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Abstract

Modern natural and technological systems are often too complex for analytical modelling, motivating efforts to extract their
fundamental dynamics from data. While promising, data-driven methods often fail to converge or generalize, prompting a
central question: When can we reliably learn system behaviors from data, and when is it impossible? We establish the first
impossibility results for problems in data-driven learning of dynamical systems, showing that adversarial systems—constructed
to obstruct algorithmic learning—can occur with high probability. In such cases, no algorithm can reliably succeed, regardless
of data quality. These examples are given for Koopman operators, a leading technique for transforming nonlinear dynamics
into linear representations for control and analysis. By analyzing these limitations, we identify conditions under which learning
is possible and introduce optimal algorithms with provable convergence and certification, overcoming key shortcomings (e.g.,
non-convergence) of existing methods. Our methods provide the first general convergence guarantees for Koopman operators,
validated on classical oscillators, chaotic fluid flows, and Arctic sea ice forecasting. In the latter, we uncover hidden modes, deliver
long-range forecasts with geographic error bounds, and outperform state-of-the-art dynamical and deep learning models—all at a
fraction of the computational cost, enabling real-time deployment on standard hardware. This framework offers a unified, rigorous
classification of the capabilities and limits of data-driven system learning, with broad implications for science and engineering.

MWodels across science often involve systems that evolve
over time, known as dynamical systems. These systems have
long been used to understand, predict, and control complex
behaviour across physics, chemistry, biology, and medicine.
Yet in many fields such as climate science, neuroscience, and
robotics, systems are often too complex for direct analysis,
or their governing equations are unknown. Machine learn-
ing (ML) has transformed the analysis of complex data [1],
with breakthroughs in protein structure prediction [2] (see
also the 2024 Nobel Prize in Chemistry [3]), image classifica-
tion [4], and drug/material discovery [5]. The emerging field
of data-driven dynamical systems seeks to combine ML with
time-series data to uncover underlying structure and principles
without requiring explicit models [6HL6].

Current ML techniques often struggle to converge or gen-
eralize, with limited guarantees of their trustworthiness. This
hinders their effectiveness in critical applications and poses a
central challenge: When can we reliably learn system behaviors
from data, and when is it impossible? We address this with:

e Adversarial dynamical systems: We present the first
examples in data-driven dynamical systems for which no se-
quence of learning algorithms—probabilistic or otherwise—can
solve, even with unlimited data. By carefully altering a sys-
tem’s behavior in a way that respects both its structure and
the data, we design adversarial systems that block reliable
learning. These are not rare edge cases: success is funda-
mentally limited to 50% and they arise in well-studied classes.
Even for smooth systems on simple low-dimensional surfaces,
tasks such as learning finite-dimensional linearized representa-
tions (e.g., via autoencoders) remain unsolvable.

This parallels adversarial attacks in ML, where small
perturbations expose vulnerabilities and motivate robustness.
Likewise, our adversarial systems reveal fundamental learning
limits in broad system classes and offer principles for trust-
worthy methods. They may also help explain phenomena like
hallucinations in large language models (LLMs).
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e Optimal algorithms with learning guarantees:
Building on insights from these adversarial systems (see chal-
lenges (C1) and (C2) below), we develop provably optimal
algorithms with guaranteed convergence and error bounds un-
der broad conditions. Unlike traditional approaches that rely
on sequences of algorithms, our methods reach fundamental
limits and enable reliable extrapolation, crucial for trustwor-
thy AL Our models are also trained on CPUs at a fraction of
the cost of deep learning approaches, far exceeding the scales
at which recent claims of efficiency have been made [17].

e A universal framework for classification: We es-
tablish a rigorous yet practical mathematical foundation that
clarifies when and why learning succeeds or fails. Matching
lower and upper bounds reveal the core challenges and offer a
comprehensive classification of problem complexity.

These results offer a unified, rigorous, and practical basis
for understanding when data-driven models can or cannot suc-
ceed, advancing the broader goal of trustworthy ML. They are
applicable across fields (see Discussion)—from climate science
and neuroscience to engineering and control—where reliable
prediction and mechanistic insight are essential.

We apply this general framework to Koopman operators,
a major research focus that addresses nonlinearity by acting
on an infinite-dimensional space of measurements rather than
the system’s state. Introduced nearly a century ago by Koop-
man and von Neumann [18}[19], Koopman operators now play
a central role in data-driven dynamical systems |7}/12}20/-22].
Their spectral properties (e.g., eigenfunctions and eigenval-
ues) decompose complex behavior into simpler components
like trends, oscillations, or decay, allowing for the use of linear
methods in prediction, estimation, and control. This enables
explainable, robust, and cost-efficient ML. Notable successes
include robot control [23], climate analysis [24], neural net-
work training [25], disease modeling [26], brain analysis [27],
non-autonomous systems [28], and interpretable AT [29).

However, Koopman theory faces major practical chal-
lenges. Spectral approximation in infinite-dimensional spaces
is often non-convergent—even with perfect data [11}22}30].
The most widely used method, Dynamic Mode Decomposi-
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Figure 1: Convergent general methods for Koopman
learning. Top (Ezample: ‘We test our new method (Al-
gorithm 1 in S.I.) on the classical Duffing oscillator in both

conservative (panel (a)) and dissipative (panel (b)) regimes.
The state-of-the-art EDMD method fails to converge (panel
(c)), producing spurious eigenvalues (blue markers). In con-
trast, our approach converges reliably by adaptively com-
puting observables (scalar functions of the state) ¢. and
scalars A (that approximate the spectrum) that satisfy the
temporal coherence relation ¢o(z,) = A"¢c(x0) + O(ne)
(here z,, is the state of the system at time n). The contours
of € show where approximate, near-eigenvalue behavior oc-
curs—providing a more robust picture of dynamics. The
tolerance ¢ is locally adjusted based on the amount of data
and the number of observables used. This also allows error
bounds to be computed. The error shown is the maximum

full spectra (cts + evals)

(e) value of € across the outputs (averaged over 10 independent
runs due to randomly sampled trajectories). This quantity
measures how closely the computed spectrum approximates
the true spectrum. It is estimated using a method that con-
verges uniformly from above as the matrix size increases,
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thereby providing rigorous error bounds. Bottom (Ezam-

tion (DMD) [31], and its variants, including extended DMD
(EDMD) [32], produce spurious eigenvalues and often fail to
converge (Figure [1f top). In particular, Koopman operators
are generally non-self-adjoint (non-Hermitian) and often have
a continuous rather than discrete spectrum, so much of the
classical toolkit for computing spectra does not apply.
While recent advances address specific spectral
properties under constrained conditions, they require multiple
limiting processes, lacking a unified approach for convergence
in all cases. Hence, critical evaluation is essential for theoret-
ical insight and reliable application.

Koopman theory thus provides an ideal setting to explore
our central question. We overcome its limitations by introduc-
ing the first general-purpose, convergent methods for learning
Koopman spectral properties (Algorithms 1-5 in the S.I., see
top panel of Figure [1]), which avoid spurious eigenvalues by
explicitly locally minimizing spectral errors. We further adapt
tools from quantum mechanics to disentangle spectral compo-
nents with distinct physical signatures (Algorithms 67 in the
S.I., see bottom panel of Figure [I). These methods perform
well across both low- and high-dimensional systems—including
challenging cases where the system’s behavior spans a contin-
uous range of frequencies, rather than distinct repeating pat-
terns. This includes practical applications such as forecasting
Arctic sea ice (Figures 2] to @

This final example is motivated by Arctic amplification,
where near-surface Arctic temperatures are rising faster than
the global average . Sea ice loss has major impacts on po-
lar bear habitats, Indigenous communities, shipping, and the
Atlantic Meridional Overturning Circulation (AMOC). Con-
currently, extreme weather events (e.g., wildfires, floods, heat-
waves, and severe winters) have intensified in recent decades,
affecting billions worldwide. The link between Arctic sea ice
loss and Northern Hemisphere extreme weather remains an ac-
tive area of research and debate [38H40]. While regional effects
appear likely, identifying geographically significant regions and
their influence is particularly challenging. Forecasting Arctic
sea ice beyond two months remains a major challenge

Our algorithms uncover a family of hidden Koopman
modes linked to sea ice decline and identify the associated

extracted eigenvalues
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ple [[.4): The new method (Algorithm 6 in S.I) is used
to analyze high Reynolds number cavity flow, extracting
eigenvalues of the Koopman operator embedded in contin-
uous spectra. This separation is achieved by tracking which
observables are localized or dispersed in time (panel (d)).
These behaviors are reflected in the spectral distribution and
extracted eigenvalues (panel (e)).

geographic regions with error bounds. These patterns support
accurate long-term predictions and reveal how different parts
of the system are connected. By building data-driven decom-
positions from these and other validated modes, we achieve
state-of-the-art Arctic sea ice forecasts (Figures 5] and [6]). No-
tably, such modes can influence tipping behavior, including
patterns related to the AMOC .

The adversarial dynamics we construct may also shed light
on hallucinations in LLMs. These models generate trajecto-
ries (sentences) over a state space (words) via one-step-ahead
prediction, a process linked to Koopman operators .
The adversarial systems we construct that impede learning
often have Koopman operators with a continuous spread of
frequencies, characteristic of chaotic dynamics. This enables
short-term accuracy but causes long-term unpredictability due
to sensitivity to initial conditions, mirroring how small prompt
changes in LLMs can cause divergent outputs. Our results may
therefore help explain inherent limitations of autoregressive ar-
chitectures in maintaining long-term accuracy.

Multiple limits: Bad, good, or insufficient data?
Learning systems from data requires two elements: quantities
we can measure using sensors and their corresponding time
series data. In ML, one often studies sequences of algorithms
indexed by n, where n might represent the size of the dataset
or the complexity of the model (for example, the width or
depth of a neural network). A simple illustration is estimating
the average energy E of an oscillating system based on mea-
surements of its instantaneous energy e(n) at each time step
n. If the system is ergodic—meaning that averages along a
single long-term trajectory reflect the behavior of the entire
system—then E can be estimated iteratively by:

DA
e(1) + —|—e(n—|—1): n Ty
n+1 n+1

Ty = e(n+1). (1)

n+1
This running average I',, becomes more accurate as more data
is collected. A classical result known as Birkhoff’s ergodic
theorem guarantees that I';,, converges to the true average
energy E as n — oo, i.e., as we collect more data.

Learning often assumes that increasing the amount of data
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Figure 3: Sea ice decay and time-windowed Koopman modes. Top:
Sea ice extent over the past several decades. The red curve shows the moving
12-month mean. Bottom: The absolute value of Koopman modes correspond-
ing to the mean sea ice and annual variations over ten year windows. The
maximum relative error of all of these modes is 0.048. Mean and annual
modes reveal declining sea ice, reduced winter extent, and amplified seasonal
contrast in marginal seas, consistent with a slow decaying mode (Figure [2).

or model complexity will improve performance. However, our
results show that for many key problems in dynamical systems,
this assumption is false. In fact, no algorithm I';, can succeed
by taking a single limit, regardless of how that limit is defined
(e.g., sample size, model complexity, simulation length).
Instead, some problems only become solvable when mul-
tiple data limits are applied in a specific order. For example,
computing long-term structures in a system, such as ergodic
partitions , requires not just averaging over time (as in
Equation ) but also subsequently averaging across a grow-
ing number of measured quantities (instead of just the energy

A4
%107 4‘,{/ (b) Annual Sea Ice Variation Modes
Error=0.021

N Figure 2: Verified eigenvalues and Koop-
man modes of Arctic sea ice (1979-2021)
and detection of new hidden modes for
long-time forecasts. For each EDMD eigen-
value, our proposed method computes an asso-
ciated error bound (colorbar). The displayed
size of each eigenvalue is proportional to this
error. While many EDMD eigenvalues are spu-
rious, we identify 17 reliable ones (shown in
blue) with small associated errors. The Koop-
man modes (the g; in Equation , where we
plot their absolute value) are categorized into
three groups: (a) the mean sea ice concentra-
tion, corresponding to a stationary mode with
eigenvalue A = 1; (b) annual variation in sea
ice concentration, with A\ = exp(mni/6) for
m = +1,£2,...,411,12, representing periodic
variation across the months; and (c¢) “hidden”
decaying modes with |A| < 1 (revealed by our
error bounds), representing long-term sea ice
loss. The spatial structure of each mode in-
dicates the geographic regions where these be-
haviors occur, and the corresponding Koopman
eigenfunction time series shows a clear trend
over the analysis interval. The hidden modes
with nonzero arg(\) can be interpreted as sea-
sonal patterns (group (b)) modulated by the
decaying mode with zero argument, providing
insight into evolving Arctic sea ice dynamics.
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Figure 4: Forecast error for sea ice concentration at every grid
point. Relative error of forecasted anomalies (relative to the periodic monthly
average). We consider ten-year forecasts initialized at each month from 2005
to 2010 and plot the average error for each lead time. The proposed method
consistently outperforms DMD.
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Figure 5: Comparison with machine learning and statistical bench-
marks. Mean binary accuracy (see text for definition) over the test years
2012-2020, shown for IceNet, SEAS5, and our proposed method that avoids
spurious Koopman eigenvalues. Our proposed method achieves better accu-
racy for lead times greater than one month, with very little increase in errors
at larger lead times. Moreover, this is achieved using orders of magnitude
fewer trainable parameters and substantially less computational cost.
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Figure 6: Binary accuracy across months (same experiment as Fig-
ure . Left: The mean accuracy of our proposed method over all lead times
and years. Right: The improvements over IceNet and SEAS5.

e). These two types of data increase, longer observations and
richer measurements, typically cannot be combined or chosen
adaptively from the data itself. This leads to a hierarchy of
difficulty, where each level corresponds to the number and type
of data limits needed for reliable learning.

Dynamical setup

A dynamical system describes how a system changes over time.
Suppose we track a collection of variables, denoted z, that
represent the system’s state at a given moment. The set of all
possible states is called the state space, written as X, so that
x € X. The system evolves in discrete time steps, meaning the
next state x,11 depends on the current state xz,, via a rule:

ZTnt1 = F(zy), n=0,1,2,.... (2)

Here, F : X — X is an unknown function that may come from
sampling a continuous-time process.

To study a system, we measure its physical properties like
temperature or velocity, represented by functions g : X — C,
called “observables”. One should think of g(x) as a quantity
we can measure from state x. The Koopman operator, K (or
KC), captures how these measurements evolve. It acts on an
observable g by composing it with the system’s evolution:

[Kgl(x) = [go Fl(z) = g(F(z)), zedi. 3)

This means Kg gives the value of the observable one step into
the future: [Kg|(z,) = g(@nt1). The key property of K is
linearity: for any observables f and g and scalars o and 3,
Klaf 4+ Bg) = a(f) + BK(g). Linearity is powerful since it
allows us to analyze the system through spectral properties of
K (e.g., eigenvalues and eigenfunctions). The trade-off for this
global linearization is that K acts on an infinite-dimensional
space of observables. One can think of I as an infinite matrix,
corresponding to the infinite number of observables g.

The goal is to learn the spectral properties of the Koopman
operator from snapshot data — discrete sample pairs of the
system’s behavior:

{(x(m),y(m):F(x(m))> :mzl,...,]\/[}. (4)

Here, each y("™) represents the state one time step ahead of
(™). Such data can arise from experiments or simulations,
and observations of either long or short trajectories. We shall
see examples of each of these throughout the paper.

Nonlinear separation of variables and spectra

Spectral properties of Koopman operators contain valuable in-
formation about the system. For example, a complex number

A € C is called an almost eigenvalue if, for a tolerance € > 0,
there exists a normalized observable ¢, with ||, — Ap.| < e.
(Here, || - || measures an observable’s energy.) These observ-
ables, called approzimate eigenfunctions, are physically rel-
evant because they exhibit approximate temporal coherence
[12,/48):

De () = AN de(x0) + O(ne)

That is, A approximately describes the oscillatory behavior
and decay (or growth) of the measurement ¢.(z) over time
through its powers \”. Smaller values of € correspond to longer
timescales where this approximation is valid. For ¢ = 0, ¢,
becomes an exact eigenfunction of IC with eigenvalue .

Approximate eigenfunctions also encode key dynamical
features of the system, such as the global stability of equi-
libria. The contours (or level sets) of these functions highlight
key structures in the system’s dynamics, such as regions that
behave independently over long times, pathways along which
the system evolves, and surfaces where states settle into long-
term behavior at the same rate [20,/49]. The approzimate point
spectrum of KC, denoted Sp,,(K), is the set of all scalars A for
which € can be made arbitrarily small, and forms the most
fundamental spectral property of Koopman operators.

Just as a matrix is diagonalized by its eigenvalues and
eigenvectors, a nonlinear system can be “diagonalized” by its
Koopman spectra. Koopman eigenfunctions act as fundamen-
tal components of behavior, revealing persistent patterns (like
oscillations or trends) in the system. For a vector of observa-
tions g € CV, the Koopman mode associated with an eigen-
value is the projection of g onto the corresponding eigenspace.
Under suitable conditions, this yields a spectral expansion for
the time evolution of the observables [7]:

g(z,) = _Z A'gj(x0)g;- (6)

form=1,2,.... (5)

Here, g; € C¥ is the jth Koopman mode, associated with
eigenvalue A\; and eigenfunction ¢;, which one may think of as
an expansion coefficient. This decomposition is conceptually
and operationally similar to separation of variables: the eigen-
values describe time evolution through the powers A, while
the Koopman modes capture how each pattern is expressed in
space and the regions where this dynamical behaviour occurs.
When the observable g is real-valued, the eigenvalues,
eigenfunctions, and Koopman modes in Equation (@ appear
in complex-conjugate pairs. To illustrate how this affects time
evolution, consider one such pair: AT¢1(zo)g1 + Y (z0)871.
Writing A\; = 7e? and ¢;(z0)g; = Re'®, the pair becomes

Al é1(zo)gr + Xn@(:ﬁo)ﬁ = 2Rr" cos(nf + O).

n

This expression reveals key dynamical features: r™ controls
exponential growth (r > 1), decay (r < 1), or neutral evolution
(r = 1); the angle 0 sets the oscillation frequency; and the
Koopman mode (e.g., via R) encodes spatial structure.
Methods for learning Sp,,(K) and spectral expansions
from data face significant challenges, including spurious eigen-
values (Figure , missing critical spectral components, and
numerical instabilities. Recent advances have helped mitigate
some of these issues [36], but accurately computing Sp,,(K)
from trajectory data remains a fundamental open problem.
There is a critical need to develop a deeper theoretical



understanding of the conditions under which such spectral
computations are feasible. Equally important is identifying
scenarios where these computations are fundamentally impos-
sible. We shall see that addressing these questions guides the
development of more robust and reliable methods.

Results

We first present three illustrative examples that demonstrate
the reliability, advantages, and broad applicability of our
general-purpose learning algorithms: (i) a classic oscillator
where previous methods diverge but ours converges, (ii) a fluid
flow with continuous spectrum where we extract meaningful
eigenvalues, and (iii) an Arctic sea ice dataset where we un-
cover physically interpretable modes with error bounds and
achieve state-of-the-art forecasts. We then examine the under-
lying theoretical foundations, showing that our algorithms op-
timally match fundamental limits revealed by adversarial dy-
namical systems (Figure@. Indeed, analyzing the reasons be-
hind these fundamental limitations enabled us to pinpoint the
essential algorithmic properties required for reliable conver-
gence. Finally, we provide a unified classification of the com-
plexity of these learning problems, clarifying precisely when
learning is possible and when it is fundamentally impossible.

Example 1.1 (Overcoming lack of convergence in cur-
rent methods). We begin with a simple low-dimensional sys-
tem. Figure|l|(top) examines the classical Duffing oscillator in
two distinct regimes: the undamped case (conservative, panel
(a)) and the damped case (dissipative, panel (b)).

EDMD, widely regarded as the state-of-the-art method,
constructs a finite N x N matrix approximation of the Koop-
man operator by projecting onto N trial functions (a ‘dictio-
nary’ of observables). We use a common and effective choice of
dictionary: radial basis functions centered via k-means cluster-
ing [32]. In contrast, our algorithm searches for approximate
eigenfunctions where ¢ in Equation is locally minimized,
with guaranteed convergence to the spectrum as N increases.
The number of observables N grows with the number of snap-
shots M. Details of the experimental setup are in the Methods.

Panel (c) shows that EDMD fails to converge as the ma-
trix size N increases, producing many spurious eigenvalues
This is due to the truncation from infinite dimensions to a
finite-dimensional subspace of observables. In contrast, our
algorithm, using the same data and observables, converges re-
liably, demonstrating its robustness across different dynamical
regimes. We can control the truncation error to a finite set
of observables and validate whether the dictionary is a good
choice, which is crucial in practice since only a finite number
of observables can be used in a computation. Figure [J] shows
the same behavior over a range of examples.

Example 1.2 (Eigenvalue extraction in a high-dimen-
sional chaotic flow). Figure [I| (bottom) illustrates the ap-
plication of our algorithms to a high Reynolds number cavity
flow, which has eigenvalues embedded within continuous spec-
tra. Hence, there is an integral over continuous spectra in
addition to the sum in Equation (6) [7,[50]. In fluid flows,
discrete Koopman eigenvalues typically signal quasiperiodic
motion, while a broadband spectrum indicates chaotic dynam-
ics [51]. The resulting structure of the spectrum reveals the
geometry of the attractor in state space. In systems like this
flow with discrete and continuous spectra, the attractors are

known as skew-periodic [52]: one part oscillates with a fixed
period, whilst the other evolves chaotically but is influenced
by the phase of the periodic part.

The new algorithm (see Methods) successfully extracts
eigenvalues and separates spectral components using a two-
limit approach: adaptively increasing a time lag for autocor-
relations to detect localized observables and expanding pro-
jections onto increasing finite-dimensional subspaces. This is
grounded in linking localized quasiperiodic dynamics and the
corresponding eigenvalues (the so-called RAGE theorem [53],
see Equation ) This foundation ensures that the separa-
tion of the continuous spectra and eigenvalues is both mathe-
matically rigorous and practically optimal (see Figure .

Physically, the evolution of Koopman spectra with increas-
ing Reynolds number (Figure illustrates a transition to
chaos consistent with Ruelle-Takens theory [54], in which a
chaotic state arises after one or two bifurcations (sudden qual-
itative changes in the system’s behaviour) from a stable steady
flow. The Koopman spectrum offers a powerful tool for ana-
lyzing bifurcations, quantifying energy in both quasiperiodic
and continuous components, and links to the geometry of the
state space and the flow domain (see S.I. Figs. 6-8).

Example 1.3 (Arctic sea ice: Physical modes and
state-of-the-art forecasting). We consider monthly Arctic
sea ice concentration satellite data from 1979-2021. The data
is formed on a 432 x 432 grid of 625 km? cells. Details on
data collection and processing are provided in the Methods.
As discussed in the introduction, Arctic sea ice is a critical
component of the climate system, notorious for its complex
dynamics. In this setting, Koopman eigenvalues reveal the
time scales of changes in sea ice cover, while the corresponding
modes indicate the spatial pattern of these changes. Notably,
Koopman methods require no model—measurements of the
concentration suffice to compute the eigenvalues and modes.
Koopman spectra and modes: We first analyze the
entire data set and approximate Koopman eigenvalues using
EDMD (Figure . Similar to Figure [1} our method also pro-
vides error bounds for eigenpairs, shown in the plot. While
many EDMD eigenvalues are spurious, several (shown in blue)
have small errors and correspond to key dynamics: the annual
mean sea ice (A = 1); yearly growth-melt cycle captured by
a fundamental monthly mode (A &~ exp(wi/6)); and decaying
modes (|A] < 1). The small errors of the hidden modes indicate
strong coherency and forecasting power (see Equation )
The decaying modes, “hidden” behind a sea of spuri-
ous modes but nonetheless revealed by our error bounds, are
particularly interesting as they reflect dissipative dynamics.
The corresponding Koopman eigenfunction time series shows
a clear trend over the 511 month analysis interval (see S.I.
Fig. 9), providing strong evidence of a connection to sea ice
loss from climate change. Hidden modes with nonzero arg(\)
can be interpreted as seasonal patterns modulated by this
long-term trend. In other words, a seasonal oscillation that
is gradually decaying over decades — our modes capture both
the oscillation and the long-term decay. If @gecay is the de-
caying eigenfunction with zero complex argument and ¢y, an
annual variation mode with argument 7/6, then other decay-
ing eigenfunctions are approximately given by @decay X [@var’ -
This structure arises from the multiplicative property of Koop-
man eigenfunctions: if g1 = Ag1 and Kgo = Aago, then
K(g192) = MA2g192, which follows from Equation . For



example, the canonical correlations between these decaying
modes and the underlying modulated monthly dynamics are
0.9807 and 0.9798 for modes with arguments 7/6 and /3, re-
spectively. In the climate science literature, such seasonally
modulated product modes are sometimes referred to as “com-
bination modes” |24}|55]. The mean decay time, —1/log(|A|),
for these modes is 233 months, consistent with decay times
observed in the Antarctic region [56]. Notably, this decay rate
was not observed in the Arctic region in [56], which we at-
tribute to the challenges of extracting reliable eigenpairs in
the absence of error bounds. Several studies indicate nonlinear
trends in the decline of sea ice [57], which further advocates
the use of Koopman operator techniques to disentangle the
complex nonlinear dynamics.

We compute Koopman modes (g; in Equation @ where g
is the vector of sea ice concentrations), which capture spatial
and temporal patterns in sea ice concentration not easily dis-
cernible by conventional methods. Although the modes share
units with the input data, they may take values above 100%
due to the non-orthogonal expansion in Equation @ Each
mode highlights geographic regions where sea ice exhibits os-
cillatory, growing, or decaying behavior, as indicated by its
corresponding eigenvalue. For example, modes with one-year
oscillations reflect the seasonal cycle, eigenvalues near one cap-
ture the mean state, and multi-year or slowly varying modes
indicate long-term trends, with the associated modes high-
lighting the regions where these changes occur.

The hidden decaying mode is concentrated in the Barents
and Kara Seas, implying that the decrease in sea ice concentra-
tion over these time scales is localized to those regions. Indeed,
there are links between sea ice reduction in these regions and
extreme weather, such as severe winters in central Eurasia [5§].
Importantly, our method provides error estimates, giving con-
fidence that these identified modes are real and not artifacts
(unlike many spurious modes given by EDMD).

These modes also capture seasonally-modulated reemer-
gence of correlations (see S.I. Fig. 10), revealing ‘memory’ in
the climate system, whereby sea ice anomalies occurring dur-
ing the growth season reemerge in the following melt season
despite a loss of correlation in the intervening winter months
[59]. For studies of this phenomenon using kernel methods,
see [60,/61]. Such long-lived modes and their geographic foci
are critical, as they could influence large-scale climate patterns
(e.g., ocean circulation changes) and have practical implica-
tions for shipping routes and climate resilience. Further work
is needed to perform data-driven prediction of changes due to
tipping points such as the greater mixing between the Barents
Sea and North Atlantic [62]. Modes in sea ice can significantly
influence the onset or prevention of tipping behavior of AMOC
patterns [421/43].

Sea ice decay is commonly assessed by sea ice extent, the
area covered by grid cells with sea ice concentration exceeding
15%, shown in Figure We compute the Koopman modes
corresponding to the mean sea ice concentration and the an-
nual variation over ten-year periods (1980-1989, 1990-1999,
2000-2009, 2010-2019) and plot their absolute values. The
mean mode reveals a clear decline in overall sea ice and reduced
winter extent. Annual modes show a geographic shift in sea-
sonal variability, with marginal seas—particularly the Beau-
fort, Kara, and nearby coastal regions—exhibiting increased
amplitude, indicating stronger seasonal contrast in these re-

gions. The overall decline in concentration suggests a slow
decaying mode, consistent with the spectrum in Figure

Forecasting: We now address the problem of forecast-
ing, focusing first on the challenging task of reconstructing sea
ice concentration at every grid point. Forecasts are initial-
ized monthly from 2005 to 2010, each with a 10-year horizon.
Training data consists of observations from 1979 up to the
month preceding initialization, yielding 72 distinct forecast
trajectories. To obtain accurate forecasts, we truncate the
Koopman mode decomposition using spectral approximations
and error bounds computed by our algorithm (Equation
in Methods). We compare our method to EDMD with delay
embedding, which has previously shown strong performance in
Arctic sea ice forecasting [56], and also benchmark against the
monthly climatology at each grid point, referred to as the pe-
riodic baseline. We measure the forecast error relative to the
periodic baseline at each grid point (details in Methods) and
average over the trajectories. Figure 4| shows the results. Our
approach outperforms EDMD, particularly at long lead times,
consistent with its explicit minimization of ¢ in Equation .

We next consider a binary classification problem and com-
pare our approach to IceNet [63], a deep learning model that
provides state-of-the-art six-month sea ice forecasts. A point
is classified as open water if the sea ice concentration is below
15%, the standard threshold for defining the ice edge. Fol-
lowing the setup in [63], we evaluate monthly forecasts from
2012 to 2020, with lead times from 1 to 6 months (chosen
to align with the lead times for which IceNet produces fore-
casts). Binary accuracy is defined as the percentage of pre-
dicted classes matching the observations. We also compare
against SEAS546 [64], a leading dynamical model from the Eu-
ropean Centre for Medium-Range Weather Forecasts. Figure[]
shows the average error across lead times. Beyond one-month
forecasts, the proposed verified Koopman model consistently
outperforms both benchmarks, with significantly greater ac-
curacy as lead time increases. This robustness arises from the
method’s direct minimization of ¢, yielding longer coherency
and predictive time scales (see Equation ().

This improvement is achieved at a fraction of the compu-
tational cost and with significantly fewer parameters than deep
learning approaches. IceNet uses 4.4 x 107 trainable weights
and requires over a day to train on a Nvidia Quadro P4000
GPU, while the Koopman approach relies on an observable
space of at most 510 dimensions (260100 parameters) and is
trained on a laptop in under a second.

Interestingly, we found no clear link between prediction
accuracy and El Nifio events. Instead, Figure [6] shows aver-
age accuracy by calendar month and the improvement offered
by our method. Accuracy drops noticeably during the sum-
mer, reflecting the well-known “spring predictability barrier,”
which affects all forecasting models due to the influence of
melt-season ice thickness. These months also show the great-
est performance gains over SEAS5. Finally, we note that even
as € | 0 with more data, predictability remains fundamentally
limited by atmospheric chaos and observational noise [65].

These practical advantages motivate a return to our central
question: When can we reliably learn system behaviors from
data, and when is it impossible? To address this, we present
our theoretical results, with full proofs provided in the S.I.



Adversarial systems reveal challenges

We first construct adversarial dynamical systems that expose
two fundamental challenges in computing Koopman spectra.
These show lower bounds on problem complexity. Even with
infinite data, no algorithm can guarantee learning certain sys-
tem behaviors, a first example of inherent limits in data-driven
system learning.

While it is sometimes possible to design algorithms that
work for a single known system, this does not reflect the goals
of general-purpose learning or complexity classification. In-
stead, our focus is on identifying the minimal assumptions
under which an algorithm can reliably learn across a broad
class of systems, a core aim in both computational complexity
and ML. To illustrate, let Qp be the class of systems that are
continuous, measure—preservingﬂ and invertible on the unit
disk in two dimensions. Let o 1 be the class of smooth, in-
vertible F' on the interval [0, 1] with uniform bounds on their
derivatives (not necessarily measure-preserving).

Our results (Theorems 2.3 and 2.5 of S.I.) show that for ei-
ther of these classes—denoted collectively as 2—mno determin-
istic algorithms I',, exist that, using snapshot data, converge
to Sp,, (Kr) for all F' in the class Q as n — co. Furthermore,
for any probabilistic learning algorithms, the probability of
convergence cannot exceed 50%. These impossibility results
are universal, applying to any type of algorithm and regard-
less of what n represents. Hence, for any algorithm, simply
increasing the number of data points M — oo will not lead
to convergence, as this would correspond to an instance of the
sequence I',,. These constructive results reveal fundamental
challenges that occur across data-driven dynamical systems:

(C1): For systems in Qp, the challenge lies in determining
when enough data has been collected to approximate the ac-
tion of K on a given observable, e.g., by approximating the
averages in Equation . The convergence rate is problem
dependent [68]: no universal rate exists [69, page 14].

(C2): For systems in g 1], the difficulty stems from the non-
normality of K (non-orthogonality of its eigenfunctions). This
is a well-known challenge in spectral approximation more gen-
erally [70], and manifests itself in the Koopman context as
the difficulty in distinguishing data corresponding to tran-
sient dynamics from post-transient dynamics.

Moreover, these challenges:

e cover randomized algorithms, e.g., random trajectory sam-
pling, or training with probability distributions over data, as
in stochastic gradient descent and other ML methods;

hold whatever the distribution of data;

hold for any type of computer, e.g., digital computation (Tur-
ing machines) or exact arithmetic (BSS machines);

hold even if we consider smoother F' and allow our algorithms
to sample the derivatives of F' as well as Equation .

The system classes for which we construct adversaries in-
clude widely studied examples such as Hamiltonian flows and
smooth interval exchange maps. The mechanisms can also be
embedded in higher dimensions and other state spaces: the

1A system is measure-preserving if it preserves a volume on the state space X
during its evolution, e.g., an idealized frictionless system. Such systems are
ubiquitous, including classical Hamiltonian systems 66|, physical systems in
equilibrium 67|, and the post-transient behavior of many general systems [7].

impossibility result holds for any class of systems satisfying ei-
ther of (C1) and (C2). These mechanisms are not limited to
Koopman spectral estimation and reflect general challenges in
data-driven dynamical systems. Failures are neither rare nor
pathological, and no algorithm can succeed with probability
more than 50%, highlighting fundamental limits of black-box
spectral learning—even with large datasets or randomness.

A universal algorithm with learning guarantees

Learning from the above results, we now show that Koopman
spectra can be computed from trajectory data, provided two
key conditions are satisfied. Together with the other algo-
rithms discussed below, these show upper bounds on problem
complexity. This result also resolves the fundamental open
problem of data-driven computation of Sp,,(Kr).

To address challenge (C1), we assume the system is
measure-preserving—this can be relaxed in many dissipative
cases. To address (C2), we require some control over the
smoothness of the dynamical map F. Specifically, we assume
F has a known modulus of continuity «. This function controls
the distance between F'(z) and F(y) by the distance between
states  and y. Although such a function always exists, the
impossibility result above shows that without knowledge of «,
one cannot compute Koopman spectra in a single limit.

Let Q3™ be the class of systems satisfying both con-
ditions. For such systems, we have developed deterministic
learning algorithms I',, that reliably approximate the system’s
dynamics using snapshot data (Theorem 2.1 and Algorithm 1
of the S.I.). These algorithms converge to Sp,,(Kr) for all F
in the class Q3™ as n — co. They also provide explicit error
bounds that verify the accuracy of the approximation.

Our analysis of (C1) and (C2) directly leads to this prov-
ably convergent algorithm, in contrast to EDMD, which does
not converge. The core idea of the algorithm (see Methods)
is to use the modulus of continuity to adaptively select the
dictionary size N based on the available data M in an av-
eraging procedure similar to Equation . Unlike EDMD,
however, we do not compute eigenvalues of a finite matrix. In-
stead, we use this adaptive strategy to compute a correlation
matrix that allows us to compute the error metric shown in
Figure [1] We search for local minimizers of this function and
exploit the measure-preserving property of the system to re-
late this metric to the distance between a point z € C and the
spectrum. This distance is computed alongside an associated
approximate eigenfunction satisfying the coherency condition
Equation with € equal to this distance.

Example demonstrated the convergence of this algo-
rithm applied to the Duffing oscillator, while Figure[J] confirms
its performance on other systems. Moreover, the error bounds
achieved by the algorithm enabled improved sea ice forecasts

in Example (e.g., Figure[5).
To infinity and beyond

Surprisingly, spectral properties can still be learned in the
presence of (C1) and (C2) by adjusting the approach. In-
stead of requiring a single data limit as n — oo, we consider
separate successive limits for key parameters. Each is tied to
a different type of data—such as increasing dataset size, mea-
surement resolution, or dictionary complexity.

For instance, for EDMD (see Methods) without the mod-
ulus of continuity, one must first take the number of data sam-



ples M to infinity to approximate correlations and only then
the number of observables N to infinity (even then, EDMD
may fail to converge). The convergence rate of time-averaged
quantities such as correlations depends sensitively on the sys-
tem’s mixing properties and the regularity of the observableﬂ
While polynomial rates hold for certain strongly mixing sys-
tems [6872], Birkhoff’s theorem guarantees only convergence
without any uniform rate and time averages can converge ar-
bitrarily slowly [69, Chapter 2]. This non-uniformity prevents
the formulation of a universal convergence rate or a general-
purpose N (M) strategy, unless we can control (C1).

To further understand how assumptions about a system’s
structure influence our ability to learn from data, we consider
three scenarios (see Theorem 2.1 of the S.I.).

First, let Q% denote systems whose dynamics have a
known smoothness quantified by a modulus of continuity a.
For these systems, there exist learning algorithms that depend
on two parameters, n; and no, and reliably use snapshot data
to approximate the dynamics. These algorithms converge in
two successive data limits (ny — oo and then ny — 00) to the
spectrum Sp, (Kr) for all systems F'in Q.

Second, let Q% denote measure-preserving systems with
continuous dynamics. Again, algorithms exist that achieve
convergence to Sp,,(Kr) in two successive data limits for all
systems in this class. The necessity of using two successive lim-
its arises naturally. In Equations and , challenge (C1)
implies that convergence rates of the underlying sums cannot
be uniformly controlled [69], a fact well known for mixing sys-
tems, among others. Thus, one must first take the large-data
limit (M — o0), then the limit of dictionary size (N — o0);
these limits cannot, in general, be combined or reversed. An
implication of our analysis is that, for any algorithm (not just
EDMD), no universal rule linking M and N guarantees con-
vergence when both grow together.

Finally, consider the most general scenario, )y, consist-
ing of all continuous systems without further assumptionsﬂ
Remarkably, reliable algorithms still exist, but they require
three successive data limits to convergence to the spectrum
Spap(Kr) for all Qx: increasing the number of snapshots
(M — o0), expanding the dimensionality of the subspaces
(N — 00), and refining coherence estimates (take the regular-
ization parameter € | 0 in Equation ) into spectra. Without
assumptions on the underlying system, no simpler two-step al-
gorithm can achieve guaranteed convergence (Theorem 2.9 of
the S.I.)). (C1) and (C2) each cost a limit, illustrating the
intrinsic difficulty of learning general dynamical systems.

Unified complexity classifications of learning

The Solvability Complexity Index (SCI) [73|/74] formalizes how
many limits are needed to learn properties from data. For
the full class 2y, computing Spap(IC F) requires three separate
limits, which cannot be reduced or combined: no method can
succeed with only two. For structured subclasses like Q%™
0%, or Q% the above shows that fewer limits suffice.

This framework provides a systematic way to assess the
complexity of data-driven problems. Applied to Koopman op-

2As another example, Bandtlow et al. |71] construct an EDMD-based method
that provably converges with N = N (M) for analytic expanding maps, using
analyticity and spectral gaps to unify the two limits.

3While the continuity of F' can be relaxed, it is often assumed because dis-
continuities can lead to pathologies [46].

4 Classification of computing the spectrum h
2 K
= ey
é € 4 | [ Isci=1 [ ]noexamplegiven H3
r = [ 1SCl=2 = strictinclusion | Q: General systems
: @ LEisci=3 '
> i
= .
=
8 i E
£ £ 22 o
-’C?D E N QF: Measure- Q%: Uniform modulus of
= E preserving systems continuity
(2 =
ol
5
=
- =
Eq 2y \ /I I
— Q% n Q%: Measure- A
preserving and uniform 1
modulus of continuity. Finite state space
.

Figure 7: Classifications for learning Koopman spectra from trajec-
tory data. Each SCI level indicates that solving the problem requires more
complex, layered procedures—each ‘limit’ reflecting an extra data refinement.
Our results establish both upper bounds (convergent algorithms) and lower
bounds (established by constructing adversarial dynamical systems) for the
complexity of these problems. A, are problems with SCI < m. The ¥ and
II classes provide a framework for understanding how verification is achieved
in the final limit when learning Koopman operator spectra. The case of fi-
nite state space is Aj since, in this case, the Koopman operator simplifies
to a finite-dimensional matrix, making it possible to compute the spectrum
directly using a single convergent algorithm with known convergence rates.

erators, Figure [7] summarizes the difficulty of learning their
spectra based on our results. Each classification includes both
an upper bound (a convergent algorithm), and a lower bound,
established by constructing adversarial dynamical systems to
prove that fewer limits are insufficient. We can also relate
existing algorithms to the SCI hierarchy by summarizing con-
vergence results from the Koopman literature and their cor-
responding implicit upper bounds in Table [I| Each algorithm
relies on specific system assumptions and, in some cases, uses
more data limits than necessary for convergence.

Beyond Table 1} Ulam’s method is widely used to approx-
imate eigenvalues of transfer operators, which describe the
evolution of probability densities and are dual to Koopman
operators. It typically requires two successive limits: one for
Monte Carlo approximation and another for increasing matrix
size |79], but convergence is not always reliable [80), Section
2.6]. Adding a third limit via noise smoothing can improve
convergence [80], though adaptive noise selection sometimes
reduces this back to two. Similar SCI classifications apply to
other data-driven dimensionality reduction methods [81]. For
multiple limits in control theory, see [82, Theorem 3].

These examples illustrate that multiple-limit phenomena
are central to many data-driven methods in dynamical sys-
tems. While methods provide SCI upper bounds, a key chal-
lenge is determining whether these bounds are optimal. This
raises fundamental questions: Can convergence be achieved
with fewer limits? If not, what assumptions make it easier? To
address these, we have derived lower bounds that show how
system properties and the quantities being computed shape
optimal algorithm design. When upper and lower bounds
match, the algorithm is provably optimal for the problem.

In short, we now have a complete characterization of when
data-driven spectral learning can succeed and when it cannot.



Table 1: Convergence results for Koopman operators in the SCI hierarchy. This table summarizes convergence results from the Koopman literature,
interpreted through the lens of the Solvability Complexity Index (SCI). “N/C” denotes non-convergence without additional strong assumptions (e.g., requiring
observables to lie within a finite-dimensional invariant subspace), “n/a” indicates the method is not applicable to the spectral problem and “m.p.” stands for
measure-preserving systems. A superscript * indicates the SCI bound improves by one if errors in approximations of correlations (see Equations and ) are
controlled, e.g., through known variational bounds on F'. This reduction depends on system properties [68|. The column ICg refers to approximating IC’s action
on observables g. Note that computing the spectral measure (distribution of the system’s behavior across different frequencies) may not yield the spectrum due
to spurious eigenvalues. Upper bounds typically assume access to a dictionary with projections converging strongly to the identity; this construction is either
specified (e.g., the entries “compactification methods” and “diffusion maps” have the distinct advantage of learning a well-conditioned dictionary) or required
as an additional input by the user (e.g., EDMD and generator EDMD) which may or may not increase the SCI. In our upper bounds in Figure we construct a
dictionary. N.B. These results are upper bounds on the SCI. Many of these bounds are not sharp, meaning they overestimate the number of limits required.

. . Spectral Problem’s Corresponding SCI Upper Bound
Algorithm Comments/Assumptions Kg Spectrum | Spectral Measure (if m.p.)| Spectral Type (if m.p.)
Extended DMD (32| general L? spaces SCI < 2*N/C N/C n/a
< 2 x * * varies, see |75|
Residual DMD [36] general L= spaces SCI < 2"|SCI< 3" |SCI<2 e.g., ac. density: SCI < 2*
. - . . SCI < 2" (general) .
Measure-preserving EDMD |76 m.p. systems SCI<1 |[N/C SCI < 1 (delay-embedding) n/a
Hankel DMD |77] m.p. ergodic systems SCI < 2% [N/C N/C n/a
Christoffel-Darboux kernel |35] m.p. ergodic systems SCI<3 [n/a SCI <2 e.g., a.c. density: SCI <2
cts.-time, samples VF
Generator EDMD |78| (otherwise additional limit) SCI<2 [N/C SCI<2 n/a
Compactification [16] cts.-time, m.p. ergodic systems|[SCI <4 [N/C SCI< 4 n/a
Resolvent compactification [48| | cts.-time, m.p. ergodic systems|[SCI <5 [N/C SCI<5 n/a
Diffusion maps [9] cts.-time, m.p. ergodic systems|SCI < 3 |n/a n/a n/a

Learning eigenpairs and latent spaces is hard

As a final problem, we consider the complexity of determining
the spectral type, i.e., eigenvalues versus continuous compo-
nents (see bottom panel of Figure [1). Spectral types distin-
guish between recurrent patterns (periodic or quasiperiodic
oscillations) and more chaotic or mixing behavior, based on
how the system spreads energy over frequencies (83| page 45].
They play a key role in applications such as fluid mechan-
ics [84], anomalous transport [85], and analysis of trajectory
invariants and exponents [86], and are particularly important
in reduced-order modeling [7,/87]. We discussed their role in
the context of our cavity flow problem in Example
Identifying eigenvalues and eigenfunctions of Koopman
operators (¢ = 0 in Equation ) reveals a coordinate sys-
tem in which complex dynamics appear linear, enabling the
expansion in Equation @ Non-unit eigenvalues (A # 1) are
especially important, as they capture time-changing features.
Let ©Q, be the class of smooth, invertible systems on a torus
(ring-shaped surface) that are measure-preserving with uni-
form bounds on their derivatives. This is a subclass of Q%™
so our universal one-limit algorithm applies to computing the
full spectrum without distinguishing spectral type.
Surprisingly, even for this well-structured class of systems,
there are no single-limit learning algorithms — whether de-
terministic or probabilistic with a success probability greater
than 50% — using trajectory data, that can determine if the
Koopman operator Kr has a non-unit eigenvalue for F in §2,.
Similarly, no single-limit learning algorithms, deterministic or
probabilistic with success probability greater than 50%, can
converge to the set of eigenvalues (Theorem 2.7 of the S.I.).
However, both problems can be computed in two interde-
pendent data limits (Algorithms 6 and 7 of the S.I.): adjusting
the time lag for auto-correlations adaptively based data size;
and increasing projections onto finite-dimensional subspaces
defined by a dictionary (e.g., see Figure [10). Example
applied this approach to a complex fluid flow, see also the
Methods. This two-limit approach is optimal, as no single-
limit method can solve these problems. Figure |8] summarises
the SCI classifications of computing spectral type.
This difficulty helps explain the challenges in finding finite-
dimensional representations, such as autoencoders or latent
spaces, where dynamics appear linear [29]. It is fundamen-
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Figure 8: Classifications for learning spectral types (eigenvalues
(p.p.), absolutely continuous (a.c.) and singular continuous (s.c.)) of
Koopman operators for measure-preserving invertible systems from
trajectory data. Each classification comprises of an upper bound (conver-
gent algorithms) and lower bound (established by constructing adversarial
dynamical systems). The SCI is the number of data limits needed to solve
a problem. For each learning objective, we provide a representative system
to emphasize that the classification fundamentally depends on the nature of
the underlying dynamics. These examples illustrate how different dynamical
behaviors influence the complexity of learning spectral types from data.

tally impossible to determine or verify the existence of eigen-
values for Koopman operators using only a single limit. A
more practical alternative is to compute approximate eigen-
functions corresponding to Sp,,(Kr). This requires only a
single limit and can be performed with verification (Figure|7)),
making it a more implementable approach in practice. We
applied this to Arctic sea ice in Example

Discussion

We have developed a powerful technique—mnamely, the con-
struction of adversarial dynamical systems (see §Adversarial



systems and Figure —to establish the first impossibility re-
sults in the field of data-driven dynamical systems. We iden-
tified conditions ((C1) and (C2)) for which no sequence of
randomized algorithms (e.g., randomly sampling trajectories)
can succeed with probability greater than 50%. These failures
are not rare, but represent fundamental barriers. These barri-
ers provided insights, which we used to develop a suite of new
algorithms (Algorithms 1-7 in the S.I.) that achieve optimal
performance and are provably convergent. These algorithms
produce trustworthy, verifiable outputs, and include what we
term ‘multi-data-limit’ methods (see Figuresand. By link-
ing dynamical systems theory with the foundations of compu-
tation, we established a computational complexity framework
for data-driven dynamical systems. This framework clarifies
the inherent limitations of using finite data to analyze com-
plex dynamics while also highlighting new algorithmic possi-
bilities with broad applications. By combining a new theoreti-
cal complexity framework with practical algorithmic advances,
our work provides a rare instance in ML of a synthesis between
rigorous theory and application.

We demonstrated the power of our framework by solving
a long-standing problem: computing Koopman spectra from
data without spurious eigenvalues or missing components. Our
algorithms succeeded where existing methods (e.g., EDMD)
struggle, recovering accurate spectra in both low- and high-
dimensional systems, including cases with continuous spectra
and a real-world application to Arctic sea ice.

Arctic amplification has accelerated sea ice loss, with ma-
jor consequences for ecosystems, local communities, and ex-
treme weather. A key challenge is identifying the geographic
patterns driving these changes. Our algorithms uncover hid-
den Koopman modes linked to sea ice decline (Figure ,
offering dynamic and spatial insight supported by wverifica-
tion. These decaying modes are physically meaningful and
may guide future measurements. Using spectral approxima-
tions and error bounds to truncate spurious components, we
built forecast models that achieve state-of-the-art accuracy at
a fraction of the cost of deep learning models (Figures [5|and |§|
and surrounding discussion). Applications include optimizing
shipping routes, reducing environmental risks, and informing
early-warning systems. Understanding sea ice loss is also vi-
tal given potential links to extreme events such as wildfires,
floods, heatwaves, and cold spells. The Koopman framework
further enables systematic comparisons across climate models
and supports the construction of interpretable response for-
mulas and reaction coordinates near critical transitions, with
broad implications for climatology [88].

Our approach extends beyond Koopman operators, pro-
vided appropriate domain-specific “sudden change” lemmas
can be established (see Figure . In each case, an analog of
the “ball of learnability” and the classifications in Figures [7]
and [§] applies. This perspective is relevant to a range of meth-
ods—including SINDy [10], neural ODEs [89], Fourier neu-
ral operators [90], LSTMs [91], and PDE-net [92]—as well as
to other areas of scientific computing with ML. For exam-
ple, recent work has shown that linear elliptic PDEs can be
learned from input-output pairs [93], analogous to snapshot-
based learning. Whether similar approaches extend to hyper-
bolic or nonlinear PDEs remains open, but our proof tech-
niques may offer insight into this challenge.
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This paper initiates a broader effort to explore the limits
of robust learning and to develop a theory of necessary and suf-
ficient conditions. Several promising directions remain. First,
we have assumed access to full-state observations (see snapshot
data in Equation )7 whereas many applications involve only
partial measurements of the state x. Extending our upper and
lower bounds to such settings is a natural next step; results
like Takens’ embedding theorem [94], which allows reconstruc-
tion of attractors from a single time series, may be particularly
useful. Second, we focused on discrete-time systems, reflect-
ing how data is typically collected. It would be valuable to
study continuous-time dynamics and the sampling conditions
needed for reliable learning. Our results should carry over un-
der generic time discretizations, but a formal analysis remains
open. Third, Koopman-based methods have shown promise
in control problems across domains such as power grids [95],
robotics 23], fluid dynamics [96], chemistry [97], and biol-
ogy 98], where the linearity of K enables tractable optimiza-
tion. Our development of provably convergent, error-bounded
algorithms for Koopman spectral properties opens the door to
significant advances in nonlinear control. Fourth, it is natu-
ral to seek lower bounds complementing the upper bounds in
Table (1| for problems that do not rely on spectral computa-
tions. These may have different lower bounds than those we
established, but we anticipate that the adversarial dynamical
systems framework can be extended to cover them.

ML in data-driven dynamical systems is skyrocketing, and
this momentum shows no signs of slowing. Across nearly ev-
ery area, key challenges are being reexamined through big data
and deep learning. With this surge of interest and innovation,
it is crucial for the community to grasp not only what is possi-
ble but also what is fundamentally impossible. This prevents
the pursuit of unattainable algorithms or methods, safeguards
against potentially catastrophic errors, and reveals the condi-
tions under which learning is feasible: upper and lower bounds
inform and sharpen one another. This process led us to our
convergent algorithms. Such classifications are essential if we
are to fully harness the power of ML in dynamical systems.

Methods
Computing Koopman modes and EDMD

For a dictionary of observables {gj}é\’:l and snapshot pairs
(™), 4(™) in Equation , EDMD approximates two cor-
relation matrices G,;; = (g;,9:;) and A;; = (Kgj,9:) (4,5 =
1,...,N) from data averages using Kg;(z(™) = g;(y™),
analogously to Equation :

M
A 1 .
Gij = Gij = 7 > gi@™)gi(@™), dj=1,...,N, (7)
m=1
M
i 1 M)y ()Y i
Az‘j%AzJZM g; ("N gi (™), i, j=1,...,N. (8)
m=1

(Here, the L? inner product (-,-) is a generalized dot product
that measures how strongly two observables are correlated.)
The Koopman approximation is the NV x N matrix G~1A and
EDMD computes its eigenvalues.

We compute the Koopman modes g; appearing in Equa-
tion @ as follows. Given a collection of n approximate eigen-
functions (computed, e.g., by EDMD or our algorithms), let



System

Time Series

Vorticity Field

Im())

Flow Past Cylinder

Im())

Lorenz

Im()

Rossler

ECG

Sea Surface Height

Re(A)

U € CM*" denote the matrix corresponding to their time
series across the training data (™ (m =1,..., M) in Equa-
tion (4). For a vector of observations g € CV, let O € CM*N
be their collected data over the same training data. The Koop-
man modes g; are computed by

(81 & gn)T = [¢1]0,

where { denotes the Moore—Penrose inverse (solution of least
squares problem) and T the matrix transpose. In Figures
and [3] we have plotted the absolute values of Koopman modes
since these describe physical locations of the dynamics de-
scribed by eigenvalues (as explained in the discussion sur-
rounding Equation @) The error bars for these Koopman
modes and eigenvalues correspond to ||K¢. — Ade|| (computed
using the function in Equation @D) for corresponding approx-
imate eigenfunction ¢.. These provide an error bound for co-

Upper bounds: A suite of convergent algorithms
There are several algorithms, each corresponding to different
classes of dynamical systems in Figure[7] and full pseudocode is
provided in the S.I. Recall from Example [I.I] that we consider
a dictionary of observables {g;}/_, and that we have access to
the snapshot data in Equation ().

Pseudospectra and
EDMD Eigenvalues
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Convergence Test
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Figure 9: Spectral analysis of a
range of analytic and real-world
dynamical systems using our pro-
posed algorithms. Each row corre-
sponds to a different system: (i) peri-
odic flow past a cylinder, (ii) Lorenz sys-
tem, (iii) Rossler system, (iv) electrocar-
diogram (ECG) data, and (v) monthly
mean sea surface height in the North-
ern Hemisphere (1950-present). Columns
show: the system or dataset, a represen-
tative time series of observables, the com-
puted level curves of e for e-approximate
eigenfunctions (color scale) termed “pseu-
dospectra” overlaid with EDMD eigenval-
ues (blue dots), and a convergence com-
parison between EDMD (blue) and our
method (red, using Algorithm 1 from the
S.I.). The pseudospectrum shows where
approximate, near-eigenvalue behavior oc-
curs—providing a more robust picture of
dynamics. In this final column, the error
metric is the same as in Figurem Except
for the periodic flow, EDMD yields spuri-
ous eigenvalues and lacks convergence. In
contrast, our approach produces qualita-
tively accurate and convergent spectral ap-
proximations. Notably, the level curves of
e reveal distinct spectral structures across
systems: continuous spectra for chaotic
systems (Lorenz, Rossler), spectral cluster-
ing near A = 1 for ECG, and non-normal
features and seasonal modes around A =~
exp(mi/6) in sea surface height data. Fur-
ther experimental details are provided in
the S.I.
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We first describe the algorithm for Q5" (Algorithm 1 in
S.I.). Traditional methods for analyzing the dynamics of com-
plex systems (e.g., EDMD) often rely on estimating the Koop-
man operator by computing eigenvalues of finite-dimensional
matrices. However, these approximations can be unreliable
and fail to converge, as shown in Figures [I] and [f] Our ap-
proach avoids this pitfall by taking a different route. Instead
of directly computing eigenvalues of an approximate matrix,
we use trajectory data from the system to construct three ma-
trices that capture the essential correlations between observ-
ables and their evolution. These matrices approximate inner
products involving the Koopman operator K and its adjoint
K% (which encodes how observables change in reverse time).

We form a correlation matrix based on how different ob-
servables behave across the dataset:

1,...,N,

M
Ly =52 > 0 ™aily™), i =
m=1
which estimates how the time-evolved observables overlap. It
approximates (Kg;, Kg;) in an analogous fashion to how Equa-
tions and approximate (g;,¢;) and (Kg;,gi), respec-
tively. Using these matrices, we define a function

h(z F) = \Jou(L — 24 — 24" + |22,

9)



Here, oy, denotes the smallest singular value of a matrix. This
method has a key advantage: If F' has a known modulus of con-
tinuity, we adaptively select IV based on the number of data
points M (amounting to controlling errors in the approxima-
tions of the correlations) to ensure that

lim hy(z, F) = omt(Kr — 2I),
N—00

with convergence from above. Here, I denotes the identity
operator. Moreover, this specific construction guarantees con-
vergence, in contrast to approaches using O'inf(A — zé’), which
lack this property. It establishes the rigorous error bounds
demonstrated, for example, in Figures[I] and [0

We evaluate this function over an initial grid of z-points
that is adaptively refined with increasing N (a good choice is
{z € 2Z+ L7 : |z| < n}). The computed function hy(z, F)
yields an upper bound dy . on dist(z,Sp,,(KF)), provided
the non-normality of Kp is suitably controlled (e.g., if the
system is measure-preserving, i.e., where statistical proper-
ties do not change over time). We then find local minimiz-
ers of hy(z, F) in a radius dy, . neighborhood of each grid
point. These minimizers provide approximations to the spec-
trum near each point. The union of these local approximations
is guaranteed to converge to the true spectrum as N — oco. By
computing the singular vectors corresponding to the smallest
singular values, we simultaneously obtain e-approximation of
eigenfunctions (with ¢ = oy, (Cp — AI) for a spectral parame-
ter \), called approximate eigenfunctions ¢., which satisfy the
condition ||[Kp¢. — Ag|| < e and hence the coherency bound
in Equation . In addition to providing error bounds, the
algorithm is local, trivially parallelizable, and stable.

For the class Q%, we cannot directly convert hy(z, F) into
the distance bound dy . as described above. This limitation
reflects the challenge (C2) and requires an additional limiting
process to achieve the conversion (Algorithm 3 in the S.I.).
Similarly, for the class 2%, we are unable to adaptively choose
N based on the number of data points M, due to the chal-
lenge (C1). As a result, we must evaluate hy(z, F) using
another limiting procedure (Algorithm 4 in the S.I.). In the
most general case, 2y, both challenges arise simultaneously,
necessitating three successive limits (Algorithm 5 in the S.I.).

To separate eigenvalues from continuous spectra, we use a
mathematical result known as the RAGE theorem. It states for
unitary IC that we can isolate the contribution of eigenfunc-
tions by averaging time-evolved observables after projecting
onto an increasing sequence of finite-dimensional subspaces.
Specifically, if {P,} are finite-rank orthogonal projections con-
verging to the identity, then for any observable g, the projec-
tion Ppp, onto the eigenspaces of K satisfies:

i I 1
= lm nIim

L

[Popgl? S Paktl”. (10)
=1L
This formula separates observables into parts that remain lo-
calized over time and parts that disperse. The projections P,
retain the localized portion, which corresponds to persistent
patterns described by eigenfunctions. This provides a prin-
cipled way to identify and extract the parts of an observable
associated with eigenfunctions. The procedure is implemented
in Algorithms 6 and 7 of the S.I.

Equation involves two consecutive limits: one over
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the increasing rank of the projections or number of observ-
ables (n — o0) and another over the time window length
(L — o00). This method enables accurate spectral computa-
tions using only finite data, without requiring an explicit ap-
proximation of the Koopman operator (which must be formed
for EDMD). We also point out that this technique is substan-
tially different to partitions of the full spectral measure (dis-
tribution of the system’s behavior across different frequencies)
over intervals, which have previously been computed using the
ergodic theorem, e.g., [35]. Moreover, the RAGE theorem does
not require the system to be ergodic.

We assume the state space is a compact metric space
(X,dx) and consider observables g in L?(X,w), the space of
functions whose squared values can be averaged (integrated)
over X using a probability measure w, which defines how dif-
ferent parts of the state space are weighted. We also assume
that F is nonsingular with respect to w (if w(E) = 0 then
w({z : F(z) € E}) = 0) and Kr is bounded. This is the
standard setting in Koopman analysis, often referred to as the
spectral study of the system. Notably, our methods apply to
any compact metric space X and probability measure w. To
assess how well algorithms capture the spectrum of the Koop-
man operator, we use the Hausdorff metric, which measures
how far two spectral sets are from each other by quantifying
the greatest distance one must travel from a point in one set
to reach the other. This metric ensures that the computed
spectra converge accurately, avoiding errors such as including
false eigenvalues or missing important spectral regions.

Duffing oscillator

The Duffing oscillator is the system of equations:
dx dy

at ~ Y dt T
The state x = (z,y) € R? evolves in a two-dimensional state
space. To analyze this system in discrete time, we use a time-
step of At = 0.3. We consider two cases based on the param-
eter . Conservative case (y = 0): This choice corresponds
to a Hamiltonian system, where the dynamics conserve a vol-
ume in state space, reflecting energy conservation. Dissipative
case (v = 0.3): In this scenario, the system has energy dis-
sipation, leading to two stable spirals at (+1,0) and a saddle
point at the origin. These two cases highlight distinct dynam-
ical behaviors. In the Hamiltonian case, trajectories exhibit
long-term behavior without dissipation, while in the dissipa-
tive case, trajectories eventually converge to stable attractors.
EDMD struggles to reliably approximate the Koopman oper-
ator spectrum in both cases, illustrating its non-convergence
under varying dynamical conditions.
We first generate an initial dataset by uniformly sampling
10* initial conditions xg = (xo,yo) in the square [—2,2]? and
recording trajectories of length 5 for each sample. To construct
a dictionary of observables, we apply k-means clustering to this
initial dataset and use the resulting cluster centres {c; }é\le to
define N radial basis functions:

—yy 4 (1 — z?).

9j(x) = exp(—2||x — ¢j|li2/0), j=1,...,N.

The trajectory length 5 is chosen to reduce the condition num-
ber of the resulting basis (see Fig. 4 in the S.I.) and k-means
clustering is a standard way to ensure that the centers are



well distributed, preventing over-concentration and improving
the representativeness and conditioning of the dictionary. The
scaling parameter o is set to the average [?>-norm of the snap-
shot data after it is shifted to mean zero, which we have found
empirically to work well across a range of examples. Other dic-
tionary choices are certainly possible. The only requirement
is that, as we use more basis functions, the projections acting
on any fixed observable converging to that observable.

Once the dictionary is constructed, we sample points uni-
formly at random from [—2,2]? to create M snapshots of the
system. This corresponds to Monte Carlo integration, where
the snapshots approximate the correlations required in our
analysis. Fig. 5 of the S.I. illustrates the convergence of this
approach as the number of snapshots increases, as well as the
convergence of hy(z, F') with increasing N.

The level curves of € in Figure [I] were computed using
N = 500 basis functions and M = 50000 snapshots, and Al-
gorithm 2 in the S.I. To compute the spectrum, we used the
above adaptive procedure (Algorithm 1 in the S.I). We re-
peated experiments 10 times with different random seeds for
the random trajectory data to ensure robustness.

Further examples comparing EDMD and algorithms

Our algorithms are further applied to a variety of analytic
and real-world systems, as shown in Figure[J] using trajectory
data with qualitatively different characteristics. Further de-
tails about each system and experiment are provided in the
S.I., and code for all examples is publicly available. The ex-
amples span a broad range of dynamics, including periodic
flow past a cylinder and canonical chaotic systems such as the
Lorenz and Rossler attractors, which are two of the simplest
systems that exhibit chaotic motion. To demonstrate appli-
cability to more realistic scenarios, we also include data col-
lected from an electrocardiogram (ECG), and monthly mean
sea surface height in the Northern Hemisphere from 1950 to
the present. Data sources are listed in the S.I. and in all cases,
our algorithms and EDMD use the same data and the same
dictionary to ensure a fair comparison.

In each case, we computed both the pseudospectra (level
curves of ¢ for approximate eigenfunctions) using Algorithm 2
in the S.I. and the EDMD eigenvalues (blue dots). Except for
the periodic flow case, EDMD produces spurious eigenvalues,
as it did for the Duffing oscillator in Figure[I] Figure[d]demon-
strates this phenomenon over a range of dictionary choices,
data collections, and types of dynamical systems.

The pseudospectra exhibit different structures. For the
cylinder flow, the multiplicative structure of the eigenvalues
(see the discussion of combination modes in the Arctic sea ice
example) is clearly visible in the first row. The Lorenz and
Rossler systems display continuous spectra concentrated on
the unit circle. The ECG data yields a tight spectral cluster
near A = 1 and near the frequency of the recorded heart-
beat. The pseudospectra of the sea surface height data show
strong non-normal features (i.e., the pseudospectra differ from
spectral distances), capturing transient dynamics and nonsta-
tionary trends in data, along with dominant spectral regions
corresponding to seasonal variations around A ~ exp(mi/6).

In all cases, our spectral approximation algorithm (Algo-
rithm 1 in the S.I.) converges as expected, whereas EDMD
does not converge (except for the periodic flow case).
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High Reynolds number fluid flows

As an example of detecting eigenfunctions using an opti-
mal two-limit procedure (Algorithm 6 in the S.I.), we con-
sider two-dimensional lid-driven cavity flow. This system in-
volves the motion of an incompressible, viscous fluid at a high
Reynolds number (Re), which characterizes the dominance of
inertial forces over viscous forces, leading to complex flow pat-
terns. This setup provides a challenging example for identify-
ing eigenfunctions of the underlying dynamics.

The physical domain is the cavity [—1,1] x [—1,1], with
stationary solid boundaries on all sides except the top. The
top boundary moves with a regularized velocity profile uyop, =
(1 — 2?)2. This standard boundary condition ensures both
continuity and incompressibility, even at the corners of the
top boundary. Using the streamfunction v, the incompressible
Navier—Stokes equations for this flow can be reformulated as:

GV + vy - vy vy,
0 0 0
Ylos =0, aiﬁ(y:—n - 8%<x=ﬂ> ~o, a—jfw:n = thop.

These equations have a unique solution, and the flow dynam-
ics converge to a universal attractor as time progresses [99] As
discussed in Example the spectral structure of the Koop-
man operator tells us about the geometry of this attractor. To
compute 1, we use a Chebyshev spectral collocation method
with an adaptive grid resolution [100], which depends on Re,
ensuring accurate computation for a range of flow conditions.
For our analysis, we utilize M = 20000 snapshots of the flow
sampled at time intervals of 0.1s to capture its dynamics, af-
ter an initial burn-in time to ensure data is collected from the
attractor.

We apply Equation to analyze the mean-subtracted
total kinetic energy as our observable g. To construct the
projections P,,, we use time-delay embedding, with n time de-
lays. This approach captures the temporal structure of the
system by embedding the observable in a higher-dimensional
space. Specifically, the terms ||P,KC¢g||? are calculated as fol-
lows: First, the Koopman operator K is applied to the tra-
jectory data of g, which acts by shifting the time series by /¢
steps. Then, the Moore-Penrose inverse is used to apply the
projection P,,, ensuring consistency with the chosen time-delay
embedding. Finally, the squared norm is computed by aver-
aging as in Equation , which allows us to extract long-term
statistical averages from the trajectory data.

Figure shows the results for various choices of Re.
We observe the double limit lim,,_, o limy_,, at play and the
structure of the spectrum reveals a sequence of bifurcations as
the Reynolds number increases. For Re < 10000, the flow con-
verges to a steady laminar solution, corresponding to a fixed
point in the state space. Just above Re = 10000, this steady
solution becomes unstable, and the system transitions to a
time-periodic flow, which remains stable up to Re = 15000.
The fundamental frequency of the periodic flow decreases with
increasing Reynolds number. At Re > 15000, a second bifur-
cation occurs, and the flow becomes quasiperiodic. The ba-
sic frequencies of the quasiperiodic motion also decrease with
Reynolds number, until around Re = 18000, where a third
bifurcation is observed: the portion of kinetic energy associ-
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Figure 10: Application of Equation to the kinetic energy of a lid-driven cavity flow. The plots show ﬁ Zf:_L |1PKbg||? (for normalized
g), which in the double limit lim,, _, o limy,_, o converge to the fraction of g made up of eigenfunctions (see Algorithm 6 in the S.I.). This double limit procedure
is used to prove upper bounds. As we move from left to right, the Reynolds number of the flow increases, and the spectral type becomes more dominated by
continuous spectra. The structure of the spectrum reveals a sequence of bifurcations described in the main text, providing a picture of the transition to chaos

that is consistent with the theory of Ruelle and Takens [54].

ated with the continuous spectrum rises sharply to a few per-
cent. This continuous component continues to grow, and by
Re > 22000, the state space dynamics exhibit no quasiperiodic
structure: the Koopman spectrum consists solely of continu-
ous components, indicating fully chaotic dynamics.

The bottom of Figure [I] illustrates the extraction of the
eigenvalues for Re = 19000. The top part of panel (e) shows
the smoothed spectral measure (distribution of the kinetic en-
ergy across different frequencies) with a second-order smooth-
ing kernel and smoothing parameter ¢ = 1073 [50]. The bot-
tom part of panel (e) displays the extracted eigenvalues, com-
puted using Equation (Algorithm 6 in the S.I.). These are
plotted against the Strouhal number, a dimensionless quantity
that measures how often vortices are shed from a body relative
to the speed of the flow and the size of the body.

Arctic sea ice
Satellites have measured sea ice for decades using passive mi-
crowave sensors, which are then used to compute sea ice con-
centration using retrieval algorithms. We used data from the
FEuropean Organisation for the Exploitation of Meteorological
Satellites” (EUMETSAT) Ocean and Sea Ice Satellite Applica-
tion Facilities (OSI-SAF) data record, comprising retrieval al-
gorithms OSI-450 (1979-2015) and OSI-430-b (2016 onwards).
These algorithms have been shown to be more accurate than
other retrieval algorithms. Some portions of the data sur-
rounding the North Pole are missing, and we use bilinear in-
terpolation to fill these gaps. There are also missing data in
three months in the 1980s due to satellite malfunctions, and we
use linear extrapolation to fill these gaps. These data-points
were not used in the testing of forecasts in Figures [4] and
To construct our approximation of the Koopman operator,
we consider observables x € RY7877 representing sea ice con-
centration at each sea grid point. We then apply time-delay
embedding: with 7 — 1 delays, the augmented system state
at time n is given by (we use (-) to indicate time dependence
instead of a subscript since x is a vector):

x(n)
x(n—1)

ﬁ(n) c R97877‘T.

x(n —.’7' +1)

That is, we include the sea ice concentration at the current
and 7 — 1 previous time steps. We choose 7 = 6 to help cap-
ture semiannual patterns, though other choices also yield good
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performance. As our dictionary, we use Gaussian radial basis
functions of the form exp(—||x —X(™||% /o), where the centres
(™) correspond to the M snapshot data of the augmented
system state (in contrast to the Duffing oscillator where we
used k-means to choose centers). As in the Duffing oscillator
example, the scaling parameter o is set to the average [?-norm
of the snapshot data after centering it to have zero mean.

A key strength of our algorithm is its rigorous error bounds
(e.g., Figures [1| and E[), which enable direct evaluation of dic-
tionary performance by tracking the error—without needing
held-out data or forecasts. This allows us to verify that our
chosen dictionary yields small errors when approximating the
Koopman spectrum. Future work will explore integrating neu-
ral network embeddings [29] with our error-bound framework.

To compute the periodic benchmark in Figures 4] and
let I, denote the time indices for month & (= 1,2,...,12)
in the training data when we make a forecast. For forecast-
ing month k, X, is the average of x over the times in Ij.
The difference x — X then represents the sea ice anomaly.
Letting x be the true sea ice concentration, X,.. the forecast
and Xper the periodic baseline, we define the relative error as
Error = [|x — Xyec||2 /[1% — Xper||Z2. The denominator isolates
the anomaly by removing the trivially predictable seasonal cy-
cle, allowing for a more meaningful assessment of skill.

To compute forecasts, we get rid of spurious modes in the
decomposition in Equation @ (where g is the vector of sea ice
concentrations x). The evolution is predicted forward in time

for x using approximate eigenfunctions ¢§j ) for errors e below
a threshold eg:

x(n) = 3 M60) (0)g;. (11)

e<ep

Here, the parameter j ranges from 1 to M (corresponding to
the space generated by the radial basis functions). The errors
associated with the approximate eigenfunctions g. are ordered
by e, and we identify the “elbow” in the error curve to de-
termine a principled truncation point (see S.I. Fig. 12). The
Koopman modes g; correspond to the vector x of observables.
After this model has been built, forecasts are produced by in-
creasing n. The DMD forecast in Figure [5]is computed in the
same manner, but now does not get rid of spurious modes and
uses the augmented state space X as the dictionary of observ-
ables. IceNet and SEAS5 data in Figure [5] is taken directly
from [63].
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Figure 11: Proof idea of the impossibility result for Qp. At each stage,
we modify the system consistently with the observed data (“x”), ensuring it
is related to a rotation, thereby drastically altering the spectrum (see green
arrow). This alteration is executed such that the cascade of dynamical systems
converge to an underlying limit, providing the adversarial family of systems.

Lower bounds: The method of adversarial systems

We establish each lower bound (impossibility result) using sim-
ple examples of state spaces X (e.g., disk, interval, or torus)
where w represents the standard Lebesgue measure. The tech-
niques are general and can be extended to other state spaces
X and function spaces. Snapshot data is subject to noise and
finite precision. To establish robust results, we use a measure-
ment device Tr that allows arbitrarily accurate sampling:

Te = {Gjn € Xt dx(F(27),550) <277},

where {Z;}%2, is a dense subset of the metric space (X, dx),
corresponding physically to “measurement points”. This for-
mulation assumes that measurements can approximate the
mapping F' with arbitrarily high precision. This is a strong
assumption, and hence it allows us to derive correspondingly
strong impossibility results, highlighting fundamental limits
even under idealized conditions. Limitations under idealized
conditions imply they hold under more realistic ones. (It can
also be significantly relaxed for our upper bounds.)

To establish the lower bounds, we construct families of
adversarial dynamical systems. These systems are carefully
designed to embed sudden changes in the spectral properties
of the Koopman operator K directly into the dynamics, while
remaining consistent with the observed trajectory data.

Figure illustrates this idea for the class Qp. The
construction uses a homeomorphism (a continuous, reversible
transformation that stretches or bends a space without tearing,
gluing, or creating holes) to deform the map whilst preserving
the sampled data. This sudden change lemma (Lemma 2 in
the S.I.) alters the spectral behavior of the Koopman opera-
tor in a controlled way. By applying this construction recur-
sively on a cascade of nested disks, we effectively mislead any
proposed algorithm into failing to converge. Each adversar-
ial construction is tailored to a specific sudden change lemma,
with full details provided in the S.I. This strategy bridges com-
putational techniques with classical ergodic theory, offering a
new framework for analyzing dynamical systems. Moreover,
the method is flexible and can be adapted to tackle a broader
range of problems beyond those considered in this study.

To prove a learning problem cannot be solved in one limit
(i.e., it has SCI > 1), we assume, for contradiction, that a
convergent sequence of algorithms exists. We then construct
an adversarial family that causes the algorithm to fail, ensur-
ing convergence occurs with probability no greater than 50%.
This involves tricking the algorithm into oscillating between
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two different outputs as more trajectory data is collected (see
the green arrow in Figure[l1)). To prove that a problem cannot
be solved in two limits (i.e., SCI > 2), we embed complex com-
binatorial problems into the system’s dynamics. These prob-
lems, involving sets of numbers with an inherent complexity
in their description, are embedded into the dynamics, lifting
the lower bound from combinatorics to dynamics.

Data availability: The observational sea ice concentration
data is provided by OSI-SAF (https://osi-saf.eumetsat.
int/products/sea-ice-products). The results of IceNet
and SEAS5 in Figure [5] are reported in [63]. All other data
sets are produced by the code listed below.

Code availability: Code for the examples of this pa-
per can be found at https://github.com/MColbrook/
Data-driven-dynamics—-foundations!
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