d1 if both are unknown (Corollary 3.3). Assignments from the schedule criteria are
obtained by enumerating and sorting solutions of the respective Diophantine equations found in
the proofs of Corollaries 3.3 to 3.5. The choice of r is motivated by Remark 2.2 and the choice of a
by Remark 3.6. The choice of c1 and c2 were arbitrary, with the intent of being sane defaults, and
otherwise can be tuned to improve performance.

Second, when using the restart scheme for primal-dual iterations, we store and perform restarts
on the dual variables for each instance indexed by (i, j).

Third, we use a simple workaround to handle finite precision arithmetic. In the grid search
for the restart scheme, the sharpness parameter αi can be arbitrarily large or small, and βj can
be arbitrarily large. Also, the adaptive restart parameters δ = δi,j,U and ε = εi,j,U can become
arbitrarily small. Regarding the grid indices, we limit i and j so that

|i| ≤ bloga(1/εmach)c, j ≤ blogb(1/εmach)c,

where εmach is machine epsilon. Regarding the adaptive parameters, after the assignments of
δi,j,U+1 and εi,j,U+1 in Algorithm 2, we insert the updates δi,j,U+1 := max(δi,j,U+1, 10εmach) and
εi,j,U+1 := max(εi,j,U+1, 10εmach) to avoid setting them to zero.

26

Fourth, we slightly modify the primal-dual algorithm to improve overall performance. For each
j ≥ 1, we track a separate iterate X̃j defined by

X̃j = argmini=1,...,jf(Xi) + κgQ(Xi), j ≥ 1.

The iterates {X̃j}j≥1 are not used in the primal-dual algorithm, but are instead used to evaluate

the reconstruction or objective error in our experiments. In addition, the algorithm returns X̃N as
its final iterate. We similarly track a separate iterate for the dual variables, selecting them based
on an evaluation of the Lagrangian (4.17) with X̃j . Note that choosing to output X̃N instead of
XN is theoretically justified, since if (1.3) holds, then our modification would still satisfy (1.3) for
the same parameters (δ, ε, x0).

5.1 Sparse recovery via QCBP

We consider reconstructing a vector x ∈ Rn from noisy measurements y = Ax + e ∈ Rm, where
A ∈ Rm×n is a matrix whose entries are i.i.d. Gaussian random variables with mean zero and
variance 1/m, and e ∈ Rm is a noise vector satisfying ‖e‖`2 ≤ ς for some noise level ς > 0. For a
positive integer n, we write [n] = {1, 2, . . . ,M}. Given a vector z = (zi)

n
i=1 ∈ Cn and S ⊆ [n], the

vector zS has ith entry zi if i ∈ S, and is zero otherwise. The best s-term approximation error of
z is defined as

σs(z)`1 = min{‖uS − z‖`1 : u ∈ Cn, S ⊆ [n], |S| ≤ s}.
We assume that x is approximately s-sparse, in the sense that its best s-term approximation error
σs(x)`1 is small. The recovery of x is formulated as solving the QCBP problem

min
z∈Rn

‖z‖`1 subject to ‖Az − y‖`2 ≤ ς. (5.1)

We use the following condition on the matrix A to ensure that approximate sharpness holds.

Definition 5.1 (Robust null space property, e.g., Definition 5.14 of [4]). The matrix A ∈ Cm×n
satisfies the robust Null Space Property (rNSP) with constants 0 < ρ < 1 and γ > 0 if

‖vS‖`2 ≤
ρ√
s
‖vS{‖`1 + γ‖Av‖`2 ,

for all v ∈ Cn and S ⊆ [M] with |S| ≤ s. N

In [27, Theorem 3.3], it was shown that the robust null space property (rNSP) implies approx-
imate sharpness. We restate the result in the notation of this paper for completeness.

Proposition 5.2 (Approximate sharpness of `1-norm for QCBP sparse recovery). Let ς > 0.
Suppose A ∈ Cm×n has the rNSP of order s with constants 0 < ρ < 1, γ > 0. Let y ∈ Cm, D = Cn,
Q = {x ∈ Cn : ‖Ax− y‖`2 ≤ ς} and f(x) = ‖x‖`1. Then the approximate sharpness condition (1.2)
holds with

gQ(z;
√
s) =

√
smax{‖Az − y‖`2 − ς, 0}, α = ĉ1

√
s, β = 1, η = ĉ2σs(x)`1 + ĉ3ς

√
s,

for constants ĉ1, ĉ2, ĉ3 > 0 are constants depending only on ρ and γ.

The theory of compressed sensing [4, 35] aims to construct (random) matrices satisfying the
rNSP, which is itself implied by the better-known Restricted Isometry Property (RIP). For example,
if A is a Gaussian random matrix, then it satisfies the rNSP with probability at least 1−ε, provided
m ≥ C · (s · log(eN/s) + log(2/ε)) (see, e.g., [4, Theorem 5.22]). However, a sharp value of the
constant C, and therefore also the rNSP constants ρ and γ, is unknown. This implies that the
approximate sharpness constants α and η are also unknown. This motivates using the restart
scheme (Algorithm 2), which does not require knowledge of α or η, to solve (5.1).

27

0 500 1000 1500 2000

10
-6

10
-4

10
-2

10
0

Total inner iterations t

‖x
t
−
x
‖ `

2

0 1000 2000 3000 4000 5000

10
-6

10
-4

10
-2

10
0

Total inner iterations t

‖x
t
−
x
‖ `

2

Figure 2: Reconstruction error of restarted primal-dual iteration for QCBP with ς = 10−6. Left: The restart
scheme with fixed sharpness constants β = 1 and various α. Right: Various different schemes (including
restarted and unrestarted schemes).

5.1.1 Experimental setup

We use the primal-dual iteration for constrained problems (Algorithm 6) to solve the sparse recovery
problem. This can be done by expressing QCBP in (5.1) as (4.16) with

q ≡ 0, h ≡ 0, B = 0, g(x) = ‖x‖`1 , C = {z ∈ CN : ‖z − y‖`2 ≤ ς}.

Given these choices, the proximal map of τg is the shrinkage-thresholding operator, and the projec-
tion map is straightforward to compute since C is a shifted `2-ball. Moreover, we have h∗(z) = +∞
whenever z 6= 0, and is zero otherwise. Therefore the proximal map proxσ1h∗(x) = ‖x‖2`2/2, and

thus y
(j)
1 = 0 for all j > 0 if the initial data y

(0)
1 = 0. In essence, we can ignore the parameter σ1

and updating the iterates y
(j)
1 in the primal-dual iterations (Algorithm 6). The error bound derived

in Lemma 4.13 holds with the σ1 term omitted.
Unless stated otherwise, the parameters used are ambient dimension n = 128, sparsity level

s = 10, measurements m = 60, noise level ς = 10−6. The ground truth vector x is exactly sparse
with s of its entries (randomly selected) corresponding to i.i.d. standard normal entries. The noise
vector e is selected uniformly random on the `2-ball of radius ς and thus ‖e‖`2 = ς. The objective
function is f(x) = ‖x‖`1 and the feasibility gap is given by gQ(x;κ) = κ ·max{‖Ax− y‖`2 − ς, 0},
which is derived from Section 4.5. The feasibility gap weight is set to κ =

√
m from Proposition 5.2,

noting that s ≤ m in general. In addition, α0 =
√
m, β0 = 1. The choice of α0 is also motivated

by Proposition 5.2.

5.1.2 Results

Fig. 2 shows the performance of the restart scheme in Algorithm 1 for various fixed values of α and
β = 1. For smaller α, the error decreases linearly down to the noise level ς = 10−6. This agrees
with Theorem 2.1. Increasing α leads to fast linear convergence, up to a threshold (between 101

and 101.2). After this point, the performance of the restart scheme abruptly breaks down since
large α violates the approximate sharpness condition (1.2).

To overcome such parameter sensitivity, we use Algorithm 2. Fig. 2 also compares the perfor-
mance of the restart scheme with fixed (α, β) = (

√
m, 1) with restart schemes that (i) perform a

28

0 500 1000 1500 2000 2500 3000

10
-6

10
-4

10
-2

10
0

Total inner iterations t

‖x
t
−
x
‖ `

2
Grid search over α

0 1000 2000 3000 4000 5000

10
-6

10
-4

10
-2

10
0

Total inner iterations t

‖x
t
−
x
‖ `

2

Grid search over β

Figure 3: Reconstruction error of restarted primal-dual iteration for QCBP with ς = 10−6. Left: The restart
scheme with grid search over α and various fixed β. Right: The restart scheme with grid search over β and
various fixed α.

grid search over α, for fixed β = 1, and (ii) perform a grid search over both α and β. Both grid
search schemes exhibit linear convergence, in agreement with Theorem 1.1. They converge less
rapidly than the scheme with fixed (α, β), but require no empirical parameter tuning. Note that
all restart schemes significantly outperform the unrestarted primal-dual iteration (“no restarts”).

Next, we consider two cases of grid searching over exactly one sharpness constant and leaving the
other fixed. Fig. 3 shows the results for fixed α with β grid search and fixed β with α grid search.
Both yield linear decay, although at a slightly worse rate. A key point to note is the potential
benefit of grid searching. Compare the reconstruction error with those for the fixed restart schemes
in Fig. 2 with log10(α) ≥ 1.2 and β = 1. In the fixed constant scheme, these parameter choices stall
the error. However, β grid search overcomes this and manages to reconstruct x within a tolerance
proportional to ς after sufficiently many restarts.

Finally, Fig. 4 considers the effect on the restart schemes when changing the noise level ς. In
all cases, the restart schemes linearly decay to a tolerance proportional to ς, and outperform the
unrestarted primal-dual iterations.

5.2 Image reconstruction via TV minimization

In this experiment, we consider image reconstruction with Fourier measurements – a sensing modal-
ity with applications notably in Magnetic Resonance Imaging (MRI) [4]. Specifically, we consider
the recovery of a vector x ∈ Rn from noisy Fourier measurements y = Ax+e ∈ Cm, where A ∈ Cm×n
corresponds to a subsampled Fourier matrix and e ∈ Cm models noise or perturbations. The vector
x is a vectorized complex 2-D image X ∈ CR×R, where n = R2 for some positive power-of-two
integer R. The matrix A has the form A = m−1/2PΩF , where F ∈ Cn×n is the 2-D discrete Fourier
transform and Ω ⊆ n is a sampling mask with |Ω| = m. Here, Ω defines the matrix PΩ ∈ Cm×n,
which selects the rows of F by index according to the indices in Ω. Lastly, ‖e‖`2 ≤ ς for some noise
level ς > 0. A widely used tool for reconstructing x from y is the total variation (TV) minimization
problem

min
z∈Cn

‖V z‖`1 subject to ‖Az − y‖`2 ≤ ς,

where V is the 2-D (anisotropic) discrete gradient transform with periodic boundary conditions [3].

29

0 1000 2000 3000 4000 5000

10
-10

10
-5

10
0

Total inner iterations t

ς = 10−2

‖x
t
−
x
‖ `

2

0 1000 2000 3000 4000 5000

10
-10

10
-5

10
0

Total inner iterations t

ς = 10−4

‖x
t
−
x
‖ `

2

0 1000 2000 3000 4000 5000

10
-10

10
-5

10
0

Total inner iterations t

ς = 10−6

‖x
t
−
x
‖ `

2

0 1000 2000 3000 4000 5000

10
-10

10
-5

10
0

Total inner iterations t

ς = 10−8

‖x
t
−
x
‖ `

2

0 1000 2000 3000 4000 5000

10
-10

10
-5

10
0

Total inner iterations t

ς = 10−10

‖x
t
−
x
‖ `

2

0 1000 2000 3000 4000 5000

10
-10

10
-5

10
0

Total inner iterations t

ς = 10−12

‖x
t
−
x
‖ `

2

Figure 4: Reconstruction error of restarted primal-dual iteration for QCBP with ς = 10−2k for k = 1, 2, . . . , 6.
Each plot includes the various (restarted and unrestarted) schemes.

Similar to the sparse recovery problem described in the previous section, the TV-Fourier image
reconstruction problem can be shown to have the approximate sharpness condition (1.2) with high
probability under a suitable random sampling pattern Ω. Stating and proving this is somewhat
more involved, but can be done with a careful adaptation of the analysis within [3, Sec. 7.4].

5.2.1 Experimental setup

The first-order solver we use is NESTA (NESTerov’s Algorithm), an accelerated projected gradient
descent algorithm used to solve problems of the form

min
z∈Cn

‖W ∗z‖`1 subject to ‖Az − y‖`2 ≤ ς, W ∈ Cn×m
′
,

where TV minimization is a special case with W = V >. NESTA is derived from Nesterov’s method
with smoothing, where the objective function f(z) = ‖W ∗z‖`1 is smoothed by replacing the `1-norm
with its Moreau envelope. This yields a 1/µ-smooth approximation fµ(z) = ‖W ∗z‖`1,µ of f with

parameters (‖W ∗‖2`2 ,m′/2). Here ‖w‖`1,µ =
∑m′

i=1 |wi|µ for w = (wi)
m′
i=1 and | · |µ is the complex

Huber function (see, e.g., [61]). In particular, we have ‖V ‖`2 = 2
√

2 for TV minimization in 2-D.
The second part of the derivation of NESTA is finding closed-form expressions for the update

steps. In general, this is not possible to do except in special cases. However, NESTA considers A
with orthonormal rows up to a constant factor, i.e., AA∗ = νI for some ν > 0. Such an assumption
yields a closed form for the update formulas and is not unreasonable since many forward operators
in compressive imaging have orthonormal rows. For example, with the subsampled Fourier matrix
we have AA∗ = (N/m)I, and hence the desired property holds with ν = N/m.

We reconstruct an R×R GPLU phantom image [42] with R = 512 so that the ambient dimension
is n = 5122. The noise e is uniformly sampled from an `2-ball of radius ς = 10−5, and so ‖e‖`2 = ς.
Two sampling masks are considered for the subsampled Fourier matrix A and are shown in Fig. 5.

30

Near-optimal sampling mask Radial sampling mask

Figure 5: Sampling patterns for the Fourier measurements used in the image reconstruction experiments.

0 500 1000 1500 2000

10
-4

10
-2

10
0

Total inner iterations t

‖x
t
−
x
‖ `

2

Near-optimal sampling mask

0 500 1000 1500 2000

10
-4

10
-2

10
0

Total inner iterations t

‖x
t
−
x
‖ `

2

Radial sampling mask

Figure 6: Reconstruction error of restarted NESTA for TV minimization with ς = 10−5, and with the near-
optimal and radial sampling masks, respectively. The restart scheme uses fixed sharpness constants β = 1
and various α.

The first is a near-optimal sampling scheme [3, Sec. 4.2] and the second is a radial sampling scheme,
where the latter is common in practice. Each mask yields approximately a 12.5% sampling rate.
For the restart scheme, the objective function is f(z) = ‖V x‖`1 and the feasibility gap gQ ≡ 0
since NESTA always produces feasible iterates. The smoothing parameters µ are handled directly
by the restarting procedure and explicitly depend on εi,j,U (see Proposition 4.7). The main two
experiments are done for each of the two sampling masks. Lastly, we choose α0 =

√
m, β0 = 1.

The choice of α0 is motivated by [27, Theorem 6.3] which generalizes Proposition 5.2.

5.2.2 Results

First, we run the restart scheme with fixed sharpness constants (no grid search) corresponding to
pairs (α, β) with β = 1 and various α values. The reconstruction error versus total inner iterations
is plotted in Fig. 6 with near-optimal sampling (left) and radial sampling (right). The results are
very similar to the first sparse recovery via QCBP experiment. Again, the rate of decay corresponds

31

0 0.5 1 1.5 2 2.5 3

10
4

10
-4

10
-2

10
0

Total inner iterations t

‖x
t
−
x
‖ `

2
Near-optimal sampling mask

0 0.5 1 1.5 2 2.5 3

10
4

10
-4

10
-2

10
0

Total inner iterations t

‖x
t
−
x
‖ `

2

Radial sampling mask

Figure 7: Reconstruction error of restarted NESTA for TV minimization with ς = 10−5, and with the near-
optimal and radial sampling masks, respectively. Various different (restarted and unrestarted) schemes are
used.

to linear decay as anticipated from Theorem 3.2. The convergence rate improves as α increases, up
to a threshold (about α = 630 for near-optimal sampling, and about α = 446 for radial sampling),
where afterwards the limiting tolerance increases steadily, yielding poor reconstruction results. This
phenomenon is discussed in the first experiment of sparse recovery via QCBP. A key observation is
how changing the sampling mask changes the threshold α value. This motivates using a grid search
to avoid having to tune α as a parameter for different sampling masks.

In the second experiment, we compare the reconstruction errors of several restart schemes,
together with standalone NESTA (i.e., no restarts) with various smoothing parameters. This is
shown in Fig. 7 with near-optimal sampling (left) and radial sampling (right). The smoothing
parameters used are µ = 10iς, i ∈ {−2, 1, 0, 1}. The results are analogous to the fourth experiment
with sparse recovery via QCBP. We note that the radial sampling mask produces slightly lower
convergence rates than the near-optimal scheme. Moreover, we observe that converging to the
limiting tolerance of NESTA is sensitive to the choice of smoothing parameter µ. By making µ
smaller, we better approximate the original problem and thus the reconstruction, but require more
iterations to achieve a better approximation. In contrast, restarting NESTA via Algorithm 2 does
not require any tuning of the smoothing parameter and outperforms the non-restarted algorithm.

5.3 Feature selection via SR-LASSO

Our final experiment considers feature selection via the Square Root LASSO (SR-LASSO) problem
[2, 14, 15, 72]. Let X ∈ Rm×n be a data matrix, where each row corresponds to a data point and
each column corresponds to a feature, and y ∈ Rm the label vector for the data points. Since we
wish to learn an affine mapping from data points to labels, we augment X by appending a new
column consisting of ones, with the augmentation denoted by A ∈ Rm×(n+1). Now fix λ > 0. Then
we seek a vector x ∈ Rn+1 that solves the SR-LASSO problem

min
z∈Rn+1

‖Az − y‖`2 + λ‖z‖`1 .

An advantage of this problem over the classical LASSO is that it requires less tuning of the parame-
ter λ as the problem instance or noise level changes. See [72] for discussion and recovery conditions
for this problem. Feature selection is done by identifying the indices of close-to-zero entries of x,

32

0 2000 4000 6000 8000 10000

10
-10

10
-5

10
0

Total inner iterations t

f
(x

t
)
−
f̂

wine

0 1 2 3 4 5

10
4

10
-10

10
-5

10
0

Total inner iterations t

f
(x

t
)
−
f̂

cc

0 1 2 3 4 5

10
4

10
-15

10
-10

10
-5

10
0

Total inner iterations t

f
(x

t
)
−
f̂

leu

Figure 8: Objective error versus the total inner iteration of various (restarted and unrestarted) schemes of
primal-dual iteration for SR-LASSO. The plots correspond to three different datasets.

which are the features to discard. This reduces the number of columns of X for future processing
or analysis.

The SR-LASSO is a well-known tool in high-dimensional statistics. It can also be used for
sparse recovery problems, in which case approximate sharpness follows (like it did with QCBP)
from the rNSP (Definition 5.1) [27]. However, in the feature selection problem, properties such as
the rNSP are unlikely to hold. In this case, more general recovery conditions for SR-LASSO (and
LASSO), such as the compatibility condition [72], are more useful. Under these conditions, one also
has approximate sharpness with unknown constants.

5.3.1 Setup

We use the unconstrained primal-dual iterations (Algorithm 5) to solve SR-LASSO. We can express
SR-LASSO as (4.16) by

q ≡ 0, g(x) = λ‖x‖`1 , h(Bx) = ‖Bx− y‖`2 , B = A.

From this, the primal-dual updates can be computed explicitly. The proximal map τg is the
shrinkage-thresholding operator and the proximal map of σh∗ is a projection map onto the `2-ball.
In either case, the proximal maps are straightforward to compute. For three different datasets,
we compare the SR-LASSO objective error of various unrestarted and restarted schemes. The
minimum of SR-LASSO for each dataset is computed using CVX [40, 41] with high precision and
the SDPT3 solver and is used to compute the objective errors in Figs. 8 and 9.

We use three datasets: wine quality (wine) [29] with m = 6497 points and n = 11 features, colon
cancer (cc) [26] with m = 62 points and n = 2000 features, and leukemia (leu) [26] with m = 38
points and n = 7129 features. The wine data corresponds to a regression task of predicting wine
quality, cc and leu are two-class classification tasks of diagnosing illness based on data features.
We use λ = 3, 2, and 4 for the wine, cc, and leu datasets, respectively. We measure sparsity s of
x̂ by interpreting an entry to be non-zero if its absolute value is greater than 10−5. The values α0

and β0 are chosen empirically as estimates of the true sharpness constants α and β, respectively.

5.3.2 Results

Fig. 8 shows the performance of various restart schemes for this problem on the three different
datasets. In all cases, the restarted schemes outperform the unrestarted scheme. The suitable values
of α and β differ significantly across the datasets, indicating that the optimal sharpness parameters
are problem-dependent. This further demonstrated in Fig. 9, where we show the restart scheme
for various fixed β and grid search over α - the restart schemes with choices of β > 1 outperform

33

0 1000 2000 3000 4000 5000

10
-10

10
-5

10
0

f
(x

t
)
−
f̂

wine

0 2000 4000 6000 8000 10000

10
-10

10
-5

10
0

Total inner iterations t

f
(x

t
)
−
f̂

cc

Total inner iterations t

f
(x

t
)
−
f̂

leu

Figure 9: Objective error versus the total inner iteration of restarted primal-dual iteration for SR-LASSO.
The plots correspond to grid search over α with various fixed β for three different datasets.

the schemes that use β = 1. This is in contrast to the sparse recovery example, where theory and
experiment suggest β = 1 as a good choice. This phenomenon is unsurprising since the approximate
sharpness condition (see (1.2)) for this problem is expected to be highly dependent on the data.
Nonetheless, using our grid search scheme, we obviate the need for estimating or tuning these
parameters.

6 Conclusion

We provided a framework for the optimal acceleration of first-order methods under approximate
sharpness conditions. These conditions generalize sharpness by incorporating an unknown constant
perturbation to the objective error, offering greater robustness to noise or model classes. Our
scheme can achieve optimal convergence rates for a wide variety of problems, despite not assuming
knowledge of the constants appearing in (1.2). Moreover, we do not require the first-order method
to produce feasible iterates, a flexibility that is useful when employing methods such as primal-dual
iterations. As illustrated by our numerical experiments, our schemes are also practical, and often
lead to significant improvements over unrestarted schemes or restart schemes with poor parameter
choices.

There are numerous possible avenues for future research and extensions of our framework. One
avenue involves replacing the metric in (1.2) by a Bregman distance, and acceleration for convex
optimization problems in Banach spaces. Another involves applications to (non-convex) bilevel
optimization schemes. For saddle-point problems such as (4.9) and (4.17), it may be possible to
develop similar restart schemes based on primal-dual gaps replacing f(x)−f̂ in (1.2), see [5] and [32]
for primal-dual gap sharpness and restart schemes in the cases of β = 1 and β = 2, respectively. See
also [46,47] for recent work on restarts based on gap functions for Frank-Wolfe algorithms. Finally,
there is the extension of our restart schemes to handle stochastic first-order methods, including
larger-scale machine learning problems.

A Miscellaneous proofs

In this section, we prove several results that were stated in Section 4.

34

A.1 Nesterov’s method with smoothing

Proof of Lemma 4.6. Applying Lemma 4.3 with the function fµ and using the second part of Def-
inition 4.5 gives

fµ(xk)− fµ(x) ≤ 4up(x;x0)

µk(k + 1)σp
.

Now using both inequalities in the first part of Definition 4.5 gives the result.

Proof of Proposition 4.7. Suppose that x0 ∈ Q with d(x0, X̂) ≤ δ. Then by Lemma 4.6 with
x̂ ∈ X̂ ⊆ Q, we have

f(xN)− f̂ ≤ 4up(x̂;x0)

µN(N + 1)σp
+ vµ.

Using 1
N(N+1) ≤

1
N2 , σp = 1 and p(x̂) ≤ 1

2δ
2 by choice of p, we get

f(xN)− f̂ ≤ 2uδ2

µN2
+ vµ.

Substituting µ = ε
2v and using that N ≥ 2

√
2uv · δε gives the result.

A.2 Primal-dual iterations for unconstrained problems

Proof of Lemma 4.11. We use (4.10) and prove bounds on each of the terms on the left-hand side.
First, we have

L (Xk, y) = 〈BXk, y〉R + q(Xk) + g(Xk)− h∗(y).

Since h is convex and lower semicontinuous, h∗∗ = h. It follows that

h(BXk) = max
y∈Cm

〈BXk, y〉R − h∗(y) = − min
y∈Cm

(h∗(y)− 〈BXk, y〉R).

The objective function is convex and lower semicontinuous, and the set of minimizers is y such that

0 ∈ ∂ (h∗(·)− 〈·, BXk〉) (y) = ∂h∗(y)−BXk.

Rearranging and using the Legendre–Fenchel identity, we deduce that this set of minimizers is
precisely ∂h(BXk). It follows that

L (Xk, y) = f(Xk), ∀y ∈ ∂h(BXk). (A.1)

Second, we have
L (x, Yk) = 〈Bx, Yk〉R + q(x) + g(x)− h∗(Yk).

The above argument shows that

h(Bx) = max
y∈Cm

〈Bx, y〉R − h∗(y) ≥ 〈Bx, Yk〉R − h∗(Yk).

It follows that
L (x, Yk) ≤ f(x). (A.2)

The bound (4.11) now follows by combining (A.1) and (A.2).

35

Proof of Proposition 4.12. First, consider general τ, σ > 0 with τ(σL2
B + Lq) = 1. For input x0

with d(x0, X̂) ≤ δ, (4.13) and (4.12) imply that for x ∈ X̂,

f(XN)− f̂ ≤ 1

N

(
δ2

τ
+
L2
h

σ

)
=

1

N

(
σδ2L2

B +
L2
h

σ
+ δ2Lq

)
.

Choosing the step size σ > 0 to minimize the right-hand side leads to

σ =
Lh
δLB

, τ =
δ

LBLh + δLq
, f(XN)− f̂ ≤ δ

N
(2LBLh + δLq) .

Equations (4.14) and (4.15) now follow by taking N =
⌈
δ
ε (2LBLh + δLq)

⌉
.

A.3 Primal-dual iterations for constrained problems

Proof of Lemma 4.13. Using the same arguments as the proof of Lemma 4.11, (4.18) implies that

for y
(0)
2 = 0,

f(Xk)− f(x) + 〈AXk, y2〉R − sup
z∈C
〈z, y2〉R − 〈Ax, [Yk]2〉R + sup

z∈C
〈z, [Yk]2〉R

≤ 1

k

‖x− x(0)‖2

τ
+
‖y1 − y(0)

1 ‖
2

σ1
+
‖y2‖2

σ2

 , ∀x ∈ Cn, y1 ∈ ∂h(BXk), y2 ∈ Cm
′
.

If x ∈ Q, then
−〈Ax, [Yk]2〉R + sup

z∈C
〈z, [Yk]2〉R ≥ 0.

Let ẑ ∈ C be of minimal distance to AXk and let y2 be a multiple of AXk − ẑ such that y2 has
norm κ. Since C is convex, the following holds [10, Theorem 6.41]

〈z, y2〉R ≤ 〈ẑ, y2〉R, ∀z ∈ C.

It follows that

〈AXk, y2〉R − sup
z∈C
〈z, y2〉R ≥ 〈AXk − ẑ, y2〉R = κ · inf

z∈C
‖AXk − z‖ = gQ(κ;Xk).

Combining the inequalities yields (4.19).

Proof of Proposition 4.14. First, consider general τ, σ1, σ2 > 0 with τ(σ1L
2
B + σ2L

2
A + Lq) = 1.

For input x0 with d(x0, X̂) ≤ δ, we argue as in the proof of Proposition 4.12 (but now using
Lemma 4.13) to obtain

f(XN)− f̂ + gQ(κ;XN) ≤ 1

N

(
δ2

τ
+
L2
h

σ1
+
κ2

σ2

)
=

1

N

(
σ1δ

2L2
B +

L2
h

σ1
+ σ2δ

2L2
A +

κ2

σ2
+ δ2Lq

)
.

(A.3)
Optimizing the proximal step sizes leads to

τ =
δ

κLA + LhLB + δLq
, σ1 =

Lh
δLB

, σ2 =
κ

δLA
.

Substituting these values into (A.3) leads to

f(XN)− f̂ + gQ(XN) ≤ δ

N
(2κLA + 2LhLB + δLq) .

The rest of the proof follows the same argument as the proof of Proposition 4.12.

36

References

[1] B. Adcock, S. Brugiapaglia, N. Dexter, and S. Moraga. On efficient algorithms for comput-
ing near-best polynomial approximations to high-dimensional, Hilbert-valued functions from
limited samples. arXiv preprint arXiv:2203.13908, 2022.

[2] B. Adcock, S. Brugiapaglia, and C. G. Webster. Sparse Polynomial Approximation of High-
Dimensional Functions. Comput. Sci. Eng. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2022.

[3] B. Adcock, N. Dexter, and Q. Xu. Improved recovery guarantees and sampling strategies for
TV minimization in compressive imaging. SIAM J. Imaging Sci., 14(3):1149–1183, 2021.

[4] B. Adcock and A. Hansen. Compressive Imaging: Structure, Sampling, Learning. CUP, 2021.

[5] D. Applegate, O. Hinder, H. Lu, and M. Lubin. Faster first-order primal-dual methods for
linear programming using restarts and sharpness. Mathematical Programming, pages 1–52,
2022.

[6] R. C. Aster, B. Borchers, and C. H. Thurber. Parameter estimation and inverse problems.
Elsevier, 2018.

[7] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization and
projection methods for nonconvex problems: An approach based on the Kurdyka- lojasiewicz
inequality. Math. Oper. Res., 35(2):438–457, 2010.

[8] A. Auslender and J.-P. Crouzeix. Global regularity theorems. Math. Oper. Res., 13(2):243–253,
1988.

[9] A. Bastounis, A. C. Hansen, and V. Vlačić. The extended Smale’s 9th problem. arXiv preprint
arXiv:2110.15734, 2021.

[10] A. Beck. First-order methods in optimization. SIAM, 2017.

[11] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

[12] S. Becker, J. Bobin, and E. J. Candès. NESTA: A fast and accurate first-order method for
sparse recovery. SIAM J. Imaging Sci., 4(1):1–39, 2011.

[13] S. Becker, E. J. Candès, and M. C. Grant. Templates for convex cone problems with applica-
tions to sparse signal recovery. Math. Program. Comput., 3(3):165, 2011.

[14] A. Belloni, V. Chernozhukov, and L. Wang. Square-root LASSO: pivotal recovery of sparse
signals via conic programming. Biometrika, 98(4):791–806, 2011.

[15] A. Belloni, V. Chernozhukov, and L. Wang. Pivotal estimation via square-root LASSO in
nonparametric regression. Ann. Statist., 42(2):757–788, 2014.

[16] A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization. 2020/2021.

[17] J. Bolte, A. Daniilidis, and A. Lewis. The lojasiewicz inequality for nonsmooth subanalytic
functions with applications to subgradient dynamical systems. SIAM J. Optim., 17(4):1205–
1223, 2007.

[18] J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter. From error bounds to the complexity
of first-order descent methods for convex functions. Math. Program., 165(2):471–507, 2017.

37

[19] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for non-
convex and nonsmooth problems. Math. Program., 146(1):459–494, 2014.

[20] J. Burke and S. Deng. Weak sharp minima revisited Part I: basic theory. Control Cybernet.,
31:439–469, 2002.

[21] J. V. Burke and M. C. Ferris. Weak sharp minima in mathematical programming. SIAM J.
Control Optim., 31(5):1340–1359, 1993.

[22] A. Chambolle, M. J. Ehrhardt, P. Richtárik, and C. Schonlieb. Stochastic primal-dual hybrid
gradient algorithm with arbitrary sampling and imaging applications. SIAM J. Optim., 28(4),
2018.

[23] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. J. Math. Imaging Vision, 40(1):120–145, 2011.

[24] A. Chambolle and T. Pock. An introduction to continuous optimization for imaging. Acta
Numerica, 25:161–319, 2016.

[25] A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal–dual
algorithm. Math. Program., 159(1-2):253–287, 2016.

[26] C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2, 2011.

[27] M. J. Colbrook. WARPd: A linearly convergent first-order primal-dual algorithm for in-
verse problems with approximate sharpness conditions. SIAM Journal on Imaging Sciences,
15(3):1539–1575, 2022.

[28] M. J. Colbrook, V. Antun, and A. C. Hansen. The difficulty of computing stable and accurate
neural networks: On the barriers of deep learning and smale’s 18th problem. Proceedings of
the National Academy of Sciences, 119(12):e2107151119, 2022.

[29] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Wine Quality. UCI Machine
Learning Repository, 2009.

[30] A. d’Aspremont, D. Scieur, A. Taylor, et al. Acceleration methods. Foundations and Trends
in Optimization, 5(1-2):1–245, 2021.

[31] E. Esser, X. Zhang, and T. F. Chan. A general framework for a class of first order primal-dual
algorithms for convex optimization in imaging science. SIAM J. Imaging Sci., 3(4), 2010.

[32] O. Fercoq. Quadratic error bound of the smoothed gap and the restarted averaged primal-dual
hybrid gradient. arXiv preprint arXiv:2206.03041, 2022.

[33] O. Fercoq and Z. Qu. Restarting accelerated gradient methods with a rough strong convexity
estimate. arXiv:1609.07358, 2016.

[34] O. Fercoq and Z. Qu. Adaptive restart of accelerated gradient methods under local quadratic
growth condition. IMA Journal of Numerical Analysis, 39(4):2069–2095, 2019.

[35] S. Foucart and H. Rauhut. A mathematical introduction to compressive sensing. Springer,
2013.

[36] P. Frankel, G. Garrigos, and J. Peypouquet. Splitting methods with variable metric for
Kurdyka– lojasiewicz functions and general convergence rates. J. Optim. Theory Appl.,
165(3):874–900, 2015.

38

[37] R. M. Freund and H. Lu. New computational guarantees for solving convex optimization
problems with first order methods, via a function growth condition measure. Math. Program.,
170(2):445–477, 2018.

[38] L. E. Gazdag and A. C. Hansen. Generalised hardness of approximation and the SCI hierarchy -
On determining the boundaries of training algorithms in AI. arXiv preprint arXiv:2209.06715,
2022.

[39] P. Giselsson and S. Boyd. Monotonicity and restart in fast gradient methods. In IEEE Conf
Decis Control, pages 5058–5063. IEEE, 2014.

[40] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In V. Blondel,
S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control, Lecture Notes
in Control and Information Sciences, pages 95–110. Springer-Verlag Limited, 2008. http:
//stanford.edu/~boyd/graph_dcp.html.

[41] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version
2.1. http://cvxr.com/cvx, Mar. 2014.

[42] M. Guerquin-Kern, L. Lejeune, K. P. Pruessmann, and M. Unser. Realistic analytical phantoms
for parallel Magnetic Resonance Imaging. IEEE Trans. Med. Imag., 31(3):626–636, 2012.

[43] A. J. Hoffman. On approximate solutions of systems of linear inequalities. J. Research Nat.
Bur. Standards, 49(4), 1952.

[44] A. Iouditski and Y. Nesterov. Primal-dual subgradient methods for minimizing uniformly
convex functions. arXiv preprint arXiv:1401.1792, 2014.

[45] H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient
methods under the Polyak- lojasiewicz condition. In Mach Learn Knowl Discov Databases,
pages 795–811. Springer, 2016.

[46] T. Kerdreux, A. d’Aspremont, and S. Pokutta. Restarting Frank-Wolfe. In The 22nd Inter-
national Conference on Artificial Intelligence and Statistics, pages 1275–1283. PMLR, 2019.

[47] T. Kerdreux, A. d’Aspremont, and S. Pokutta. Restarting frank–wolfe: Faster rates under
hölderian error bounds. Journal of Optimization Theory and Applications, 192(3):799–829,
2022.

[48] D. Kim and J. A. Fessler. Optimized first-order methods for smooth convex minimization.
Mathematical programming, 159(1):81–107, 2016.

[49] Q. Lin and L. Xiao. An adaptive accelerated proximal gradient method and its homotopy
continuation for sparse optimization. In International Conference on Machine Learning, pages
73–81. PMLR, 2014.

[50] S. Lojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. Les équations
aux dérivées partielles, 117:87–89, 1963.

[51] O. L. Mangasarian. A condition number for differentiable convex inequalities. Math. Oper.
Res., 10(2):175–179, 1985.

[52] I. Necoara, Y. Nesterov, and F. Glineur. Linear convergence of first order methods for non-
strongly convex optimization. Math. Program., 175(1):69–107, 2019.

[53] A. S. Nemirovskii and Y. E. Nesterov. Optimal methods of smooth convex minimization.
USSR Comput. Math. Math. Phys., 25(2):21–30, 1985.

39

http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx

[54] A. S. Nemirovskij and D. B. Yudin. Problem complexity and method efficiency in optimization.
1983.

[55] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003.

[56] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):127–152,
May 2005.

[57] Y. Nesterov. Gradient methods for minimizing composite functions. Math. Program.,
140(1):125–161, 2013.

[58] Y. Nesterov. Universal gradient methods for convex optimization problems. Mathematical
Programming, 152(1):381–404, 2015.

[59] Y. Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

[60] Y. E. Nesterov. A method for solving the convex programming problem with convergence rate
O(1/k2). In Dokl. Akad. Nauk SSSR,, volume 269, pages 543–547, 1983.

[61] M. Neyra-Nesterenko and B. Adcock. NESTANets: Stable, accurate and efficient neural net-
works for analysis-sparse inverse problems. arXiv:2203.00804, 2022.

[62] B. O’donoghue and E. Candes. Adaptive restart for accelerated gradient schemes. Found.
Comput. Math., 15(3):715–732, 2015.

[63] T. Pock, D. Cremers, H. Bischof, and A. Chambolle. An algorithm for minimizing the
Mumford–Shah functional. In IEEE Int Conf Comput Vis, pages 1133–1140. IEEE, 2009.

[64] J. Renegar. “efficient” subgradient methods for general convex optimization. SIAM Journal
on Optimization, 26(4):2649–2676, 2016.

[65] J. Renegar. Accelerated first-order methods for hyperbolic programming. Mathematical Pro-
gramming, 173(1):1–35, 2019.

[66] J. Renegar and B. Grimmer. A simple nearly optimal restart scheme for speeding up first-order
methods. Foundations of Computational Mathematics, pages 1–46, 2021.

[67] S. M. Robinson. An application of error bounds for convex programming in a linear space.
SIAM J. Control, 13(2):271–273, 1975.

[68] V. Roulet, N. Boumal, and A. d’Aspremont. Computational complexity versus statistical
performance on sparse recovery problems. Inf. Inference, 9(1):1–32, 2020.

[69] V. Roulet and A. d’Aspremont. Sharpness, restart, and acceleration. SIAM J. Optim.,
30(1):262–289, 2020.

[70] O. Rynkiewicz. Lower bounds and primal-dual methods for affinely constrained convex opti-
mization under metric subregularity, 2020.

[71] W. Su, S. Boyd, and E. Candes. A differential equation for modeling Nesterov’s accelerated
gradient method: theory and insights. Advances in neural information processing systems, 27,
2014.

[72] S. van de Geer. Estimation and Testing Under Sparsity: École d’Été de Probabilités de Saint-
Flour XLV – 2015, volume 2159 of Lecture Notes in Math. Springer, Cham, Switzerland,
2016.

40

	Introduction
	The problem
	Motivations
	Contributions
	Connections with previous work
	Notation and outline

	Restart scheme for unknown Lg
	Restart scheme for unknown , and
	The algorithm
	Choices of schedule criterion functions and assignments

	Examples
	Nesterov's method for Lg
	Nesterov's method for Lg
	The universal fast gradient method
	The primal-dual iteration for unconstrained problems
	The primal-dual iterations for constrained problems

	Numerical experiments
	Sparse recovery via QCBP
	Experimental setup
	Results

	Image reconstruction via TV minimization
	Experimental setup
	Results

	Feature selection via SR-LASSO
	Setup
	Results

	Conclusion
	Miscellaneous proofs
	Nesterov's method with smoothing
	Primal-dual iterations for unconstrained problems
	Primal-dual iterations for constrained problems

