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Abstract
Koopman operators are infinite-dimensional operators
that globally linearize nonlinear dynamical systems, mak-
ing their spectral information valuable for understanding
dynamics. However, Koopman operators can have
continuous spectra and infinite-dimensional invariant
subspaces, making computing their spectral information
a considerable challenge. This paper describes data-driven
algorithms with rigorous convergence guarantees for
computing spectral information of Koopman operators
from trajectory data. We introduce residual dynamic mode
decomposition (ResDMD),which provides the first scheme
for computing the spectra and pseudospectra of general
Koopman operators from snapshot data without spectral
pollution. Using the resolvent operator and ResDMD, we
compute smoothed approximations of spectral measures
associated with general measure-preserving dynamical
systems. We prove explicit convergence theorems for
our algorithms (including for general systems that are
not measure-preserving), which can achieve high-order
convergence even for chaotic systems when computing
the density of the continuous spectrum and the discrete
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2 COLBROOK and TOWNSEND

spectrum. Since our algorithms have error control, Res-
DMD allows aposteri verification of spectral quantities,
Koopman mode decompositions, and learned dictionaries.
We demonstrate our algorithms on the tent map, circle
rotations, Gauss iterated map, nonlinear pendulum,
double pendulum, and Lorenz system. Finally, we provide
kernelized variants of our algorithms for dynamical sys-
tems with a high-dimensional state space. This allows us to
compute the spectral measure associated with the dynam-
ics of a protein molecule with a 20,046-dimensional state
space and compute nonlinear Koopman modes with error
bounds for turbulent flow past aerofoils with Reynolds
number > 105 that has a 295,122-dimensional state space.
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1 INTRODUCTION

Dynamical systems are a mathematical description of time-dependent states or quantities that
characterize evolving processes in classical mechanics, electrical circuits, fluid flows, climatology,
finance, neuroscience, epidemiology, and many other fields. Throughout the paper, we consider
autonomous dynamical systems whose state evolves over a state-space Ω ⊆ ℝ𝑑 in discrete time-
steps according to a function 𝐹 ∶ Ω → Ω. In other words, we consider dynamical systems of the
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3

form

𝑥𝑥𝑥𝑛+1 = 𝐹(𝑥𝑥𝑥𝑛), 𝑛 ≥ 0, (1.1)

where 𝑥𝑥𝑥0 is a given initial condition. Such a dynamical system forms a trajectory of iterates
𝑥𝑥𝑥0,𝑥𝑥𝑥1,𝑥𝑥𝑥2, … in Ω. We want to analyze such trajectories to answer questions about the system’s
behavior. The interaction between numerical analysis and dynamical systems theory has stimu-
lated remarkable growth in the subject since the 1960s [47, 69, 85, 123]. With the arrival of big data
[64], modern statistical learning [61], and machine learning [95], data-driven algorithms are now
becoming increasingly important in understanding dynamical systems [19, 111].
A classical viewpoint to analyze dynamical systems that originates in the seminal work of

Poincaré [101] is to study fixed points and periodic orbits, as well as stable and unstablemanifolds.
Two fundamental challenges with Poincaré’s geometric state-space viewpoint are:

∙ Nonlinear dynamics: To understand the stability of fixed points of nonlinear dynamical sys-
tems, one typically forms local models centered at these fixed points. Such models allow one
to predict long-time dynamics in small neighborhoods of fixed points and attracting manifolds.
However, they do not provide reasonable predictions for all initial conditions. A global under-
standing of nonlinear dynamics in state-space remains largely qualitative [24]. For example,
Brunton and Kutz describe the global understanding of nonlinear dynamics in state-space as
a “mathematical grand challenge of the 21st century” [19]. This paper focuses on the Koopman
operator viewpoint of dynamical systems. Koopman operators provide a global linearization
of (1.1) by studying the evolution of observables of the system.

∙ Unknown dynamics: For many applications, a system’s dynamics may be too complicated
to describe analytically, or we may have incomplete knowledge of its evolution. Typically, we
can only acquire several sequences of iterates of (1.1) starting at different values of 𝑥𝑥𝑥0. This
constraint means that constructing local models can be impossible. In this paper, we focus on
data-driven approaches to learning and analyzing the dynamical system with trajectories of
iterates from (1.1).

Koopman operator theory, which dates back to Koopman and von Neumann [77, 78], is an
alternative viewpoint to analyze a dynamical system that uses the space of scalar observable
functions [93]. Its increasing popularity has led to the term “Koopmanism” [24] and thousands
of articles over the last decade. Sparked by [89, 94], a reason for the recent attention is its use
in data-driven methods for studying dynamical systems (see [23] for a review and the history).
Some popular applications include fluid dynamics [54, 90, 107, 110], epidemiology [102], neuro-
science [18], finance [87], robotics [13, 17], power grids [125, 126], and molecular dynamics[74, 97,
113, 114].
Let 𝑔 ∶ Ω → ℂ be a function that one can use to indirectlymeasure the dynamical system’s state

in (1.1). Such a function 𝑔 is often called an observable. Therefore, 𝑔(𝑥𝑥𝑥𝑘) indirectlymeasures𝑥𝑥𝑥𝑘 and
𝑔(𝑥𝑥𝑥𝑘+1) = 𝑔(𝐹(𝑥𝑥𝑥𝑘))measures the state one time-step later. Sincewe are interested in how the state
evolves, we can define an observable𝑔 ∶ Ω → ℂ such that𝑔(𝑥𝑥𝑥) = 𝑔(𝐹(𝑥𝑥𝑥)) = (𝑔 ◦𝐹)(𝑥𝑥𝑥), which
tells us how our measurement evolves from one time-step to the next. In this way, 𝑔 indirectly
monitors the evolution of (1.1). After exhaustively using 𝑔 to measure the dynamical system at
various time steps, we might want to probe the dynamical system using a different observable. As
one tries different observables to probe the dynamics, one wonders if there is a principled way to
select “good” observables. This motivates studying the Koopman operator given by  ∶ 𝑔 ↦ 𝑔.
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4 COLBROOK and TOWNSEND

One typically works in the Hilbert space 𝐿2(Ω, 𝜔) of observables for a positive measure 𝜔 on Ω.1
To be precise, we consider ∶ () → 𝐿2(Ω, 𝜔), where() ⊆ 𝐿2(Ω, 𝜔) is a suitable domain of
observables. That is,

[𝑔](𝑥𝑥𝑥) = (𝑔◦𝐹)(𝑥𝑥𝑥), 𝑥𝑥𝑥 ∈ Ω, 𝑔 ∈ (), (1.2)

where the equality is understood in the 𝐿2(Ω, 𝜔) sense. For a fixed 𝑔, [𝑔](𝑥𝑥𝑥)measures the state
of the dynamical system after one time-step if it is currently at 𝑥𝑥𝑥. On the other hand, for a fixed
𝑥𝑥𝑥, (1.2) is a linear composition operator with 𝐹. Since is a linear operator, regardless of whether
the dynamics are linear or nonlinear, the spectral information of determines the behavior of the
dynamical system (1.1) (e.g., see (2.5)). However, since  is an infinite-dimensional operator, its
spectral information can be farmore complicated than that of a finitematrix and farmore difficult
to compute [11, 29, 31, 34, 35]. For example, can have both discrete2 and continuous spectra [89].
Computing the spectral properties of is an active area of research, and several popular algo-

rithms exist.3 Generalized Laplace analysis [90], which is related to the power method, uses prior
information about the eigenvalues of  to compute corresponding Koopman modes.4 Dynamic
mode decomposition (DMD), which is related to the proper orthogonal decomposition, uses a lin-
ear model to fit trajectory data [81, 107, 110, 132], and extended DMD (EDMD) [75, 138, 139] is a
Galerkin approximation of that uses a rich dictionary of observables (see Section 4.1.1). See also
measure-preserving EDMD [32]. Other data-driven methods include deep learning [84, 86, 88, 98,
141], reduced-order modeling [12, 58], sparse identification of nonlinear dynamics [20, 108], and
kernel analog forecasting [25, 55, 143]. However, remaining challenges include the following:

C1. Continuous spectra: Since theKoopman operator is infinite-dimensional, it can have a con-
tinuous spectrum. Continuous spectra must be treated with considerable care as discretizing
 destroys its presence. Several data-driven approaches are proposed to handle continu-
ous spectra, such as HAVOK analysis [22], which applies DMD to a vector of time-delayed
measurements, and feed-forward neural networks with an auxiliary network to parametrize
the continuous spectrum [86]. While these methods are promising, they currently lack con-
vergence guarantees. Most existing nonparametric approaches for computing continuous
spectra of  are restricted to ergodic systems [52], as this allows relevant integrals to be
computed using long-time averages. For example, [3] approximates discrete spectra using
harmonic averaging, applies an ergodic cleaning process, and then estimates the continu-
ous spectrum using Welch’s method [137]. Though these methods are related to well-studied
techniques in signal processing [51], they can be challenging to apply in the presence of noise
or if a pair of eigenvalues are close together. Moreover, they often rely on heuristic parameter

1We do not assume that this measure is invariant, and a common choice of 𝜔 is the standard Lebesgue measure. This
choice is natural for Hamiltonian systems for which the Koopman operator is unitary on 𝐿2(Ω, 𝜔). For other systems,
we can select 𝜔 according to the region where we wish to study the dynamics, such as a Gaussian measure. In some
applications, 𝜔 corresponds to an unknown ergodic measure on an attractor.
2 Throughout this paper, we use the term “discrete spectra” to mean the eigenvalues of , also known as the point
spectrum. This also includes embedded eigenvalues, in contrast to the usual definition of discrete spectrum.
3 Computing spectral properties of Perron–Frobenius or transfer operators is another area of active research [41, 49, 50, 66].
On appropriate spaces, which are often not Hilbert spaces, the Perron–Frobenius operator is the adjoint of the Koopman
operator. One can extend some of our notions to Banach spaces [115]; however, a difficulty is that the approximation of
finite matrix norms can be NP-hard [62].
4 These are vectors to reconstruct the system’s state as a linear combination of the candidate Koopman eigenfunctions.
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5

choices and cleanup procedures. Other approaches for ergodic systems include approxi-
mating the functional calculus using integral operator compact regularizations [40], and
approximating the moments of the spectral measure using ergodicity followed by separating
the atomic and continuous parts of the spectrum using the Christoffel–Darboux kernel [80].
In this paper, we do not assume ergodicity, and we develop a computational framework that
deals jointly with continuous and discrete spectra via computing smoothed approximations
of spectral measures with explicit high-order convergence rates.

C2. Invariant subspaces: A finite-dimensional invariant subspace of is a space of observables
 = span{𝑔1, … , 𝑔𝑘} such that 𝑔 ∈  for all 𝑔 ∈ . A common assumption in the literature
is that  has a finite-dimensional nontrivial5 invariant space, which may not be the case
(e.g., when the system ismixing). Even if a (nontrivial) finite-dimensional invariant subspace
exists, it can be challenging to compute or may not capture all of the dynamics of interest.
Often, one must settle for approximate invariant subspaces, and methods such as EDMD
generally result in closure issues [21]. In this paper,we developmethods that directly compute
spectral properties of instead of restrictions of to finite-dimensional subspaces.

C3. Spectral pollution: A well-known difficulty of computing spectra of infinite-dimensional
operators is spectral pollution, where discretizations cause spurious eigenvalues that have
nothing to do with the operator [36, 37, 83]. Methods such as EDMD suffer from spectral
pollution [138], and heuristics are common to reduce a user’s concern. One can compare
eigenvalues computed using different discretization sizes or verify that a candidate eigen-
function behaves linearly on the trajectories of (1.1) in the way that the corresponding
eigenvalue predicts [68]. In some cases, it is possible to approximate the spectral informa-
tion of a Koopman operator without spectral pollution. For example, when performing a
Krylov subspace method on a finite-dimensional invariant subspace of known dimension,
theHankel-DMDalgorithm computes the corresponding eigenvalues for ergodic systems [2].
Instead, it is highly desirable to have a principled way of detecting spectral pollution with
as few assumptions as possible. In this paper, we develop methods to compute residuals
associated with the spectrum with error control, allowing us to compute spectra of general
Koopman operators without spectral pollution.

C4. Chaotic behavior: Many dynamical systems exhibit rich, chaotic behavior. If a system is
chaotic, small perturbations to the initial state 𝑥𝑥𝑥0 can lead to large perturbations of the state
later. Koopman operators with continuous spectra are a generic feature when the underlying
dynamics are chaotic [3, 7]. Chaotic behavior can make data-driven approaches challenging
when using long-time trajectories.6 In this paper, we use one-step trajectory data, called snap-
shot data, that can take the form of long or short trajectories depending on the system and
available data.

C5. Nonlinearity andhigh-dimensional state-space: Formanydynamical systems, the corre-
sponding dynamical system is strongly nonlinear and has a very large state-space dimension.
This can make choosing a good set of observables challenging. Often this choice takes the
form of a learned dictionary. In this paper, our algorithms come with verification (i.e., error
bounds), which allows us to perform a-posteriori verification that the learned dictionary was
reasonable.

5 If 𝜔(Ω) < ∞, the constant function 1 generates an invariant subspace, but this is not interesting for studying dynamics.
6 Many dynamical systems, such as hyperbolic systems with chaotic dynamics, satisfy shadowing theorems, meaning that
numerical trajectories remain close to true trajectories. Under suitable conditions, we can still apply quadrature rules such
as (3.3).
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6 COLBROOK and TOWNSEND

ALGORITHM 1 A computational framework for recovering an approximation of the spectral measure 𝜈𝑔
associated with a Koopman operator that is an isometry.
Input: Trajectory data, a filter 𝜑, and an observable 𝑔 ∈ 𝐿2(Ω, 𝜔).
1: Approximate the autocorrelations 𝑎𝑛 =

1

2𝜋
⟨𝑔,𝑛𝑔⟩ for 0 ≤ 𝑛 ≤ 𝑁. (The precise value of𝑁 and the approach

depends on the trajectory data (see Section 3.1).)
2: Set 𝑎−𝑛 = 𝑎𝑛 for 1 ≤ 𝑛 ≤ 𝑁.

Output: The function 𝜈𝑔,𝑁(𝜃) =
∑𝑁

𝑛=−𝑁
𝜑(

𝑛

𝑁
)𝑎𝑛𝑒

𝑖𝑛𝜃 that can be evaluated for any 𝜃 ∈ [−𝜋, 𝜋]per.

In response to these challenges, we provide rigorously convergent and data-driven algorithms
to compute the spectral properties of Koopman operators. Throughout the paper, we only assume
that  is a closed and densely defined operator, which is an essential assumption before talking
about spectral information of ; otherwise, the spectrum is the whole of ℂ. In particular, we do
not assume that  has a nontrivial finite-dimensional invariant subspace or that it only has a
discrete spectrum.

1.1 Novel contributions

To tackle 𝐂𝟏, we give a computational framework for computing the spectral measures of
Koopman operators associated with measure-preserving dynamical systems. Our algorithms can
achieve arbitrarily high-order convergence. We deal with discrete and continuous spectra of a
Koopman operator by calculating them together, and we prove rigorous convergence results:

∙ Pointwise recovery of spectral densities of the continuous part of the spectrum of 
(see Theorem 3.1).

∙ Weak convergence, involving integration against test functions (see Theorem 3.2).
∙ The recovery of the eigenvalues of (see Theorem 3.3).

Algorithm 1 is based on estimating autocorrelations and filtering, which requires long-time tra-
jectory data from (1.1). Using a connection with the resolvent operator, we develop an alternative
rational-based approach that can achieve high-order convergence on short-time trajectory data
(see Algorithm 4) while being robust to noise (see Section 5.2.2).
To tackle 𝐂𝟐 and 𝐂𝟑, we derive a new DMD-type algorithm called residual DMD (ResDMD).

ResDMD constructs Galerkin approximations for not only  but also ∗. This key difference
(which requires no extra data) allows us to rigorously compute spectra of general Koopman oper-
ators (without the measure-preserving assumption) together with residuals. ResDMD goes a long
way to overcoming challenges C2 and C3 by allowing us to:

∙ Remove the spectral pollution of extended DMD (see Algorithm 2 and 4.1).
∙ Compute spectra and pseudospectra with convergence guarantees (see Algorithm 3 and
Appendix B).

It is important to stress that ResDMD computes residuals associated with the underlying infinite-
dimensional operator . This is in contrast to works that compute finite-dimensional residuals
of observables with respect to a finite DMD discretization matrix [42]. In contrast to ResDMD
(which computes residualswith respect to), residualswith respect to a finiteDMDdiscretization
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7

ALGORITHM 2 ResDMD for computing eigenpairs without spectral pollution.
Input: Snapshot data {𝑥𝑥𝑥(𝑗)}𝑀𝑗=1, {𝑦𝑦𝑦

(𝑗)}𝑀𝑗=1 (such that 𝑦𝑦𝑦
(𝑗) = 𝐹(𝑥𝑥𝑥(𝑗))), quadrature weights {𝑤𝑗}

𝑀
𝑗=1, a dictionary of

observables {𝜓𝑗}
𝑁𝐾

𝑗=1 and an accuracy goal 𝜖 > 0.
1: Compute Ψ∗

𝑋𝑊Ψ𝑋 , Ψ∗
𝑋𝑊Ψ𝑌 , and Ψ∗

𝑌𝑊Ψ𝑌 , where Ψ𝑋 and Ψ𝑌 are given in (4.4).
2: Solve (Ψ∗

𝑋𝑊Ψ𝑌)𝑔𝑔𝑔 = 𝜆(Ψ∗
𝑋𝑊Ψ𝑋)𝑔𝑔𝑔 for eigenpairs {(𝜆𝑗, 𝑔(𝑗) = Ψ𝑔𝑔𝑔𝑗)}.

3: Compute res(𝜆𝑗, 𝑔(𝑗)) for all 𝑗 (see (4.6)) and discard if res(𝜆𝑗, 𝑔(𝑗)) > 𝜖.
Output: A collection of accurate eigenpairs {(𝜆𝑗, 𝑔𝑔𝑔𝑗) ∶ res(𝜆𝑗, 𝑔(𝑗)) ≤ 𝜖}.

ALGORITHM 3 ResDMD for estimating 𝜖-pseudospectra.
Input: Snapshot data {𝑥𝑥𝑥(𝑗)}𝑀𝑗=1, {𝑦𝑦𝑦

(𝑗)}𝑀𝑗=1 (such that 𝑦𝑦𝑦
(𝑗) = 𝐹(𝑥𝑥𝑥(𝑗))), quadrature weights {𝑤𝑗}

𝑀
𝑗=1, a dictionary of

observables {𝜓𝑗}
𝑁𝐾

𝑗=1
, an accuracy goal 𝜖 > 0, and a grid 𝑧1, … , 𝑧𝑘 ∈ ℂ (see (B.5)).

1: Compute Ψ∗
𝑋𝑊Ψ𝑋 , Ψ∗

𝑋𝑊Ψ𝑌 , and Ψ∗
𝑌𝑊Ψ𝑌 , where Ψ𝑋 and Ψ𝑌 are given in (4.4).

2: For each 𝑧𝑗 , compute 𝜏𝑗 = min𝑔𝑔𝑔∈ℂ𝑁𝐾 res(𝑧𝑗, Ψ𝑔𝑔𝑔) (see (4.6)), which is a generalized SVD problem, and the
corresponding singular vectors 𝑔𝑔𝑔𝑗 .

Output: Estimate of the 𝜖-pseudospectrum {𝑧𝑗 ∶ 𝜏𝑗 < 𝜖} and approximate eigenfunctions {𝑔𝑔𝑔𝑗 ∶ 𝜏𝑗 < 𝜖}.

ALGORITHM 4 A computational framework for evaluating an approximate spectral measure with respect
to 𝑔 ∈ 𝐿2(Ω, 𝜔) at {𝜃𝑘}𝑃𝑘=1 ⊂ [−𝜋, 𝜋]per of an isometry using snapshot data.
Input: Snapshot data {𝑥𝑥𝑥(𝑗)}𝑀𝑗=1, {𝑦𝑦𝑦

(𝑗)}𝑀𝑗=1 (such that 𝑦𝑦𝑦
(𝑗) = 𝐹(𝑥𝑥𝑥(𝑗))), quadrature weights {𝑤𝑗}

𝑀
𝑗=1, a dictionary of

observables {𝜓𝑗}
𝑁𝐾

𝑗=1,𝑚 ∈ ℕ, smoothing parameter 0 < 𝜖 < 1 (accuracy goal is 𝜖𝑚), distinct points {𝑧𝑗}𝑚𝑗=1 ⊂ℂ

with Re(𝑧𝑗) > 0 (recommended choice is (5.12)), and evaluation points {𝜃𝑘}𝑃𝑘=1 ⊂ [−𝜋, 𝜋]per.
1: Solve (5.8) and (5.11) for 𝑐1(𝜖), … , 𝑐𝑚(𝜖) ∈ ℂ and 𝑑1, … , 𝑑𝑚 ∈ ℂ, respectively.
2: Compute Ψ∗

𝑋𝑊Ψ𝑋 and Ψ∗
𝑋𝑊Ψ𝑌 , where Ψ𝑋 and Ψ𝑌 are given in (4.4).

3: Compute a generalized Schur decomposition of Ψ∗
𝑋𝑊Ψ𝑌 and Ψ∗

𝑋𝑊Ψ𝑋 , that is, Ψ∗
𝑋𝑊Ψ𝑌 = 𝑄𝑆𝑍∗ and

Ψ∗
𝑋𝑊Ψ𝑋 = 𝑄𝑇𝑍∗, where 𝑄, 𝑍 are unitary and 𝑆, 𝑇 are upper triangular.

4: Compute 𝑎𝑎𝑎 in (5.13) and 𝑣1 = 𝑇𝑍∗𝑎𝑎𝑎, 𝑣2 = 𝑇∗𝑄∗𝑎𝑎𝑎, and 𝑣3 = 𝑆∗𝑄∗𝑎𝑎𝑎.
5: for 𝑘 = 1,… , 𝑃 do
6: Compute 𝐼𝑗 = (𝑆 − 𝑒𝑖𝜃𝑘 (1 + 𝜖𝑧𝑗)𝑇)

−1𝑣1 for 1 ≤ 𝑗 ≤ 𝑚.
7: Compute 𝜈𝜖𝑔(𝜃𝑘) =

−1

2𝜋

∑𝑚

𝑗=1
Re[𝑐𝑗(𝜖)𝑒

−𝑖𝜃𝑘 (1 + 𝜖𝑧𝑗)(𝐼
∗
𝑗 𝑣2) + 𝑑𝑗(𝑣

∗
3 𝐼𝑗)].

8: end for
Output: Values of the approximate spectral measure, that is, {𝜈𝜖𝑔(𝜃𝑘)}𝑃𝑘=1.

cannot give error bounds on the spectral information of  and can suffer from issues such as
spectral pollution.
All of our algorithms can be used for chaotic systems, and we do not run into the difficulties of

𝐂𝟒.We also describe a kernelized variant of ResDMD(seeAlgorithm 5).We first use the kernelized
EDMD [139] to learn a suitable dictionary of observables from a subset of the given data, and then
we employ this dictionary in Algorithms 2 to 4. Comparedwith traditional kernelized approaches,
our key advantage is that we have convergence theory and perform a posterior verification that
the learned dictionary is suitable, allowing us to tackle 𝐂𝟓.
Code for ResDMD and the examples of this paper is provided at https://github.com/

MColbrook/Residual-Dynamic-Mode-Decomposition. For fluid dynamical applications of the
methods we develop in this paper, the reader is also invited to read [33].
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8 COLBROOK and TOWNSEND

ALGORITHM 5 A computational framework for kernelized versions of Algorithms 2 to 4.
Input: Snapshot data {𝑥𝑥𝑥(𝑗), 𝑦𝑦𝑦(𝑗)}𝑀

′

𝑗=1 and {�̂�𝑥𝑥
(𝑗)
, �̂�𝑦𝑦

(𝑗)
}𝑀

′′

𝑗=1, positive-definite kernel function  ∶ Ω × Ω → ℝ, and
positive integer 𝑁′′

𝐾 ≤ 𝑀′.
1: Apply kernel EDMD to {𝑥𝑥𝑥(𝑗), 𝑦𝑦𝑦(𝑗)}𝑀

′

𝑗=1 with kernel  to compute the matrices
√
𝑊Ψ𝑋Ψ

∗
𝑋

√
𝑊 and√

𝑊Ψ𝑌Ψ
∗
𝑋

√
𝑊 using (6.1) and the kernel trick.

2: Compute 𝑈 and Σ from the eigendecomposition
√
𝑊Ψ𝑋Ψ

∗
𝑋

√
𝑊 = 𝑈Σ2𝑈∗.

3: Compute the dominant 𝑁′′
𝐾 eigenvectors of 𝐾EDMD = (Σ†𝑈∗)

√
𝑊Ψ𝑌Ψ

∗
𝑋

√
𝑊(𝑈Σ†) and stack them

column-by-column into 𝑍 ∈ ℂ𝑀′×𝑁′′
𝐾 .

4: Apply a QR decomposition to orthogonalize 𝑍 to 𝑄 =
[
𝑄1 ⋯ 𝑄𝑁′′

𝐾

]
∈ ℂ𝑀′×𝑁′′

𝐾 .

5: Apply Algorithms 2 to 4 with {�̂�𝑥𝑥
(𝑗)
, �̂�𝑦𝑦

(𝑗)
}𝑀

′′

𝑗=1
and the dictionary {𝜓𝑗}

𝑁′′
𝐾

𝑗=1
, where

𝜓𝑗(𝑥𝑥𝑥) =
[(𝑥𝑥𝑥,𝑥𝑥𝑥(1)) (𝑥𝑥𝑥,𝑥𝑥𝑥(2)) ⋯ (𝑥𝑥𝑥,𝑥𝑥𝑥(𝑀′))

]
(𝑈Σ†)𝑄𝑗, 1 ≤ 𝑗 ≤ 𝑁′′

𝐾 .

Output: Spectral properties of Koopman operator according to Algorithms 2 to 4.

1.2 Paper structure

In Section 2, we provide background material to introduce spectral measures and pseudospectra
of operators. In Section 3, we describe data-driven algorithms for computing the spectral mea-
sures of Koopman operators associated with measure-preserving dynamics when given long-time
trajectory data. In Section 4, we present ResDMD for computing spectral properties of general
Koopman operators. In Section 5, we compute spectral measures of  associated with measure-
preserving dynamics using snapshot data. Finally, in Section 6, we develop a kernelized approach
and apply our algorithms to dynamical systems with high-dimensional state-spaces. Throughout,
we use ⟨⋅, ⋅⟩ and ‖ ⋅ ‖ to denote the inner product and norm corresponding to 𝐿2(Ω, 𝜔), respec-
tively. We use 𝜎(𝑇) to denote the spectrum of a linear operator 𝑇 and ‖𝑇‖ to denote its operator
norm if it is bounded.

2 SPECTRALMEASURES, SPECTRA AND PSEUDOSPECTRA

We are interested in the spectral measures, spectra, and pseudospectra of Koopman operators.
This section introduces the relevant background for these spectral properties.

2.1 Spectral measures for measure-preserving dynamical systems

Suppose that the associated dynamics is measure-preserving so that 𝜔(𝐸) = 𝜔({𝑥𝑥𝑥 ∶ 𝐹(𝑥𝑥𝑥) ∈ 𝐸})

for any Borel measurable subset 𝐸 ⊂ Ω. Equivalently, this means that the Koopman operator 
associated with the dynamical system in (1.1) is an isometry, that is, ‖𝑔‖ = ‖𝑔‖ for all observ-
ables 𝑔 ∈ () = 𝐿2(Ω, 𝜔). Dynamical systems such as Hamiltonian flows [4], geodesic flows
on Riemannian manifolds [44, Chapter 5], Bernoulli schemes in probability theory [119], and
ergodic systems [135] are all measuring-preserving. Moreover, many dynamical systems become
measure-preserving in the long run [89].
Spectral measures provide a way of diagonalizing normal operators, including self-adjoint and

unitary operators, even in the presence of continuous spectra. Unfortunately, a Koopman operator
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9

that is an isometry does not necessarily commute with its adjoint (see Section 3.5.1). There-
fore, we must consider a unitary extension (see Section 2.1.1) before defining a spectral measure
(see Section 2.1.3) and Koopman mode decomposition (see Section 2.1.4).

2.1.1 Unitary extensions of isometries

Given a Koopman operator  of a measure-preserving dynamical system, we use the concept
of unitary extension to formally construct a related normal operator ′. That is, suppose that
 ∶ 𝐿2(Ω, 𝜔) → 𝐿2(Ω, 𝜔) is an isometry, then there exists a unitary extension ′ defined on an
extendedHilbert space′with 𝐿2(Ω, 𝜔) ⊂ ′ [96, Proposition I.2.3].7 Even though such an exten-
sion is not unique, it allows us to understand the spectral information of  by considering ′,
which is a normal operator. If 𝐹 is invertible and measure-preserving,  is unitary and we can
simply take′ =  and′ = 𝐿2(Ω, 𝜔).

2.1.2 Spectral measures of normal operators

To explain the notion of spectral measures for a normal operator, we begin with the more familiar
finite-dimensional case. Any linear operator acting on a finite-dimensional Hilbert space has a
purely discrete spectrumconsisting of eigenvalues. In particular, the spectral theorem for a normal
matrix𝐴 ∈ ℂ𝑛×𝑛, that is,𝐴∗𝐴 = 𝐴𝐴∗, states that there exists an orthonormal basis of eigenvectors
𝑣1, … , 𝑣𝑛 for ℂ𝑛 such that

𝑣 =

(
𝑛∑

𝑘=1

𝑣𝑘𝑣
∗
𝑘

)
𝑣, 𝑣 ∈ ℂ𝑛 and 𝐴𝑣 =

(
𝑛∑

𝑘=1

𝜆𝑘𝑣𝑘𝑣
∗
𝑘

)
𝑣, 𝑣 ∈ ℂ𝑛, (2.1)

where 𝜆1, … , 𝜆𝑛 are eigenvalues of𝐴, that is,𝐴𝑣𝑘 = 𝜆𝑘𝑣𝑘 for 1 ≤ 𝑘 ≤ 𝑛. In other words, the projec-
tions 𝑣𝑘𝑣∗𝑘 simultaneously decompose the spaceℂ

𝑛 and diagonalize the operator𝐴. This intuition
carries over to the infinite-dimensional setting by replacing 𝑣 ∈ ℂ𝑛 by 𝑓 ∈ ′, and 𝐴 by a nor-
mal operator′. However, the eigenvectors of′ need not form a basis for′ or diagonalize′.
Instead, the spectral theorem for normal operators states that the projections 𝑣𝑘𝑣∗𝑘 in (2.1) can be
replaced by a projection-valuedmeasure  supported on the spectrum of′ [104, Thm. VIII.6]. In
our setting, ′ is unitary; hence, its spectrum is contained inside the unit circle 𝕋. The measure
 assigns an orthogonal projector to each Borel measurable subset of 𝕋 such that

𝑓 =

(
∫
𝕋

𝑑(𝑦)
)
𝑓 and ′𝑓 =

(
∫
𝕋

𝑦 𝑑(𝑦)
)
𝑓, 𝑓 ∈ ′.

Analogous to (2.1),  decomposes ′ and diagonalizes the operator ′. For example, if 𝑈 ⊂ 𝕋

consists only of eigenvalues of ′ and no other types of spectra, then (𝑈) is simply the spec-
tral projector onto the invariant subspace spanned by the corresponding eigenfunctions. More
generally,  decomposes elements of ′ along the discrete and continuous spectrum of ′ (see
Section 2.1.4).

7 To see how to extend  to a unitary operator ′, consider the Wold–von Neumann decomposition [96, Theorem I.1.1].
This decomposition states that can be written as = (⊕𝛼∈𝐼𝑆𝛼) ⊕ 𝑈 for some index set 𝐼, where 𝑆𝛼 is the unilateral shift
on a Hilbert space𝛼 and𝑈 is a unitary operator. Since one can extend any unilateral shift to a unitary bilateral shift, one
can extend to a unitary operator′.
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10 COLBROOK and TOWNSEND

2.1.3 Spectral measures of Koopman operators

Given an observable 𝑔 ∈ 𝐿2(Ω, 𝜔) ⊂ ′ of interest such that ‖𝑔‖ = 1, the spectral measure of ′

with respect to 𝑔 is a scalar measure defined as 𝜇𝑔(𝑈) ∶= ⟨(𝑈)𝑔, 𝑔⟩, where𝑈 ⊂ 𝕋 is a Borel mea-
surable set [104]. For plotting and visualization, it is more convenient to equivalently consider the
corresponding probability measures 𝜈𝑔 defined on the periodic interval [−𝜋, 𝜋]per after a change
of variables 𝜆 = exp(𝑖𝜃) so that 𝑑𝜇𝑔(𝜆) = 𝑑𝜈𝑔(𝜃). Therefore, throughout this paper, we compute
and visualize 𝜈𝑔. We use the notation ∫

[−𝜋,𝜋]per
to denote integration along the periodic interval

[−𝜋, 𝜋]per as ∫ 𝜋

−𝜋
is ambiguous since spectral measures can have atoms at ±𝜋. The particular

choice of 𝑔 is up to the practitioner: smooth 𝑔 makes 𝜈𝑔 easier to compute but tends to blur out
the spectral information of , whereas 𝜈𝑔 is more challenging to compute for nonsmooth 𝑔 but
can give better resolution of the underlying dynamics. In other situations, the application dictates
that a particular 𝑔 is interesting (see Section 6.2).
To compute 𝜈𝑔, we start by noting that the Fourier coefficients of 𝜈𝑔 are given by

𝜈𝑔(𝑛) ∶=
1

2𝜋 ∫
[−𝜋,𝜋]per

𝑒−𝑖𝑛𝜃 𝑑𝜈𝑔(𝜃) =
1

2𝜋 ∫
𝕋

𝜆−𝑛 𝑑𝜇𝑔(𝜆) =
1

2𝜋
⟨′−𝑛𝑔, 𝑔⟩, 𝑛 ∈ ℤ. (2.2)

Since′ is unitary, its inverse is its adjoint and thus, the Fourier coefficients of 𝜈𝑔 can be expressed
in terms of correlations ⟨𝑛𝑔, 𝑔⟩ and ⟨𝑔,𝑛𝑔⟩. That is, for 𝑔 ∈ 𝐿2(Ω, 𝜔),

𝜈𝑔(𝑛) =
1

2𝜋
⟨−𝑛𝑔, 𝑔⟩, 𝑛 < 0, 𝜈𝑔(𝑛) =

1

2𝜋
⟨𝑔,𝑛𝑔⟩, 𝑛 ≥ 0. (2.3)

Since 𝑔 ∈ 𝐿2(Ω, 𝜔) and (2.3) only depend on correlations with , and 𝜈𝑔 is determined by its
Fourier coefficients, we find that 𝜈𝑔 is independent of the choice of unitary extension′. Hence-
forth, we can safely dispense with the extension ′, and call 𝜈𝑔 the spectral measure of  with
respect to 𝑔.
From (2.3), we find that 𝜈𝑔(−𝑛) = 𝜈𝑔(𝑛) for 𝑛 ∈ ℤ, which tells us that 𝜈𝑔 is completely deter-

mined by the forward-time dynamical autocorrelations ⟨𝑔,𝑛𝑔⟩ with 𝑛 ≥ 0. Equivalently, the
spectral measure of  with respect to 𝑔 ∈ 𝐿2(Ω, 𝜔) is a signature for the forward-time dynam-
ics of (1.1) if the closure of span{𝑔,𝑔,2𝑔, …} is 𝐿2(Ω, 𝜔). If the closure of span{𝑔,𝑔,2𝑔, …} is
𝐿2(Ω, 𝜔), then 𝑔 is called cyclic. If 𝑔 is not cyclic, then 𝜈𝑔 only determines the action of  on the
closure of span{𝑔,𝑔,2𝑔, … }, which is often sufficient for many applications.

2.1.4 Continuous and discrete parts of spectra, and Koopman mode
decompositions

Of particular importance to dynamical systems is Lebesgue’s decomposition of 𝜈𝑔 [121]:

𝑑𝜈𝑔(𝑦) =
∑

𝜆=exp(𝑖𝜃)∈𝜎p()

⟨𝜆𝑔, 𝑔⟩ 𝛿(𝑦 − 𝜃)𝑑𝑦

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
discrete part

+𝜌𝑔(𝑦) 𝑑𝑦 + 𝑑𝜈
(sc)
𝑔 (𝑦)

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
continuous part

. (2.4)

The discrete (or atomic) part of 𝜈𝑔 is a sum of Dirac delta distributions, supported on 𝜎p(),
the set of eigenvalues of .8 The coefficient of each 𝛿 in the sum is ⟨𝜆𝑔, 𝑔⟩ = ‖𝜆𝑔‖2, where
8 After mapping to the periodic interval, the discrete part of 𝜈𝑔 is supported on the closure of 𝜎p(′). However, we can
always choose the extension′ so that 𝜎p(′)=𝜎p() with the same eigenspaces.
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11

𝜆 is the orthogonal spectral projector associated with the eigenvalue 𝜆. The continuous part of
𝜈𝑔 consists of a part that is absolutely continuous with respect to the Lebesgue measure, with
Radon–Nikodym derivative 𝜌𝑔 ∈ 𝐿1([−𝜋, 𝜋]per), and a singular continuous component 𝜈

(sc)
𝑔 . The

decomposition in (2.4) provides important information on the evolution of dynamical systems.
For example, suppose that there is no singular continuous spectrum. Then any 𝑔 ∈ 𝐿2(Ω, 𝜔) can
be written as

𝑔 =
∑

𝜆∈𝜎p()

𝑐𝜆𝜑𝜆 + ∫
[−𝜋,𝜋]per

𝜙𝜃,𝑔 𝑑𝜃,

where the 𝜑𝜆 are the eigenfunctions of , 𝑐𝜆 are expansion coefficients and 𝜙𝜃,𝑔 is a “con-
tinuously parametrized” collection of eigenfunctions.9 Then, one obtains the Koopman mode
decomposition [89]

𝑔(𝑥𝑥𝑥𝑛) = [𝑛𝑔](𝑥𝑥𝑥0) =
∑

𝜆∈𝜎p()

𝑐𝜆𝜆
𝑛𝜑𝜆(𝑥𝑥𝑥0) + ∫

[−𝜋,𝜋]per

𝑒𝑖𝑛𝜃𝜙𝜃,𝑔(𝑥𝑥𝑥0) 𝑑𝜃. (2.5)

One can often characterize a dynamical system in terms of these decompositions. For example,
suppose 𝐹 is measure-preserving and bijective, and 𝜔 is a probability measure. In that case, the
dynamical system is: (1) ergodic if and only if 𝜆 = 1 is a simple eigenvalue of, (2) weakly mixing
if and only if 𝜆 = 1 is a simple eigenvalue of and there are no other eigenvalues, and (3)mixing if
𝜆 = 1 is a simple eigenvalue of and has absolutely continuous spectrum on span{1}⟂ [59]. Dif-
ferent spectral types also have interpretations in the context of fluid mechanics [90], and weakly
anomalous transport where the Koopman operator has singular continuous spectra [142].

2.2 Spectra and pseudospectra

Since the Koopman operators of interest in this paper are not always normal, the spectrum of
 can be sensitive to small perturbations [129]. We care about pseudospectra as they are a way
to determine which regions of the computed spectra are accurate and trustworthy. Moreover,
if the Koopman operator is nonnormal, the system’s transient behavior can differ greatly from
the behavior at large times. Pseudospectra can be used to detect and quantify transients that
are not captured by the spectrum [129, Section IV] [131]. For a finite matrix 𝐴 and 𝜖 > 0, the
𝜖-pseudospectrum of 𝐴 is defined as 𝜎𝜖(𝐴) = {𝜆 ∈ ℂ ∶ ‖(𝐴 − 𝜆𝐼)−1‖ ≥ 1∕𝜖} = ∪‖𝐵‖≤𝜖𝜎(𝐴 + 𝐵),
where 𝜎(𝐴 + 𝐵) is the set of eigenvalues of 𝐴 + 𝐵.10 Therefore, the 𝜖-pseudospectra of 𝐴 are
regions in the complex plane enclosing eigenvalues of 𝐴 that tell us how far an 𝜖 sized pertur-
bation can perturb an eigenvalue. The 𝜖-pseudospectra of a Koopman operator must be defined
with some care becausemay be an unbounded operator [117]. We define the 𝜖-pseudospectra of
 to be the following [105, Prop. 4.15]:11

𝜎𝜖() ∶= cl
(
{𝜆 ∈ ℂ ∶ ‖( − 𝜆)−1‖ > 1∕𝜖}

)
= cl

(
∪‖‖<𝜖𝜎( + )),

where cl is the closure of the set.

9 To be precise, 𝜙𝜃,𝑔 𝑑𝜃 is the absolutely continuous component of 𝑑(𝜃)𝑔 and 𝜌𝑔(𝜃) = ⟨𝜙𝜃,𝑔, 𝑔⟩.
10 Some authors use a strict inequality in the definition of 𝜖-pseudospectra.
11While [105, Prop. 4.15] considers bounded operators, it can be adjusted to cover unbounded operators [129, Thm. 4.3].
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12 COLBROOK and TOWNSEND

F IGURE 1 The 𝜖-pseudospectra for the nonlinear pendulum and 𝜖 = 0.25 (shaded region) computed using
Algorithm 3 with discretization sizes 𝑁𝐾 . Discretization sizes correspond to a hyperbolic cross approximation
(see Section 4.3.1). The computed 𝜖-pseudospectra converge as 𝑁𝐾 → ∞. The unit circle (red line) is shown with
the EDMD eigenvalues (magenta dots), many of which are spurious. Our algorithm called ResDMD removes
spurious eigenvalues by computing pseudospectra (see Section 4).

Pseudospectra allow us to detect so-called spectral pollution, which are spurious eigenvalues
that are caused by discretization and have no relation with the underlying Koopman operator.
Spectral pollution can cluster at points not in the spectrumof, evenwhen is a normal operator,
as well as persist as the discretization size increases [83]. For example, consider the dynamical
system of the nonlinear pendulum. Let 𝑥𝑥𝑥 = (𝑥1, 𝑥2) = (𝜃, �̇�) be the state variable governed by the
following equations of motion:

�̇�1 = 𝑥2, �̇�2 = − sin(𝑥1), with Ω = [−𝜋, 𝜋]per × ℝ, (2.6)

where 𝜔 is the standard Lebesgue measure. We consider the corresponding discrete-time dynam-
ical system by sampling with a time-step Δ𝑡 = 0.5. The system is Hamiltonian, and hence the
Koopman operator is unitary. It follows that 𝜎𝜖() = {𝑧 ∈ ℂ ∶ dist(𝑧, 𝕋) ≤ 𝜖}. Figure 1 shows the
pseudospectrum computed using Algorithm 3 for 𝜖 = 0.25 (see Section 4.3.1). The algorithm uses
a discretization size of𝑁𝐾 to compute a set guaranteed to be inside the 𝜖-pseudospectrum (i.e., no
spectral pollution) that also converges to the 𝜀-pseudospectrumas𝑁𝐾 → ∞.We also show the cor-
responding EDMD eigenvalues. Some of these EDMD eigenvalues are reliable, but most are not,
demonstrating severe spectral pollution. Note that this spectral pollution has nothing to do with
any stability issues but instead is due to the discretization of the infinite-dimensional operator
by a finite matrix. Using the 𝜖-pseudospectrum for different 𝜖, we can detect which eigenvalues
are reliable (see Algorithm 2).

3 COMPUTING SPECTRALMEASURES FROM TRAJECTORY DATA

This section assumes that the Koopman operator  is associated with a measure-preserving
dynamical system and hence is an isometry. We aim to compute smoothed approximations of
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13

𝜈𝑔 from trajectory data of the dynamical system, even in the presence of continuous spectra. More
precisely, we want to select a smoothing parameter 𝜖 > 0 and then compute a smooth periodic
function 𝜈𝜖𝑔 such that for any continuous periodic function 𝜙 we have [14, Ch. 1]

∫
[−𝜋,𝜋]per

𝜙(𝜃)𝜈𝜖𝑔(𝜃) 𝑑𝜃 ≈ ∫
[−𝜋,𝜋]per

𝜙(𝜃) 𝑑𝜈𝑔(𝜃). (3.1)

Moreover, we want our smoothed approximation 𝜈𝜖𝑔 to converge weakly to 𝜈𝑔 𝜖 → 0, meaning
that the error in (3.1) goes to zero.12 We describe an algorithm that achieves this from trajec-
tory data (see Algorithm 1). The algorithm deals with general spectral measures, including those
with a singular continuous component. We also evaluate approximations of the density 𝜌𝑔 point-
wise and can evaluate the atomic part of 𝜈𝑔, corresponding to eigenvalues and eigenfunctions
of.

3.1 Computing autocorrelations from trajectory data

We want to collect trajectory data from (1.1) and use this data to recover as much information
as possible about the spectral properties of . We assume that (1.1) is observed for 𝑀2 time-
steps, starting at 𝑀1 initial conditions. It is helpful to view the trajectory data as an 𝑀1 ×𝑀2

matrix

𝐵data =

⎡⎢⎢⎢⎢⎣
𝑥𝑥𝑥
(1)
0 ⋯ 𝑥𝑥𝑥

(1)
𝑀2−1

⋮ ⋱ ⋮

𝑥𝑥𝑥
(𝑀1)
0 ⋯ 𝑥𝑥𝑥

(𝑀1)
𝑀2−1

⎤⎥⎥⎥⎥⎦
. (3.2)

Each row of 𝐵data corresponds to an observation of 𝑀2 time steps of a single trajectory of the
dynamical system. In particular, 𝑥𝑥𝑥(𝑗)

𝑖+1
= 𝐹(𝑥𝑥𝑥

(𝑗)
𝑖
) for 0 ≤ 𝑖 ≤ 𝑀2 − 2 and 1 ≤ 𝑗 ≤ 𝑀1.

There are twomainways that trajectory datamight be collected: (1) Experimentally-determined
initial states of the dynamical system, where one must do the best one can with predetermined
initial states, and (2) Algorithmically-determined initial states, where the algorithm can select the
initial states and then record the dynamics. When recovering properties of , often it is best to
have lots of initial states that explore the whole state-spaceΩwith a preference of having𝑀1 large
and𝑀2 small. If𝑀2 is too large, then each trajectory could quickly get trapped in attracting states,
making it difficult to recover the global properties of the dynamical system.
The type of trajectory data determines howwe calculate autocorrelations. There are threemain

ways to compute autocorrelations corresponding to different types of initial conditions {𝑥𝑥𝑥(𝑗)
0 }

𝑀1

𝑗=1
:

1. Initial conditions at quadrature nodes: Suppose that we are free to choose {𝑥𝑥𝑥(𝑗)
0 }

𝑀1

𝑗=1
so that

they are an 𝑀1-point quadrature rule with weights {𝑤𝑗}
𝑀1

𝑗=1
. Integrals and inner products are

then approximated with numerical integration by evaluating functions at the data points. This

12 Since ∫
[−𝜋,𝜋]per

𝜙(𝜃) 𝑑𝜈𝑔(𝜃) = ⟨𝜙(−𝑖 log())𝑔, 𝑔⟩, this convergence also approximates the functional calculus of . For
example, if the dynamical system (1.1) corresponds to sampling a continuous-time dynamical system at discrete time steps,
one could use (3.1) to recover spectral properties of Koopman operators that generate continuous-time dynamics.
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14 COLBROOK and TOWNSEND

means that autocorrelations that determine 𝜈𝑔 (see Section 2.1.3) can be approximated as

⟨𝑔,𝑛𝑔⟩ =∫
Ω

𝑔(𝑥𝑥𝑥)[𝑛𝑔](𝑥𝑥𝑥) 𝑑𝜔(𝑥𝑥𝑥) ≈

𝑀1∑
𝑗=1

𝑤𝑗𝑔
(
𝑥𝑥𝑥
(𝑗)

0

)
[𝑛𝑔]

(
𝑥𝑥𝑥
(𝑗)

0

)
=

𝑀1∑
𝑗=1

𝑤𝑗𝑔
(
𝑥𝑥𝑥
(𝑗)

0

)
𝑔
(
𝑥𝑥𝑥
(𝑗)
𝑛

)
, 𝑛 ≥ 0.

High-order quadrature rules can lead to fast rates of convergence. If𝑛𝑔 is analytic in a neigh-
borhood ofΩ, then we can often select a quadrature rule that even converges exponentially as
𝑀1 → ∞ [130].

2. Random initial conditions: Suppose that {𝑥𝑥𝑥(𝑗)
0 }

𝑀1

𝑗=1
are drawn independently at random from

a fixed probability distribution over Ω that is absolutely continuous with respect to 𝜔 with
a sufficiently regular Radon–Nikodym derivative 𝜅. Then, the autocorrelations of  can be
approximated using Monte Carlo integration, that is,

⟨𝑔,𝑛𝑔⟩ ≈ 1

𝑀1

𝑀1∑
𝑗=1

𝜅
(
𝑥𝑥𝑥
(𝑗)
0

)
𝑔
(
𝑥𝑥𝑥
(𝑗)
0

)
[𝑛𝑔]

(
𝑥𝑥𝑥
(𝑗)
0

)
=

1

𝑀1

𝑀1∑
𝑗=1

𝜅
(
𝑥𝑥𝑥
(𝑗)
0

)
𝑔
(
𝑥𝑥𝑥
(𝑗)
0

)
𝑔
(
𝑥𝑥𝑥
(𝑗)
𝑛

)
.

This typically converges at a rate of(𝑀−1∕2
1 ) [26], but is a practical approach if the state-space

dimension is large. One could also consider quasi-Monte Carlo integration, which can achieve
a faster rate of (𝑀−1

1 ) (up to logarithmic factors) under suitable conditions [26].
3. A single fixed initial condition: Intuitively, a system is ergodic if any trajectory eventually

visits all parts of the state space. Formally, this means that 𝐹 in (1.1) is measure-preserving,𝜔 is
a probabilitymeasure, and if𝐴 is a Borelmeasurable subset ofΩwith {𝑥𝑥𝑥 ∶ 𝐹(𝑥𝑥𝑥) ∈ 𝐴} ⊂ 𝐴, then
𝜔(𝐴) = 0 or 𝜔(𝐴) = 1. If a dynamical system is ergodic, then Birkhoff’s ergodic theorem [15]
implies that

⟨𝑔,𝑛𝑔⟩ = lim
𝑀2→∞

1

𝑀2 − 𝑛

𝑀2−𝑛−1∑
𝑗=0

𝑔(𝑥𝑥𝑥𝑗)[𝑛𝑔](𝑥𝑥𝑥𝑗) = lim
𝑀2→∞

1

𝑀2 − 𝑛

𝑀2−𝑛−1∑
𝑗=0

𝑔(𝑥𝑥𝑥𝑗)𝑔(𝑥𝑥𝑥𝑗+𝑛),

(3.3)
for almost any initial condition 𝑥𝑥𝑥0.13 However, the sampling scheme in (3.3) is restricted to
ergodic dynamical systems and often requires very long trajectories (see [67] for convergence
rates).

If one is entirely free to select the initial conditions of the trajectory data, and 𝑑 is not too large,
then we recommend picking them based on a high-order quadrature rule (see Sections 4.1.3 and
4.3.2). We can use sparse grids when the state-space dimension 𝑑 is moderately large. When 𝑑 is
large, we can use a kernelized approach (see Section 6). Onemay also want to study the dynamics
near attractors, where setting up explicit quadrature nodes for initial conditions can be tricky. In
this case, small𝑀1 and large𝑀2 can be ideal with ergodic sampling [80, Section 7.2]. We have no
control over the initial conditions for experimental data, and we may need to combine the above
methods of computing autocorrelations. Often it is assumed that the initial conditions correspond
to random initial conditions or that we have access to long trajectories.We deal with two examples
of real-world data sets in Section 6.

13 Here we mean 𝜔-almost any initial condition. In practice, it often holds in the Lebesgue sense for almost all initial
conditions, and then one can randomly pick 𝑥𝑥𝑥0 from a suitable distribution overΩ.

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22125 by C

am
bridge U

niversity L
ibrary, W

iley O
nline L

ibrary on [27/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



15

3.2 Recovering the spectral measure from autocorrelations

We now suppose that one has already computed the autocorrelations ⟨𝑔,𝑛𝑔⟩ for 0 ≤ 𝑛 ≤ 𝑁 and
would like to recover a smoothed approximation of 𝜈𝑔. Since the Fourier coefficients of 𝜈𝑔 are given
by autocorrelations (see (2.2)), the task is similar to Fourier recovery [1, 57]. We are particularly
interested in approaches with good convergence properties as𝑁 → ∞, as this reduces the number
of computed autocorrelations and the sample size𝑀 = 𝑀1𝑀2 required for good recovery of the
spectral measure.
Motivated by the classical task of recovering a continuous function by its partial Fourier

series [48], we start by considering the “windowing trick” from sampling theory. That is, we define
a smoothed approximation to 𝜈𝑔 as a measure with density

𝜈𝑔,𝑁(𝜃) =

𝑁∑
𝑛=−𝑁

𝜑
( 𝑛

𝑁

)
𝜈𝑔(𝑛)𝑒

𝑖𝑛𝜃 =
1

2𝜋

−1∑
𝑛=−𝑁

𝜑
( 𝑛

𝑁

)⟨𝑔,−𝑛𝑔⟩𝑒𝑖𝑛𝜃 + 1

2𝜋

𝑁∑
𝑛=0

𝜑
( 𝑛

𝑁

)⟨𝑔,𝑛𝑔⟩𝑒𝑖𝑛𝜃.
(3.4)

The function 𝜑 ∶ [−1, 1] → ℝ is often called a filter function [63, 127]. The idea of 𝜑 is that 𝜑(𝑥) is
close to 1 when 𝑥 is close to 0, and 𝜑 tapers to 0 near 𝑥 = ±1. By carefully tapering 𝜑, the partial
sum in (3.4) converges to 𝜈𝑔 as 𝑁 → ∞ (see Section 3.4). For fast pointwise or weak convergence
of 𝜈𝑔,𝑁 to 𝜈𝑔, it is desirable for 𝜑 to be an even function that smoothly tapers from 1 to 0.
Using the definition of 𝜈𝑔(𝑛), we have

𝜈𝑔,𝑁(𝜃0) =

𝑁∑
𝑛=−𝑁

𝜑
( 𝑛

𝑁

) 1

2𝜋 ∫
[−𝜋,𝜋]per

𝑒−𝑖𝑛𝜃0 𝑑𝜈𝑔(𝜃)𝑒
𝑖𝑛𝜃0 = ∫

[−𝜋,𝜋]per

1

2𝜋

𝑁∑
𝑛=−𝑁

𝜑
( 𝑛

𝑁

)
𝑒𝑖𝑛(𝜃0−𝜃) 𝑑𝜈𝑔(𝜃),

(3.5)

which represents our smoothed approximation as a convolution with a smoothing kernel. One of
the simplest filters is the hat function𝜑hat(𝑥) = 1 − |𝑥|, forwhich (3.4) corresponds to the classical
Cesàro summation of Fourier series and (3.5) is the convolution of 𝜈𝑔 with the Fejèr kernel, that
is, 𝐹𝑁(𝜃) =

∑𝑁

𝑛=−𝑁
(1 − |𝑛|∕𝑁)𝑒𝑖𝑛𝜃. From this viewpoint, the fact that 𝜈𝑔,𝑁 weakly converges to 𝜈𝑔

is immediate from Parseval’s formula [71, Section 1.7]. In particular, for any Lipschitz continuous
test function 𝜙 with Lipschitz constant 𝐿,

||||𝜙(𝜃) − 1

2𝜋
[𝜙 ∗ 𝐹𝑁](𝜃)

|||| ≤ 1

2𝜋 ∫
[−𝜋,𝜋]per

|𝜙(𝜃 − 𝑠) − 𝜙(𝜃)|
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

≤𝐿|𝑠|
𝐹𝑁(𝑠) 𝑑𝑠 ≤ 𝐿

𝑁𝜋 ∫
𝜋

0

𝑠
1 − cos(𝑁𝑠)

1 − cos(𝑠)
𝑑𝑠,

where we use the fact that 𝐹𝑁 is nonnegative and integrates to one. Using Fubini’s theorem, we
can write

∫
[−𝜋,𝜋]per

𝜙(𝜃)𝜈𝑔,𝑁(𝜃) 𝑑𝜃 =
1

2𝜋 ∫
[−𝜋,𝜋]per

[𝜙 ∗ 𝐹𝑁](𝜃) 𝑑𝜈𝑔(𝜃),

where ∗ denotes convolution. Since we can bound 𝑠2∕(1 − cos(𝑠)) from above by 𝜋2∕2 for 𝑠 ∈
[0, 𝜋], we have||||||∫[−𝜋,𝜋]per 𝜙(𝜃) 𝑑𝜈𝑔(𝜃) − ∫

[−𝜋,𝜋]per

𝜙(𝜃)𝜈𝑔,𝑁(𝜃) 𝑑𝜃

|||||| ≤
𝜋𝐿

2𝑁 ∫
𝜋

0

1 − cos(𝑁𝑠)

𝑠
𝑑𝑠 (3.6)
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16 COLBROOK and TOWNSEND

=
𝜋𝐿

2𝑁 ∫
𝜋𝑁

0

1 − cos(𝑥)

𝑥
𝑑𝑥 = (𝑁−1 log(𝑁)), (3.7)

where the last equality follows from a change of variables. Therefore, there is slow weak conver-
gence of 𝜈𝑔,𝑁 to 𝜈𝑔 as 𝑁 → ∞, providing us with an algorithm for ensuring (3.1) with 𝜖 = 1∕𝑁.
Algorithm 1 summarizes our computational framework for recovering a smoothed version of 𝜈𝑔
from autocorrelations of the trajectory data.
Other filter functions can provide a faster rate of convergence than 𝜑hat(𝑥) = 1 − |𝑥|, including

the cosine and fourth-order filters [57, 134]:

𝜑cos(𝑥) =
1

2
(1 + cos(𝜋𝑥)), 𝜑four(𝑥) = 1 − 𝑥4(−20|𝑥|3 + 70𝑥2 − 84|𝑥| + 35).

For the recovery of measures, we find that a particularly good choice is

𝜑bump(𝑥) = exp

(
−

2

1 − |𝑥| exp(− 𝑐

𝑥4

))
, 𝑐 ≈ 0.109550455106347, (3.8)

where the value of 𝑐 is selected so that 𝜑bump(1∕2) = 1∕2. This filter can lead to arbitrary high
orders of convergence with errors between 𝜈𝑔,𝑁 and 𝜈𝑔 that go to zero faster than any polynomial
in𝑁−1(see Section 3.4). A further useful property is that 𝜈𝑔,𝑁 localizes any singular behavior of 𝜈𝑔
(see Section 5.1.3).14
To demonstrate the application of various filters for the recovery of spectral measures from

autocorrelations, we consider the pedagogical dynamical system given by the shift operator. The
observed orders of convergence of Algorithm 1 are predicted by our theory (see Section 3.3).

Example 3.1 (Shift operator). Consider the shift operator with state-space Ω = ℤ (and counting
measure 𝜔) given by

𝑥𝑛+1 = 𝐹(𝑥𝑛), 𝐹(𝑥) = 𝑥 + 1.

We seek to compute the spectral measure 𝜈𝑔 with respect to 𝑔 ∈ 𝐿2(ℤ, 𝜔) = 𝓁2(ℤ), where 𝓁2(ℤ)

is the space of square summable doubly infinite vectors. This example is a building block of many
dynamical systems, such as Bernoulli shifts, with so-called Lebesgue spectrum [5, Chapter 2]. We
consider the observable 𝑔(𝑘) = 𝐶 sin(𝑘)∕𝑘, where𝐶 ≈ 0.564189583547756 is a normalization con-
stant so that ‖𝑔‖ = 1. For this example, 𝜈𝑔 is absolutely continuous, but 𝜌𝑔 has discontinuities at
𝜃 = ±1. Figure 2 shows the weak convergence (left) and pointwise convergence (right) for various
filters.

3.3 High-order kernels for spectral measure recovery

To develop convergence theory for Algorithm 1, we view filtering in the broader context of
convolution with kernels. This provides a unified framework with Section 5 and simplifies the
arguments when analyzing the recovery of measures (that may be highly singular), as opposed to
the recovery of functions.

14 This because the kernel associated with 𝜑bump (see Proposition 3.1) is highly localized due to the smoothness of 𝜑bump.
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17

F IGURE 2 Relative errors between 𝜈𝑔,𝑁 and 𝜈𝑔 for the shift operator computed with filters 𝜑hat (blue), 𝜑cos

(red), 𝜑four (yellow), and 𝜑bump (purple). Left: Relative error between 𝜈𝑔,𝑁 to 𝜈𝑔 in the sense of (3.7), illustrating
weak convergence in (3.1) for the test function 𝜙(𝜃) = cos(5𝜃)∕(2 + cos(𝜃)). Right: Relative error between 𝜈𝑔,𝑁 to
𝜌𝑔 at 𝜃 = 0, illustrating pointwise convergence. The errors are calculated using an exact analytical expression for
𝜈𝑔.

Instead of viewing 𝜈𝑔,𝑁 as constructed by “windowing” the Fourier series of 𝜈𝑔 in (3.4) by a
filter, we form an approximation to 𝜈𝑔 by convolution. That is, we define

𝜈𝜖𝑔(𝜃0) = ∫
[−𝜋,𝜋]per

𝐾𝜖(𝜃0 − 𝜃)𝑑𝜈𝑔(𝜃),

where 𝐾𝜖 are a family of integrable functions {𝐾𝜖 ∶ 0 < 𝜖 ≤ 1} satisfying certain properties
(see Definition 3.1) so that 𝜈𝜖𝑔 converges to 𝜈𝑔 in some sense. We saw in (3.5) that 𝜈𝜖𝑔 = 𝜈𝑔,𝑁 when
𝐾𝜖(𝜃) =

1

2𝜋

∑𝑁

𝑛=−𝑁
𝜑(

𝑛

𝑁
)𝑒𝑖𝑛𝜃 and 𝑁 = ⌊𝜖−1⌋, say. The most famous example of 𝐾𝜖 is the Poisson

kernel for the unit disc given by [71, p.16]

𝐾𝜖(𝜃) =
1

2𝜋

(1 + 𝜖)2 − 1

1 + (1 + 𝜖)2 − 2(1 + 𝜖) cos(𝜃)
, (3.9)

in polar coordinates with 𝑟 = (1 + 𝜖)−1. The Poisson kernel is a first-order kernel because, up to a
logarithmic factor, it leads to a first-order algebraic convergence rate of 𝜈𝜖𝑔 to 𝜈𝑔. We now give the
following general definition of an 𝑚th order kernel and justify their name by showing that they
lead to an𝑚th order rate of convergence of 𝜈𝜖𝑔 to 𝜈𝑔 in aweak and pointwise sense (see Section 3.4).

Definition 3.1 (𝑚th order periodic kernel). Let {𝐾𝜖 ∶ 0 < 𝜖 ≤ 1} be a family of integrable func-
tions on the periodic interval [−𝜋, 𝜋]per. We say that {𝐾𝜖} is an 𝑚th order kernel for [−𝜋, 𝜋]per
if

(i) (Normalized) ∫
[−𝜋,𝜋]per

𝐾𝜖(𝜃) 𝑑𝜃 = 1.

(ii) (Approximately vanishing moments) There exists a constant 𝐶𝐾 such that15||||||∫[−𝜋,𝜋]per 𝜃𝑛𝐾𝜖(𝜃) 𝑑𝜃

|||||| ≤ 𝐶𝐾𝜖
𝑚 log(𝜖−1), for any integer 1 ≤ 𝑛 ≤ 𝑚 − 1. (3.10)

15 One may wonder if insisting on exactly vanishing moments or removing the logarithmic term improves convergence
rates as 𝜖 ↓ 0. This is not the case (see the discussion in Section 3.4).
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18 COLBROOK and TOWNSEND

(iii) (Decay away from 0) For any 𝜃 ∈ [−𝜋, 𝜋] and 0 < 𝜖 ≤ 1,

|𝐾𝜖(𝜃)| ≤ 𝐶𝐾𝜖
𝑚

(𝜖 + |𝜃|)𝑚+1
. (3.11)

The conditions in Definition 3.1 are primarily technical assumptions that allow one to prove
appropriate convergence rates of 𝜈𝜖𝑔 to 𝜈𝑔. For pointwise convergence, property (iii) is required to
apply a local cut-off argument away from singular parts of the measure. Properties (i) and (ii) are
used to show that terms vanish in a local Taylor series expansion of the Radon–Nikodym deriva-
tive, and the remainder is bounded by (iii). For weak convergence, we apply similar arguments to
the test function by Fubini’s theorem.
The properties of an𝑚th order kernel can be translated to properties of a filter.

Proposition 3.1. Let 𝑚 ∈ ℕ and suppose that 𝜑 is an even continuous function that is compactly
supported on [−1, 1] such that (a) 𝜑 ∈ 𝑚−1([−1, 1]), (b) 𝜑(0) = 1 and 𝜑(𝑛)(0) = 0 for any integer
1 ≤ 𝑛 ≤ 𝑚 − 1, (c) 𝜑(𝑛)(1) = 0 for any integer 0 ≤ 𝑛 ≤ 𝑚 − 1, and (d) 𝜑|[0,1] ∈ 𝑚+1([0, 1]). Then,

𝐾𝜖(𝜃) =
1

2𝜋

𝑁∑
𝑛=−𝑁

𝜑
( 𝑛

𝑁

)
𝑒𝑖𝑛𝜃, 𝑁 = ⌊𝜖−1⌋ (3.12)

is an𝑚th order kernel for [−𝜋, 𝜋]per.

Proof. We need to verify that𝐾𝜖 in (3.12) satisfies the three properties in Definition 3.1. To see that
𝐾𝜖 is normalized, we integrate (3.12) term-by-term and note that 𝜑(0) = 1.
For property (iii), we define Φ(𝑘) = ∫ 1

−1
𝜑(𝑥)𝑒𝑖𝑘𝑥 𝑑𝑥 and note that by the Poisson sum-

mation formula, 𝐾𝜖(𝜃) =
𝑁

2𝜋

∑∞

𝑗=−∞
Φ(𝑁(𝜃 + 2𝜋𝑗)). Since 𝜑 is an even function, Φ(𝑘) =

2 ∫ 1

0
𝜑(𝑥) cos(𝑘𝑥) 𝑑𝑥, and since 𝜑 satisfies (b), (c) and (d), we find that for 𝑘 ≠ 0

|Φ(𝑘)| = 2

𝑘𝑚

⎧⎪⎪⎨⎪⎪⎩

|||||∫
1

0

𝜑𝑚(𝑥) cos(𝑘𝑥) 𝑑𝑥
|||||, if𝑚 is even,

|||||∫
1

0

𝜑𝑚(𝑥) sin(𝑘𝑥) 𝑑𝑥
|||||, if𝑚 is odd.

Finally, one can use property (d) to perform integration-by-parts (nowwith possibly nonvanishing
endpoint conditions) to deduce that |Φ(𝑘)| ≲ (1 + |𝑘|)−(𝑚+1). Therefore, we find that

|𝐾𝜖(𝜃)| ≲ ∞∑
𝑗=−∞

𝑁

(1 + |𝑁(𝜃 + 2𝜋𝑗)|)𝑚+1
≲

𝑁

(1 + 𝑁|𝜃|)𝑚+1
.

This bound implies the decay condition in (3.11).
For property (ii), note that for any 𝑁 ≥ |𝑛|, the following analytical expression holds:

∫
[−𝜋,𝜋]per

𝐾𝜖(−𝜃)𝑒
𝑖𝑛𝜃 𝑑𝜃 − 1 = 𝜑

( 𝑛

𝑁

)
− 𝜑(0), 𝑁 = ⌊𝜖−1⌋.

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22125 by C

am
bridge U

niversity L
ibrary, W

iley O
nline L

ibrary on [27/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



19

As a consequence of Taylor’s theorem and 𝜑(𝑗)(0) = 0,

||||||∫[−𝜋,𝜋]per 𝐾𝜖(−𝜃)𝑒
𝑖𝑛𝜃 𝑑𝜃 − 1

|||||| ≤
𝑛𝑚‖𝜑|(𝑚)

[0,1]
‖𝐿∞

𝑚!𝑁𝑚
= (𝜖𝑚) as 𝜖 → 0.

The result now follows from Lemma A.1. □

Therefore, it can be verified that: 𝜑hat, 𝜑cos, and 𝜑four induce first-order, second-order and
fourth-order kernels in (3.12), respectively. Similarly, 𝜑bump induces a kernel that is 𝑚th order
for any 𝑚 ∈ ℕ. For example, up to a logarithmic factor, the rate of convergence between 𝜈𝜖𝑔
(resp. 𝜈𝑔,𝑁) and 𝜈𝑔 for 𝜑four is (𝜖4) as 𝜖 → 0 (resp. (𝑁−4) as 𝑁 → ∞) in a weak and pointwise
sense (see Section 3.4).
Readers who are experts on filters may be surprised by condition (d) in Proposition 3.1. This

additional condition, which holds for all common choices of filters, is theoretically needed to
obtain the optimal convergence rates between 𝜈𝜖𝑔 and 𝜈𝑔. It means that our convergence theory is
one algebraic order better than the convergence theorems derived in the literature [57, Theorem
3.3].

3.4 Convergence results

We now provide convergence theorems for recovering the spectral measure of . A reader con-
cerned with only the practical aspects of our algorithms can safely skip over this section while
appreciating that the convergence guarantees are rigorous.

3.4.1 Pointwise convergence

For a point 𝜃0 ∈ [−𝜋, 𝜋], the value of the approximate spectral measure 𝜈𝜖𝑔(𝜃0) converges to
the Radon–Nikodym derivative 𝜌𝑔(𝜃0), provided that 𝜈𝑔 is absolutely continuous in an interval
containing 𝜃0 (without this separation condition it still converges for almost every 𝜃0). The con-
vergence rate depends on the smoothness of 𝜌𝑔 in a small interval 𝐼 containing 𝜃0. In particular, we
write 𝜌𝑔 ∈ 𝑛,𝛼(𝐼) if 𝜌𝑔 is 𝑛-times continuously differentiable on 𝐼 and the 𝑛th derivative is Hölder
continuous with parameter 0 ≤ 𝛼 < 1. For ℎ1 ∈ 0,𝛼(𝐼) and ℎ2 ∈ 𝑘,𝛼(𝐼)we define the seminorm
and norm, respectively, as

|ℎ1|0,𝛼(𝐼) = sup
𝑥≠𝑦∈𝐼

|ℎ1(𝑥) − ℎ1(𝑦)||𝑥 − 𝑦|𝛼 , ‖ℎ2‖𝑘,𝛼(𝐼) = |ℎ(𝑘)
2 |0,𝛼(𝐼) + max

0≤𝑗≤𝑘 ‖ℎ(𝑗)
2 ‖∞,𝐼.

We state the following pointwise convergence theorem for general complex-valued measures 𝜈 as
we apply it to measures corresponding to test functions to prove Theorem 3.2. The choice 𝜈 = 𝜈𝑔
with ‖𝜈𝑔‖ = 1 in Theorem 3.1 gives pointwise convergence of spectral measures.

Theorem 3.1 (Pointwise convergence). Let {𝐾𝜖} be an𝑚th order kernel for [−𝜋, 𝜋]per and let 𝜈 be
a complex-valued measure on [−𝜋, 𝜋]per with finite total variation ‖𝜈‖. Suppose that for some 𝜃0 ∈
[−𝜋, 𝜋] and 𝜂 ∈ (0, 𝜋), 𝜈 is absolutely continuous on 𝐼 = (𝜃0 − 𝜂, 𝜃0 + 𝜂) with Radon–Nikodym
derivative 𝜌 ∈ 𝑛,𝛼(𝐼) (𝛼 ∈ [0, 1)). Then the following hold for any 0 ≤ 𝜖 < 1:
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20 COLBROOK and TOWNSEND

(i) If 𝑛 + 𝛼 < 𝑚, then

||||||𝜌(𝜃0)−∫
[−𝜋,𝜋]per

𝐾𝜖(𝜃0 − 𝜃) 𝑑𝜈(𝜃)

|||||| ≲ 𝐶𝐾

(‖𝜈‖ + ‖𝜌‖𝑛,𝛼(𝐼)

)(
𝜖𝑛+𝛼 +

𝜖𝑚

(𝜖 + 𝜂)𝑚+1

)
(1 + 𝜂−𝑛−𝛼).

(3.13)
(ii) If 𝑛 + 𝛼 ≥ 𝑚, then

|||||𝜌(𝜃0)−∫[−𝜋,𝜋]per

𝐾𝜖(𝜃0 − 𝜃) 𝑑𝜈(𝜃)
||||| ≲ 𝐶𝐾

(‖𝜈‖ + ‖𝜌‖𝑚(𝐼)

)(
𝜖𝑚 log(𝜖−1) +

𝜖𝑚

(𝜖 + 𝜂)𝑚+1

)
(1 + 𝜂−𝑚). (3.14)

Here, “≲” means that the inequality holds up to a constant that only depends on 𝑛 + 𝛼 and𝑚.

Proof. By periodicity, we can assume without loss of generality that 𝜃0 = 0. First, we decompose
𝜌 into two parts 𝜌 = 𝜌1 + 𝜌2, where 𝜌1 ∈ 𝑛,𝛼(𝐼) is compactly supported on 𝐼 and 𝜌2 vanishes on
(−𝜂∕2, +𝜂∕2). Using (3.11), we have

||||||𝜌(0) − ∫
[−𝜋,𝜋]per

𝐾𝜖(−𝜃)𝑑𝜈(𝜃)

|||||| ≤
||||||𝜌1(0) − ∫

[−𝜋,𝜋]per

𝐾𝜖(−𝜃)𝜌1(𝜃) 𝑑𝜃

|||||| + ∫|𝜃|>𝜂∕2
𝐶𝐾𝜖

𝑚 𝑑|𝜈r|(𝜃)
(𝜖 + 𝜂∕2)𝑚+1

,

(3.15)

where 𝑑𝜈r(𝜃) = 𝑑𝜈(𝜃) − 𝜌1(𝜃) 𝑑𝜃. The second term on the right-hand side of (3.15) is bounded by
�̂�1𝐶𝐾(‖𝜈‖ + ‖𝜌1‖𝐿∞(𝐼))𝜖

𝑚(𝜖 + 𝜂)−(𝑚+1) for some constant �̂�1 independent of all parameters. To
bound the first term, we expand 𝜌1 using Taylor’s theorem:

𝜌1(𝜃) =

𝑘−1∑
𝑗=0

𝜌
(𝑗)
1 (0)

𝑗!
𝜃𝑗 +

𝜌
(𝑘)
1 (𝜉𝜃)

𝑘!
𝜃𝑘, 𝑘 = min(𝑛,𝑚), (3.16)

where |𝜉𝜃| ≤ |𝜃|. We now consider the two cases of the theorem separately.

Case i (𝐧 + 𝛂 < 𝐦). In this case, 𝑘 = 𝑛 and we can select 𝜌1 so that,

‖𝜌1‖𝑛,𝛼(𝐼) ≤ 𝐶(𝑛, 𝛼)‖𝜌‖𝑛,𝛼(𝐼)(1 + 𝜂−𝑛−𝛼), ‖𝜌1‖𝐿∞(𝐼) ≤ 𝐶(𝑛, 𝛼)‖𝜌‖𝑛,𝛼(𝐼) (3.17)

for some universal constant 𝐶(𝑛, 𝛼) that only depends on 𝑛 and 𝛼. The existence of such a
decomposition follows from standard arguments with cut-off functions. Using (3.16), part (ii) of
Definition 3.1 and the first bound of (3.17), we obtain||||||𝜌1(0) − ∫

[−𝜋,𝜋]per

𝐾𝜖(−𝜃)𝜌1(𝜃) 𝑑𝜃

|||||| ≤�̂�2𝐶𝐾‖𝜌‖𝑛,𝛼(𝐼)𝜖
𝑚 log(𝜖−1)(1 + 𝜂−𝑛−𝛼)

+

||||||∫[−𝜋,𝜋]per𝐾𝜖(−𝜃)
𝜌
(𝑛)
1 (𝜉𝜃) − 𝜌

(𝑛)
1 (0)

𝑛!
𝜃𝑛 𝑑𝜃

||||||,
(3.18)

for some constant �̂�2 independent of 𝜖, 𝜂 and 𝜈 (or 𝜌, 𝜌1, 𝜌2). Note that we have added the fac-
tor of 𝜌(𝑛)1 (0) into the integrand by a second application of part (ii) of Definition 3.1 and the fact

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22125 by C

am
bridge U

niversity L
ibrary, W

iley O
nline L

ibrary on [27/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



21

that 𝑛 < 𝑚. The Hölder continuity of 𝜌(𝑛)1 implies that |𝜌(𝑛)1 (𝜉𝜃) − 𝜌
(𝑛)
1 (0)| ≤ 𝐶(𝑛, 𝛼)‖𝜌‖𝑛,𝛼(𝐼)(1 +

𝜂−𝑛−𝛼)𝜃𝛼. Using this bound in the integrand on the right-hand side of (3.18) and (3.11), we obtain

|||||𝜌1(0) − ∫
[−𝜋,𝜋]per

𝐾𝜖(−𝜃)𝜌1(𝜃) 𝑑𝜃
||||| ≤ �̂�3𝐶𝐾‖𝜌‖𝑛,𝛼(𝐼)(𝜖𝑚 log(𝜖−1) + 𝜖𝑛+𝛼 ∫

𝜋∕𝜖

0

𝜏𝑛+𝛼𝑑𝜏

(1 + 𝜏)𝑚+1

)
(1+𝜂−𝑛−𝛼),

for some constant �̂�3 independent of 𝜖, 𝜂 and 𝜈 (or 𝜌, 𝜌1, 𝜌2). Since 𝑚 > 𝑛 + 𝛼, the integral in
brackets converges as 𝜖 ↓ 0, and the bound in (3.13) now follows.

Case ii (𝐧 + 𝛂 ≥ 𝐦). In this case, 𝑘 = 𝑚 and we can select 𝜌1 such that

‖𝜌1‖𝑚(𝐼) ≤ 𝐶(𝑚)‖𝜌‖𝑚(𝐼)(1 + 𝜂−𝑚),

for some universal constant 𝐶(𝑚) that only depends on𝑚. Again, the existence of such a decom-
position follows from standard arguments with cut-off functions. Using (3.16) and applying (3.10)
to the powers 𝜃𝑗 for 𝑗 < 𝑚 and (3.11) to the 𝜃𝑚 term, we obtain

|||||𝜌1(0) − ∫
[−𝜋,𝜋]per

𝐾𝜖(−𝜃)𝜌1(𝜃) 𝑑𝜃
||||| ≤ �̂�2𝐶𝐾‖𝜌‖𝑚(𝐼)

(
𝜖𝑚 log(𝜖−1) + 𝜖𝑚 ∫

𝜋∕𝜖

0

𝜏𝑚𝑑𝜏

(1 + 𝜏)𝑚+1

)
(1 + 𝜂−𝑚),

for some constant �̂�2 independent of 𝜖, 𝜂 and 𝜈 (or 𝜌, 𝜌1, 𝜌2). The bound in (3.14) now follows.

□

The logarithmic term in (3.14) is due to the divergence of the integral ∫ 𝜋∕𝜖

0

𝜏𝑚𝑑𝜏

(1+𝜏)𝑚+1
as 𝜖 ↓ 0 and

cannot, in general, be removed even with exactly vanishing moments replacing (3.10).

3.4.2 Weak convergence

We now prove weak convergence in the sense of (3.1). Using Theorem 3.1 and a duality argument,
we can also provide convergence rates for (3.1).

Theorem 3.2 (Weak convergence). Let {𝐾𝜖} be an 𝑚th order kernel for [−𝜋, 𝜋]per, 𝜙 ∈

𝑛,𝛼([−𝜋, 𝜋]per), and let 𝜈𝑔 be a spectral measure on the periodic interval [−𝜋, 𝜋]per. Then

||||||∫[−𝜋,𝜋]per 𝜙(𝜃)𝜈𝜖𝑔(𝜃) 𝑑𝜃 − ∫
[−𝜋,𝜋]per

𝜙(𝜃) 𝑑𝜈𝑔(𝜃)

|||||| ≲ 𝐶𝐾‖𝜙‖𝑛,𝛼([−𝜋,𝜋]per)

(
𝜖𝑛+𝛼 + 𝜖𝑚 log(𝜖−1)

)
,

(3.19)
where ‘≲’ means that the inequality holds up to a constant that only depends on 𝑛 + 𝛼 and𝑚.

Proof. Let �̃�𝜖(𝜃) = 𝐾𝜖(−𝜃), then it is easily seen that {�̃�𝜖} is an 𝑚th order kernel for [−𝜋, 𝜋]per.
Fubini’s theorem allows us to exchange the order of integration to see that

∫
[−𝜋,𝜋]per

𝜙(𝜃)𝜈𝜖𝑔(𝜃) 𝑑𝜃 = ∫
[−𝜋,𝜋]per

𝜙(𝜃)[𝐾𝜖 ∗ 𝜈𝑔](𝜃) 𝑑𝜃 = ∫
[−𝜋,𝜋]per

[�̃�𝜖 ∗ 𝜙](𝜃) 𝑑𝜈𝑔(𝜃).
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22 COLBROOK and TOWNSEND

We can now apply Theorem 3.1 to the absolutely continuous measure with Radon–Nikodym
derivative 𝜙 and the kernel �̃�𝜖 (e.g., with 𝜂 = 𝜋∕2) to see that

||[�̃�𝜖 ∗ 𝜙](𝜃) − 𝜙(𝜃)|| ≤ 𝐶1𝐶𝐾‖𝜙‖𝑛,𝛼([−𝜋,𝜋]per)

(
𝜖𝑛+𝛼 + 𝜖𝑚 log(𝜖−1)

)
,

for some constant 𝐶1 depending on 𝑛, 𝛼 and 𝑚. Since 𝜈𝑔 is a probability measure, (3.19)
follows. □

The high-order convergence in Theorem 3.2 does not require regularity assumptions on 𝜈𝑔.
Moreover, though not covered by the theorem, weak convergence still holds for any 𝑚th order
kernel and continuous periodic function 𝜙.

3.4.3 Recovery of the atomic parts of the spectral measure

Finally, we consider the recovery of the atomic parts of spectral measures or, equivalently, 𝜎p()

- the set of eigenvalues of  (see (2.4)). This convergence is achieved by rescaling the smoothed
approximation 𝐾𝜖 ∗ 𝜈𝑔. The following theorem means that Algorithm 1 converges to both the
eigenvalues of and the continuous part of the spectrum of.
Theorem 3.3 (Recovery of atoms). Let {𝐾𝜖} be an 𝑚th order kernel for [−𝜋, 𝜋]per that satisfies

lim sup𝜖↓0
𝜖−1|𝐾𝜖(0)| < ∞, and let 𝜈𝑔 be a spectralmeasure on [−𝜋, 𝜋]per. Then, for any 𝜃0 ∈ [−𝜋, 𝜋]per,

𝜈𝑔({𝜃0}) = lim
𝜖↓0

1

𝐾𝜖(0)
[𝐾𝜖 ∗ 𝜈𝑔](𝜃0). (3.20)

Proof. By periodicity, we may assume without loss of generality that 𝜃0 = 0. Let 𝜈′𝑔 = 𝜈𝑔 −

𝜈𝑔({0})𝛿0, then

1

𝐾𝜖(0)
[𝐾𝜖 ∗ 𝜈𝑔](0) = 𝜈𝑔({0}) +

1

𝐾𝜖(0)
[𝐾𝜖 ∗ 𝜈′𝑔](0). (3.21)

Consider the function 𝐾𝜖(−𝜃)∕𝐾𝜖(0), which is uniformly bounded for sufficiently small 𝜖 using
(3.11) and the assumption lim sup𝜖↓0

𝜖−1|𝐾𝜖(0)| < ∞. Since lim𝜖↓0 𝐾𝜖(−𝜃)∕𝐾𝜖(0) = 0 for any 𝜃 ≠ 0 and
𝜈′𝑔({0}) = 0,

lim
𝜖↓0

1

𝐾𝜖(0)
[𝐾𝜖 ∗ 𝜈′𝑔](0) = lim

𝜖↓0 ∫[−𝜋,𝜋]per
𝐾𝜖(−𝜃)

𝐾𝜖(0)
𝑑𝜈′𝑔 = 0,

where we used the dominated convergence theorem. The theorem now follows from (3.21). □

The condition that lim sup𝜖↓0
𝜖−1|𝐾𝜖(0)| < ∞ is a technical condition that is satisfied by all the ker-

nels constructed in this paper. A condition such as this is required to recover the atomic part of
𝜈𝑔, as it says that 𝐾𝜖 must become localized around 0 sufficiently quickly as 𝜖 → 0.
However, we end this section with the following warning to the reader about recovering

atomic parts of spectral measures. As soon as 𝜈𝑔 has atoms (i.e.,  has eigenvalues and 𝑔 is not
orthogonal to all the eigenspaces), the map 𝜃 ↦ 𝜈𝑔({𝜃}) is discontinuous. One can prove that, in
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F IGURE 3 The approximation [𝐾𝜖 ∗ 𝜈𝑔](𝜃)∕𝐾𝜖(0) of the atomic parts of the spectral measure using 𝜑hat and
𝑔(𝑥) = 𝐶 cos(11𝑥)∕

√
1.001 + sin(𝑥), where 𝐶 ≈ 0.150803789609385 is a normalization constant so that ‖𝑔‖ = 1.

As 𝜖 ↓ 0, the curves converge pointwise to the map 𝜃 ↦ 𝜈𝑔({𝜃}). Left column: The approximation for the rotation
in (3.22) with 𝑐 = 0.7 and 𝑁 = 100 (top-left) and 𝑁 = 10000 (bottom-left) (𝜖 = 1∕𝑁). Right column: The
approximation for the rotation in (3.22) with 𝑐 = 1∕

√
2 ≈ 0.707106781186548 and and 𝑁 = 100 (top-left) and

𝑁 = 10000 (bottom-left) (𝜖 = 1∕𝑁).

general, separating the point spectrum from the rest of the spectrum, either in terms of spectral
measures or spectral sets, is impossible for any algorithm. This holds even for simple classes of
operators [30, 35], unless we know apriori that the spectrum is discrete in a region of interest [28,
Section 7.3]. We use smoothing with convolution kernels to regularize the map 𝜃 ↦ 𝜈𝑔({𝜃}). Ana-
logues of Theorem 3.3 were proven in [80] using the Christoffel–Darboux kernel (which should
not be confused with a convolution kernel as we have defined it) and in [39] using reproducing
kernel Hilbert spaces to regularize harmonic averaging techniques. An apparent advantage of
the framework of convolution kernels is that we need minimal assumptions on our dynamical
system and trajectory data, and can provide explicit convergence rates in Theorems 3.1 and 3.2.

Example 3.2 (Irrational circle rotation). Consider the rotation operator with state-space Ω =

[−𝜋, 𝜋]per (and standard Lebesgue measure 𝜔) given by

𝑥𝑛+1 = 𝐹(𝑥𝑛), 𝐹(𝑥) = 𝑥 + 2𝑐𝜋. (3.22)

If 𝑐 = 𝑝∕𝑞 is rational, with 𝑝 and 𝑞 coprime, then the Koopman operator has pure point spectrum
at 𝜃 = 0, 2𝜋∕𝑞,… , 2𝜋(𝑞 − 1)∕𝑞. Otherwise, the Koopman operator has dense point spectrum. We
consider the observable 𝑔(𝑥) = 𝐶 cos(11𝑥)∕

√
1.001 + sin(𝑥), where 𝐶 ≈ 0.150803789609385 is a

normalization constant so that ‖𝑔‖ = 1. This particular choice is so that 𝑔 has a relatively slowly
decaying Fourier series. Figure 3 shows [𝐾𝜖 ∗ 𝜈𝑔](𝜃)∕𝐾𝜖(0) for the filter 𝜑hat(𝑥) = 1 − |𝑥| and
𝑁 = 100, 10000. On the left, we plot the results for 𝑐 = 0.7 and on the right for 𝑐 = 1∕

√
2 ≈

0.707106781186548. We see the highly discontinuous nature of 𝜃0 ↦ 𝜈𝑔({𝜃0}), both in terms of
𝜃0 and the map 𝐹 itself.

3.5 Numerical examples

We now consider two numerical examples of Algorithm 1 and the convergence theory in
Section 3.4.
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24 COLBROOK and TOWNSEND

F IGURE 4 Computed approximate spectral measures with respect to the function 𝑔 in (3.23) using
Algorithm 1 with the filter in (3.8) for the tent map. These are computed with (blue) and without (red) the filter
in (3.8) for discretization sizes 𝑁 = 100 (left) and 𝑁 = 1000 (right). The function 𝜈𝑔,𝑁 is highly oscillatory if no
filter is used (see zoomed-in subplot).

3.5.1 Tent map

The tent map with parameter 2 is the function 𝐹 ∶ [0, 1] → [0, 1] given by 𝐹(𝑥) = 2min{𝑥, 1 − 𝑥}.
It generates a chaotic system with discrete and continuous spectra. We consider Ω = [0, 1] with
the usual Lebesguemeasure. The corresponding Koopman operator is an isometry. However, it
is not unitary since the function 𝑔 is symmetric about 𝑥 = 1∕2 for any function 𝑔, and hence
 is not onto. Furthermore, the decomposition in (2.4) reduces to an atomic part at 𝜃 = 0 of
size (∫ 1

0
𝑔(𝑥)𝑑𝑥)2 and an absolutely continuous part. The tent map thus demonstrates that our

algorithm deals with mixed spectral types without a priori knowledge of the eigenvalues of.
To compute the inner products ⟨𝑔,𝑛𝑔⟩ for Algorithm 1, we sample the observable 𝑔 on

an equally spaced dyadic grid with equal weights.16 As an example, consider the arbitrary
discontinuous function

𝑔(𝜃) = 𝐶|𝜃 − 1∕3| + 𝐶 sin(20𝜃) +

{
𝐶, 𝜃 > 0.78,

0, 𝜃 ≤ 0.78,
(3.23)

where 𝐶 ≈ 1.035030525813683 is a normalization constant. Applying Algorithm 1, we found con-
vergence to the Radon–Nikodym derivative away from the singular part of the measure (the atom
at zero) behaved as predicted by Theorem 3.1. To see the importance of the filter, we plot the
reconstruction from the Fourier coefficients both with and without the filter (3.8) in Figure 4. As
𝑁 increases, we see that the filter localizes the severe oscillations near the origin, and we gain
convergence to the Radon–Nikodym derivative away from the eigenvalue at 0. This is not the case
without the filter, where severe oscillations pollute the entire interval. Using the filter in (3.8), the
atomic part approximated via Theorem 3.3 was correct to 4.4 × 10−4 for 𝑁 = 1000 and converges
in the limit 𝑁 → ∞, whereas convergence via (3.20) does not hold without the filter.

16While this quadrature rule may seem suboptimal, it is selected because of the dyadic structure of the tent map and to
avoid issues when computing the integrals ⟨𝑔,𝑛𝑔⟩ for large 𝑛 due to the chaotic nature of 𝐹.
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F IGURE 5 Maximum absolute error in computing 𝜈𝑔(𝑛) for −10 ≤ 𝑛 ≤ 10 with a sample size of𝑀1𝑀2 for
quadrature (blue) and stabilized ergodic (red). Each 𝑔 is normalized so that ‖𝑔‖ = 1.

Finally, we consider the sample complexity𝑀1𝑀2 needed to recover the Fourier coefficients of
themeasures.We consider themaximumabsolute error of the computed 𝜈𝑔(𝑛) for |𝑛| ≤ 10 for our
quadrature-based method and the ergodic sampling method from (3.3). For the ergodic method,
𝑀1 = 1 and hence the sample complexity is the length of the trajectory used. However, for this
example, the naive application of (3.3) for the ergodic method is severely unstable. Because of the
binary nature of the tent map, each application of 𝐹 loses a single bit of precision. Using floating-
point arithmetic means that trajectories eventually stagnate at the fixed point 0. This error is not
a random numerical error but a structured one. A good solution is to perturb each evaluation of 𝐹
by a small random amount. The instability is absent for the tent map with parameters that avoid
exact binary representations. Figure 5 shows the results for a range of different 𝑔. The ergodic
method converges like (𝑀−1∕2

2 ) as𝑀2 → ∞, and the quadrature-based method converges with
a faster rate in𝑀1.

3.5.2 Nonlinear pendulum

The nonlinear pendulum is a nonchaotic Hamiltonian system with continuous spectra and chal-
lenging Koopman operator theory. Here, we consider a corresponding discrete-time system by
sampling (2.6) with a time-step of Δ𝑡 = 1. We collect 𝑀1 data points on an equispaced tensor
product grid corresponding to the periodic trapezoidal quadrature rule in the 𝑥1 direction and a
truncated17 trapezoidal quadrature rule in the 𝑥2 direction. To simulate the collection of trajec-
tory data, we compute trajectories starting at each initial condition using the ode45 command in
MATLAB. We stress that we only use ode45 as a black-box integrator – all of our algorithms in
this paper are purely data-driven.
We look at the following observable that involves nontrivial dynamics in each coordinate:

𝑔(𝑥1, 𝑥2) = 𝐶(1 + 𝑖 sin(𝑥1))(1 −
√
2𝑥2)𝑒

−𝑥2
2
∕2,

where 𝐶 ≈ 0.24466788518668 is a normalization constant. Figure 6 shows high resolution
approximations of the spectral measure 𝜈𝑔 for 𝑁 = 100 using 𝑀1 = 50000 and 𝑁 = 1000 using
𝑀1 = 106. The spectral measure is purely continuous (no atoms) away from 𝜃 = 0, consistent
with the general theory of integrable Hamiltonian systems with one degree of freedom [92]. Note
that the constant function 1 is not in 𝐿2([0, 2𝜋]per × ℝ) and hence cannot be an eigenfunction.

17We select a truncation to 𝑥2 ∈ [−𝐿, 𝐿] so that the 𝑔 and𝑛𝑔 are negligible for |𝑥2| > 𝐿.
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26 COLBROOK and TOWNSEND

F IGURE 6 Computed spectral measure using Algorithm 1 with (3.8) for the nonlinear pendulum.

We confirmed this by using Theorem 3.3 for larger𝑁 and observing that the peak at 𝜃 = 0 seen in
Figure 6 does not grow as fast as ∝ 𝑁. However, the spectral measure behaves singularly at 𝜃 = 0.

4 RESIDUAL DMD (ResDMD)

In this section, we consider dynamical systems of the form (1.1) that are not necessarily measure-
preserving. Therefore, we cannot assume that is an isometry. Instead, all we assume about is
that it is a closed and densely defined operator. We assume that we have access to a sequence of
snapshots, that is, a trajectory data matrix (see (3.2)) with two columns:

𝐵data =

⎡⎢⎢⎢⎣
𝑥𝑥𝑥(1) 𝑦𝑦𝑦(1)

⋮ ⋮

𝑥𝑥𝑥(𝑀) 𝑦𝑦𝑦(𝑀)

⎤⎥⎥⎥⎦ , (4.1)

where 𝑦𝑦𝑦(𝑗) = 𝐹(𝑥𝑥𝑥(𝑗)) for 1 ≤ 𝑗 ≤ 𝑀 = 𝑀1. An𝑀1 ×𝑀2 trajectory data matrix can be converted to
the form of (4.1) by forgetting that the data comes from longer runs and reshaping the matrix.
Using (4.1), we develop anewalgorithm,ResidualDMD(ResDMD), that approximates the asso-

ciated Koopman operator of the dynamics. Our approach allows for Koopman operators  with
no non-trivial finite-dimensional invariant subspace. The critical difference between ResDMD
and other DMD algorithms (such as EDMD) is that we construct Galerkin approximations for
not only , but also ∗. This difference allows us to have rigorous convergence guarantees for
ResDMDwhen recovering the spectral information of and computing spectra and pseudospec-
tra. In particular, we avoid spectral pollution (see Figure 1).

4.1 Extended DMD (EDMD) and a newmatrix for computing
residuals

Before discussing our ResDMD approach, we describe EDMD. EDMD constructs a matrix
𝐾EDMD ∈ ℂ𝑁𝐾×𝑁𝐾 that approximates the action of from the snapshot data in (4.1). The original
description of EDMD assumes that {𝑥𝑥𝑥(𝑗)}𝑀

𝑗=1
⊂ Ω are drawn independently according to 𝜔 [138].

Here, we describe EDMD for arbitrary initial states and use {𝑥𝑥𝑥(𝑗)}𝑀
𝑗=1

as quadrature nodes.

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22125 by C

am
bridge U

niversity L
ibrary, W

iley O
nline L

ibrary on [27/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



27

4.1.1 EDMD viewed as a Galerkin method

Given a dictionary {𝜓1, … , 𝜓𝑁𝐾
} ⊂ () of observables, EDMD selects a matrix

𝐾EDMD that approximates  on the subspace 𝑉𝑁𝐾
= span{𝜓1, … , 𝜓𝑁𝐾

}, that is,
[𝜓𝑗](𝑥𝑥𝑥) = 𝜓𝑗(𝐹(𝑥𝑥𝑥)) ≈

∑𝑁𝐾

𝑖=1
(𝐾EDMD)𝑖𝑗𝜓𝑖(𝑥𝑥𝑥) for 1 ≤ 𝑗 ≤ 𝑁𝐾 . Define the vector-valued fea-

ture map Ψ(𝑥𝑥𝑥) =
[
𝜓1(𝑥𝑥𝑥) ⋯ 𝜓𝑁𝐾

(𝑥𝑥𝑥)
]
∈ ℂ1×𝑁𝐾 . Then any 𝑔 ∈ 𝑉𝑁𝐾

can be written as
𝑔(𝑥𝑥𝑥) =

∑𝑁𝐾

𝑗=1
𝜓𝑗(𝑥𝑥𝑥)𝑔𝑗 = Ψ(𝑥𝑥𝑥)𝑔𝑔𝑔 for some vector 𝑔𝑔𝑔 ∈ ℂ𝑁𝐾 . It follows that

[𝑔](𝑥𝑥𝑥) = Ψ(𝐹(𝑥𝑥𝑥))𝑔𝑔𝑔 = Ψ(𝑥𝑥𝑥)(𝐾EDMD 𝑔𝑔𝑔) +

(
𝑁𝐾∑
𝑗=1

𝜓𝑗(𝐹(𝑥𝑥𝑥))𝑔𝑗 − Ψ(𝑥𝑥𝑥)(𝐾EDMD 𝑔𝑔𝑔)

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑟(𝑔𝑔𝑔,𝑥𝑥𝑥)

.

Typically, 𝑉𝑁𝐾
is not an invariant subspace of so there is no choice of 𝐾EDMD that makes 𝑟(𝑔𝑔𝑔,𝑥𝑥𝑥)

zero for all 𝑔 ∈ 𝑉𝑁 and 𝑥𝑥𝑥 ∈ Ω. Instead, it is natural to select 𝐾EDMD as a solution of

argmin𝐵∈ℂ𝑁𝐾×𝑁𝐾

{
∫
Ω

max
𝑔𝑔𝑔∈ℂ𝑁𝐾 ,‖𝑔𝑔𝑔‖=1 |𝑟(𝑔𝑔𝑔,𝑥𝑥𝑥)|2 𝑑𝜔(𝑥𝑥𝑥) = ∫

Ω

‖Ψ(𝐹(𝑥𝑥𝑥)) − Ψ(𝑥𝑥𝑥)𝐵‖2𝓁2 𝑑𝜔(𝑥𝑥𝑥)}. (4.2)

Here, ‖ ⋅ ‖𝓁2 denotes the standard Euclidean norm of a vector.
In practice, one cannot directly evaluate the integral in (4.2). Instead, we approximate it via a

quadrature rule with nodes {𝑥𝑥𝑥(𝑗)}𝑀
𝑗=1

and weights {𝑤𝑗}
𝑀
𝑗=1

. The discretized version of (4.2) is the
following weighted least-squares problem:

argmin𝐵∈ℂ𝑁𝐾×𝑁𝐾

𝑀∑
𝑗=1

𝑤𝑗
‖‖‖Ψ(𝑦𝑦𝑦(𝑗)) − Ψ(𝑥𝑥𝑥(𝑗))𝐵

‖‖‖2𝓁2 . (4.3)

A solution to (4.3) can be written down explicitly as 𝐾EDMD = (Ψ∗
𝑋𝑊Ψ𝑋)

†(Ψ∗
𝑋𝑊Ψ𝑌), where ‘†’

denotes the pseudoinverse and𝑊 = diag(𝑤1, … ,𝑤𝑀). Here,Ψ𝑋 and Ψ𝑌 are the𝑀 ×𝑁𝐾 matrices
given by

Ψ𝑋 =

⎛⎜⎜⎜⎝
Ψ(𝑥𝑥𝑥(1))

⋮

Ψ(𝑥𝑥𝑥(𝑀))

⎞⎟⎟⎟⎠ ∈ ℂ𝑀×𝑁𝐾 , Ψ𝑌 =

⎛⎜⎜⎜⎝
Ψ(𝑦𝑦𝑦(1))

⋮

Ψ(𝑦𝑦𝑦(𝑀))

⎞⎟⎟⎟⎠ ∈ ℂ𝑀×𝑁𝐾 . (4.4)

By reducing the size of the dictionary if necessary, we may assume without loss of generality
that Ψ∗

𝑋𝑊Ψ𝑋 is invertible. Regularization through truncated singular value decompositions or a
change of basis representation may also be considered. Since Ψ∗

𝑋𝑊Ψ𝑋 =
∑𝑀

𝑗=1 𝑤𝑗Ψ(𝑥𝑥𝑥
(𝑗))∗Ψ(𝑥𝑥𝑥(𝑗))

and Ψ∗
𝑋𝑊Ψ𝑌 =

∑𝑀

𝑗=1
𝑤𝑗Ψ(𝑥𝑥𝑥

(𝑗))∗Ψ(𝑦𝑦𝑦(𝑗)), if the quadrature converges (see Section 4.1.3) then

lim
𝑀→∞

[Ψ∗
𝑋𝑊Ψ𝑋]𝑗𝑘 = ⟨𝜓𝑘, 𝜓𝑗⟩ and lim

𝑀→∞
[Ψ∗

𝑋𝑊Ψ𝑌]𝑗𝑘 = ⟨𝜓𝑘, 𝜓𝑗⟩,
where ⟨⋅, ⋅⟩ is the inner product associatedwith𝐿2(Ω, 𝜔). Thus, EDMDcanbe viewed as aGalerkin
method in the large data limit𝑀 → ∞. Let 𝑉𝑁𝐾

denote the orthogonal projection onto 𝑉𝑁𝐾
. In

the large data limit, 𝐾EDMD approaches a matrix representation of 𝑉𝑁𝐾
∗

𝑉𝑁𝐾
and the EDMD

eigenvalues approach the spectrum of 𝑉𝑁𝐾
∗

𝑉𝑁𝐾
. Thus, approximating 𝜎() by the eigen-

values of 𝐾EDMD is closely related to the so-called finite section method [16]. Since the finite
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28 COLBROOK and TOWNSEND

section method can suffer from spectral pollution (see Section 2.2), spectral pollution is also a
concern for EDMD18 and it is important to have an independent way to measure the accuracy of
the candidate eigenvalue-eigenvector pairs.

4.1.2 Measuring the accuracy of candidate eigenvalue-eigenvector pairs

Suppose that we have a candidate eigenvalue-eigenvector pair (𝜆, 𝑔) of , where 𝜆 ∈ ℂ and 𝑔 =

Ψ𝑔𝑔𝑔 ∈ 𝑉𝑁𝐾
. Oneway tomeasure the accuracy of (𝜆, 𝑔) is by estimating the squared relative residual

∫
Ω
|[𝑔](𝑥𝑥𝑥) − 𝜆𝑔(𝑥𝑥𝑥)|2 𝑑𝜔(𝑥𝑥𝑥)

∫
Ω
|𝑔(𝑥𝑥𝑥)|2 𝑑𝜔(𝑥𝑥𝑥) =

⟨( − 𝜆)𝑔, ( − 𝜆)𝑔⟩⟨𝑔, 𝑔⟩ (4.5)

=

∑𝑁𝐾

𝑗,𝑘=1
𝑔𝑗𝑔𝑘

[⟨𝜓𝑘,𝜓𝑗⟩ − 𝜆⟨𝜓𝑘,𝜓𝑗⟩ − 𝜆⟨𝜓𝑘, 𝜓𝑗⟩ + |𝜆|2⟨𝜓𝑘, 𝜓𝑗⟩]∑𝑁𝐾

𝑗,𝑘=1
𝑔𝑗𝑔𝑘⟨𝜓𝑘, 𝜓𝑗⟩ .

If is a normal operator, then the minimum of (4.5) over all normalized 𝑔 ∈ () is exactly the
square distance of𝜆 to the spectrumof; otherwise, for nonnormal the residual can still provide
a measure of accuracy (see Appendix B). One can also use the residual to bound the distance
between 𝑔 and the eigenspace associated with 𝜆, assuming 𝜆 is a point in the discrete spectrum of
 [122, Chapter V].
We approximate the residual in (4.5) by

res(𝜆, 𝑔)2 =

∑𝑁𝐾

𝑗,𝑘=1 𝑔𝑗𝑔𝑘

[
(Ψ∗

𝑌𝑊Ψ𝑌)𝑗𝑘 − 𝜆(Ψ∗
𝑌𝑊Ψ𝑋)𝑗𝑘 − 𝜆(Ψ∗

𝑋𝑊Ψ𝑌)𝑗𝑘 + |𝜆|2(Ψ∗
𝑋𝑊Ψ𝑋)𝑗𝑘

]
∑𝑁𝐾

𝑗,𝑘=1
𝑔𝑗𝑔𝑘(Ψ

∗
𝑋𝑊Ψ𝑋)𝑗𝑘

.

(4.6)
All the terms in this residual can be computed using the snapshot data. Note that, as well as
the matrices found in EDMD, (4.6) has the additional matrix Ψ∗

𝑌𝑊Ψ𝑌 . Moreover, under certain
conditions, lim𝑀→∞ res(𝜆, 𝑔)2 = ∫

Ω
|[𝑔](𝑥𝑥𝑥) − 𝜆𝑔(𝑥𝑥𝑥)|2 𝑑𝜔(𝑥𝑥𝑥)∕ ∫

Ω
|𝑔(𝑥𝑥𝑥)|2 𝑑𝜔(𝑥𝑥𝑥) for any 𝑔 ∈ 𝑉𝑁𝐾

(see Section 4.1.3). In particular, lim𝑀→∞[Ψ∗
𝑌𝑊Ψ𝑌]𝑗𝑘 = ⟨𝜓𝑘,𝜓𝑗⟩ andΨ∗

𝑌𝑊Ψ𝑌 formally corre-
sponds to a Galerkin approximation of∗ as𝑀 → ∞. In Appendix B, we show that the quantity
res(𝜆, 𝑔) can be used to rigorously compute spectra and pseudospectra of.

4.1.3 Convergence of matrices in the large data limit

Echoing Section 3.1, we focus on three situations where

lim
𝑀→∞

[Ψ∗
𝑋𝑊Ψ𝑋]𝑗𝑘 = ⟨𝜓𝑘, 𝜓𝑗⟩, lim

𝑀→∞
[Ψ∗

𝑋𝑊Ψ𝑌]𝑗𝑘 = ⟨𝜓𝑘, 𝜓𝑗⟩, lim
𝑀→∞

[Ψ∗
𝑌𝑊Ψ𝑌]𝑗𝑘 = ⟨𝜓𝑘,𝜓𝑗⟩. (4.7)

For initial conditions at quadrature nodes, if the dictionary functions and 𝐹 are sufficiently reg-
ular, then it is beneficial to select {𝑥𝑥𝑥(𝑗)}𝑀

𝑗=1
as an 𝑀-point quadrature rule with weights {𝑤𝑗}

𝑀
𝑗=1

.

18 It is pointed out in [79] that if  is bounded and the corresponding eigenvectors of a sequence of eigenvalues do not
weakly converge to zero as the discretization size increases, then the EDMD eigenvalues have a convergent subsequence
to an element of the spectrum. Unfortunately, one can prove that no algorithm can determine whether a sequence of
eigenvectors converges weakly to zero.
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This can lead to much faster convergence rates in (4.7) (see Section 4.3.2). For example, if Ω is
unbounded, then we can use quadrature rules such as the trapezoidal rule (see Section 4.3.1),
and if Ω is a simple bounded domain, then one can use Gaussian quadrature (see Section 4.3.2).
When the state-space dimension 𝑑 is moderately large, we can use sparse grids and a kernelized
approach for large 𝑑 (see Section 6).
If𝜔 is a probability measure and the initial points {𝑥𝑥𝑥(𝑗)}𝑀

𝑗=1
are drawn independently and at ran-

dom according to 𝜔, the strong law of large numbers shows that lim𝑀→∞[Ψ∗
𝑋𝑊Ψ𝑋]𝑗𝑘 = ⟨𝜓𝑘, 𝜓𝑗⟩

and lim𝑀→∞[Ψ∗
𝑋𝑊Ψ𝑌]𝑗𝑘 = ⟨𝜓𝑘, 𝜓𝑗⟩ holds with probability one [72, Section 3.4] provided that

𝜔 is not supported on a zero level set that is a linear combination of the dictionary [79, Sec-
tion 4]. This is with the quadrature weights 𝑤𝑗 = 1∕𝑀, and the convergence is typically at a
Monte Carlo rate of(𝑀−1∕2). This argument is straightforward to adapt to show the convergence
lim𝑀→∞[Ψ∗

𝑌𝑊Ψ𝑌]𝑗𝑘 = ⟨𝜓𝑘,𝜓𝑗⟩.
For a single fixed initial condition, if the dynamical system is ergodic, then one

can use Birkhoff’s Ergodic theorem to show that lim𝑀→∞[Ψ∗
𝑋𝑊Ψ𝑋]𝑗𝑘 = ⟨𝜓𝑘, 𝜓𝑗⟩ and

lim𝑀→∞[Ψ∗
𝑋𝑊Ψ𝑌]𝑗𝑘 = ⟨𝜓𝑘, 𝜓𝑗⟩ [79]. One chooses 𝑤𝑗 = 1∕𝑀, but the convergence rate is

problem dependent [67]. This argument is straightforward to adapt to show the convergence
lim𝑀→∞[Ψ∗

𝑌𝑊Ψ𝑌]𝑗𝑘 = ⟨𝜓𝑘,𝜓𝑗⟩.
4.2 ResDMD: Avoiding spectral pollution and computing
pseudospectra

We now present two ResDMD algorithms. The first, shown in Algorithm 2, is a simple mod-
ification of EDMD to remove spectral pollution. However, this algorithm can miss parts of
the spectrum because the finite section method is not guaranteed to approximate the whole
of the spectrum. Our second algorithm (see Algorithm 3) overcomes the limitation of missing
spectra and computes pseudospectra with error control. Further methods and results are given
in Appendix B.
Throughout, our only assumption is that the dictionary {𝜓𝑗}

𝑁𝐾

𝑗=1
lies in the domain of . For

convenience, we assume that {𝜓𝑗}
𝑁𝐾

𝑗=1
are linearly independent; otherwise, one can compute a

truncated SVD and use that dictionary instead. To obtain convergence as 𝑁𝐾 → ∞, we assume
that the span of all dictionary elements in the limit forms a core of  (see Appendix B). Since
our algorithms come with error bounds associated with residuals, we can also perform aposteri
verification of a dictionary by simply looking at the errors, which is particularly useful in Section 6
(see also Appendix C).
Our first ResDMD algorithm computes the residual using the snapshot data to avoid spec-

tral pollution. As is usually done, the algorithm assumes that 𝐾EDMD is diagonalizable. First,
we compute the three matrices Ψ∗

𝑋𝑊Ψ𝑋 , Ψ∗
𝑋𝑊Ψ𝑌 , and Ψ∗

𝑌𝑊Ψ𝑌 , where Ψ𝑋 and Ψ𝑌 are
given in (4.4). Then, we find the eigenvalues and eigenvectors of 𝐾EDMD, that is, we solve
(Ψ∗

𝑋𝑊Ψ𝑋)
†(Ψ∗

𝑋𝑊Ψ𝑌)𝑔𝑔𝑔 = 𝜆𝑔𝑔𝑔. One can solve this eigenproblem directly, but it is often numeri-
cally more stable to solve the generalized eigenproblem (Ψ∗

𝑋𝑊Ψ𝑌)𝑔𝑔𝑔 = 𝜆(Ψ∗
𝑋𝑊Ψ𝑋)𝑔𝑔𝑔. Afterward,

we discard computed eigenpairs with a larger relative residual than an accuracy goal of 𝜖 > 0 to
avoid spectral pollution.
Algorithm 2 summarizes the procedure and is a simple modification of EDMD, as the only

difference is a clean-up where spurious eigenpairs are discarded based on their residual. This
clean-up avoids spectral pollution and also removes eigenpairs that are inaccurate because
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30 COLBROOK and TOWNSEND

of numerical errors associated with nonnormal operators, up to the relative tolerance 𝜖. The
following result makes this precise.

Theorem 4.1. Let  be the associated Koopman operator of (1.1) from which snapshot data is
collected. Let Λ𝑀(𝜖) denote the eigenvalues in the output of Algorithm 2. Then, assuming (4.7),

lim sup
𝑀→∞

max
𝜆∈Λ𝑀(𝜖)

‖( − 𝜆)−1‖−1 ≤ 𝜖.

Proof. Seeking a contradiction, assume that lim sup𝑀→∞ max𝜆∈Λ𝑀(𝜖) ‖( − 𝜆)−1‖−1 > 𝜖. Then,
there is a subsequence of eigenpairs (𝜆𝑘,𝑔𝑔𝑔𝑘) in the output of Algorithm 2 such that 𝜆𝑘 ∈ Λ𝑛𝑘 (𝜖),
𝑛𝑘 → ∞, and ‖( − 𝜆𝑘)

−1‖−1 > 𝜖 + 𝛿 for some 𝛿 > 0 and all 𝑘. Since (4.7) is satisfied and
𝐾EDMD = (Ψ∗

𝑋𝑊Ψ𝑋)
†(Ψ∗

𝑋𝑊Ψ𝑌) is a sequence of bounded finite matrices for fixed𝑁𝐾 (recall that
without loss of generality the Grammatrix lim𝑀→∞ Ψ∗

𝑋𝑊Ψ𝑋 is invertible), the sequence 𝜆1, 𝜆2, …
stays bounded. By taking a subsequence if necessary, we may assume that lim𝑘→∞ 𝜆𝑘 = 𝜆. It
follows that

𝜖 + 𝛿 ≤ ‖( − 𝜆)−1‖−1 = lim
𝑘→∞

‖( − 𝜆𝑘)
−1‖−1 ≤ lim sup

𝑘→∞
res(𝜆𝑘,𝑔𝑔𝑔𝑘) ≤ 𝜖,

which is the desired contradiction. □

In the large data limit, Theorem 4.1 tells us that ResDMD computes eigenvalues inside the
𝜖-pseudospectrum of and hence, avoids spectral pollution and returns reasonable eigenvalues.
Despite this, Algorithm2maynot approximate thewhole 𝜖-pseudospectrumof, even as𝑀 → ∞

and𝑁𝐾 → ∞. This is because the eigenvalues of𝐾EDMDmay not approximate thewhole spectrum
of. For example, consider the shift operator of Example 3.1, which is unitary. Suppose our dictio-
nary consists of the functions 𝜓𝑗(𝑘) = 𝛿𝑘,𝑞(𝑗), where 𝑞 ∶ ℕ → ℤ is an enumeration of ℤ. Then, in
the large data limit, 𝐾EDMD corresponds to a finite section of the shift operator and has spectrum
{0}, whereas 𝜎() = 𝕋. Hence, for 𝜖 < 1, the output of Algorithm 2 is the empty set. This issue is
known as spectral inclusion.
To overcome this issue, we discuss how to compute spectra and pseudospectra in Appendix B.

For example, Algorithm 3 computes practical approximations of 𝜖-pseudospectra with rigorous
convergence guarantees. Assuming (4.7), the output of Algorithm 3 is guaranteed to be inside the
𝜖-pseudospectrum of . Algorithm 3 also computes observables 𝑔 with res(𝜆, 𝑔)<𝜖, which are
known as 𝜖-approximate eigenfunctions.19

4.3 Numerical examples

Wenow apply ResDMD to several dynamical systems: (1) Nonlinear pendulum, (2) Gauss iterated
map, and (3) Lorenz system.

19 Previous methods to compute 𝜖-approximate eigenfunctions for Koopman operators include [91], which requires the
absence of continuous spectra, [53], which uses delay coordinate maps [38, 52] to deal with certain isolated eigenvalues,
and [40], which uses a compactification to jointly approximate 𝜖-approximate eigenfunctions of the Koopman operator
associated with ergodic systems for multiple time steps.
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F IGURE 7 The approximate eigenfunctions of the nonlinear pendulum visualized as phase portraits, where
the color illustrates the complex argument of the eigenfunction [136]. We also plot lines of constant modulus as
shadowed steps. All of these approximate eigenfunctions have residuals at most 𝜖 = 0.05 as judged by (4.6), which
can be made smaller by increasing 𝑁𝐾 .

4.3.1 Nonlinear pendulum revisited

We first return to the nonlinear pendulum from Section 2.2. For the dictionary of observables
𝜓1, … , 𝜓𝑁𝐾

, we use a hyperbolic cross approximation with the standard Fourier basis (in 𝑥1 ∈

[−𝜋, 𝜋]per) and Hermite functions (in 𝑥2 ∈ ℝ). The hyperbolic cross approximation is an efficient
way to represent functions that have boundedmixed derivatives [45, Chapter 3]. We use the trape-
zoidal quadrature rule discussed in Section 3.5.2 to compute Ψ∗

𝑋𝑊Ψ𝑋 , Ψ∗
𝑋𝑊Ψ𝑌 , and Ψ∗

𝑌𝑊Ψ𝑌 ,
where Ψ𝑋 and Ψ𝑌 are given in (4.4). The pseudospectrum in Figure 1 (left) is computed using
Algorithm 3 with 𝑁𝐾 = 152 basis functions corresponding to a hyperbolic cross approximation
of order 20 and𝑀 = 104 data points. The pseudospectrum in Figure 1 (right) is computed using
Algorithm 3 with 𝑁𝐾 = 964 basis functions corresponding to a hyperbolic cross approximation
of order 100 and 𝑀 = 9 × 104 data points. Note that we can now see which EDMD eigenvalues
are reliable. The output of Algorithm 3 lies inside 𝜎𝜖() and converges to the set 𝜎𝜖() as 𝑁𝐾

increases (see Theorem B.1). Using Algorithm 3 and 𝑁𝐾 = 964, we also compute some approxi-
mate eigenfunctions corresponding to 𝜆 = exp(0.4932𝑖), 𝜆 = exp(0.9765𝑖), 𝜆 = exp(1.4452𝑖), and
𝜆 = exp(1.8951𝑖) (see Figure 7). As 𝜆moves further from 1, we typically see increased oscillations
in the approximate eigenfunctions.

4.3.2 Gauss iterated map

The Gauss iterated map is a real-valued function on the real line given by 𝐹(𝑥) = exp(−𝛼𝑥2) + 𝛽,
where 𝛼 and 𝛽 are real parameters. It has a bifurcation diagram that resembles a mouse [65,
Figure 5.17]. We consider the choice 𝛼 = 2 and 𝛽 = −1 − exp(−𝛼), and restrict ourselves to the
state-spaceΩ = [−1, 0]with the usual Lebesguemeasure.We select a dictionary of Legendre poly-
nomials transplanted to the interval [−1, 0], that is, 𝑐0𝑃0(2𝑥 + 1), … , 𝑐𝑁𝐾−1𝑃𝑁𝐾−1(2𝑥 + 1), where
𝑃𝑗 is the degree 𝑗 Legendre polynomial on [−1, 1] and 𝑐𝑗 are such that the dictionary is orthonor-
mal. Figure 8 (left) shows the pseudospectra computed with𝑁𝐾 = 40 using Algorithm 3. We also
show the EDMD eigenvalues, several of which are reliable (blue crosses) and correspond to the
output of Algorithm 2 with 𝜖 = 0.01.
Rather than showing the convergence of the eigenvalues and pseudospectra as 𝑁𝐾 → ∞, we

demonstrate the importance of the initial conditions of the snapshot data as it determines the
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32 COLBROOK and TOWNSEND

F IGURE 8 Pseudospectral contours (black lines) of the Koopman operator associated with the Gauss
iterated map computed using 𝑁𝐾 = 40 for 𝜖 = 0.001, 0.01, 0.1 and 0.3. The EDMD eigenvalues (magenta dots and
blue crosses) contain a mix of accurate and spurious eigenvalues. Reliable eigenvalues corresponding to the
output of Algorithm 2 with 𝜖 = 0.01 are shown as blue crosses. Right: Convergence of the Galerkin matrix
Ψ∗

𝑋𝑊Ψ𝑌 for different quadrature rules as the number of data points𝑀 increases.

quadrature rule in Section 4.1. If 𝑀 is not sufficiently large, or the quadrature rule is poor, the
Galerkinmethod in Algorithms 2 and 3 is not accurate. To compare initial conditions, we consider
the computed matrix Ψ∗

𝑋𝑊Ψ𝑌 for 𝑁𝐾 = 40 with four choices of quadrature:

∙ Gauss–Legendre: Select 𝑥𝑥𝑥(1), … ,𝑥𝑥𝑥(𝑀) as the Gauss–Legendre quadrature nodes transplanted to
[−1, 0] and 𝑤1,… ,𝑤𝑀 as the corresponding Gauss–Legendre weights.

∙ Trapezoidal: Select 𝑥𝑥𝑥(𝑗) = −1 +
𝑗−1

𝑀−1
with 𝑤𝑗 =

1

𝑀−1
for 1 < 𝑗 < 𝑀 and 𝑤1 = 𝑤𝑀 =

1

2(𝑀−1)
.

∙ Riemann sum: Select 𝑥𝑥𝑥(𝑗) = −1 +
𝑗−1

𝑀−1
and 𝑤𝑗 =

1

𝑀−1
.

∙ Monte Carlo: Select 𝑥𝑥𝑥(1), … ,𝑥𝑥𝑥(𝑀) independently at random from a uniform distribution over
[−1, 0] and 𝑤𝑗 =

1

𝑀
.

The final two rules are the most commonly used in the EDMD/Koopman literature. The
trapezoidal rule uses the same data points as the Riemann sum but changes the weights at
the endpoints.
Figure 8 (right) shows the accuracy, measured as max1≤𝑗,𝑘≤𝑁𝐾

|(Ψ∗
𝑋𝑊Ψ𝑌)𝑗𝑘 − ⟨𝜓𝑘, 𝜓𝑗⟩|, of

the four quadrature methods. Gauss–Legendre quadrature converges exponentially, trapezoidal
at a rate(𝑀−2), Riemann sums at a rate(𝑀−1) andMonte Carlo at a rate(𝑀−1∕2). The benefit
of choosing the initial states at quadrature nodes is clear. Wisely choosing the weights can drasti-
cally affect convergence even when restricted to equispaced data. We never recommend using the
Riemann sum, as one immediately obtains a better convergence rate by altering just two weights
to employ a trapezoidal rule.

4.3.3 Lorenz system

The Lorenz system [85] is the following system of three coupled ordinary differential equa-
tions [109]:

�̇� = 𝜎(𝑌 − 𝑋), �̇� = 𝑋(𝜌 − 𝑍) − 𝑌, �̇� = 𝑋𝑌 − 𝛽𝑍.
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F IGURE 9 The approximate eigenfunctions of the Lorenz system (real part shown), computed using
Algorithm 3 with delay embedding. The spectral parameter is given by 𝜆 = exp(𝑖𝜃), and we show the residuals
computed using (4.6).

The parameters 𝜎, 𝜌, and 𝛽 are proportional to the Prandtl number, Rayleigh number, and
the physical proportions of the fluid, respectively. The system describes a truncated model of
Rayleigh–Bénard convection. We take 𝜎 = 10, 𝛽 = 8∕3, and 𝜌 = 28, corresponding to the original
system studied by Lorenz.
We consider theKoopmanoperator corresponding to the time-stepΔ𝑡 = 0.05, with dynamics on

the attractor. For this Ω, one cannot explicitly write down a suitable dictionary with knowledge
of the attractor. We use delay-embedding of the observables 𝑔𝑗(𝑥𝑥𝑥) = [𝑥𝑥𝑥]𝑗 , where the subscript
corresponds to the 𝑗th coordinate. As a dictionary, we consider a union of Krylov subspaces

{𝑔1,𝑔1, … ,99𝑔1, 𝑔2,𝑔2, … ,99𝑔2, 𝑔3,𝑔3, … ,99𝑔3}.

Time-delay embedding is a popularmethod for DMD-type algorithms [2, 70]. For this example, we
build the matrices Ψ𝑋 and Ψ𝑌 using a single trajectory of length𝑀 + 1 = 105 + 1 with a random
initial condition on the attractor.20 Figure 9 shows various approximate eigenfunctions computed
using Algorithm 3. We have visualized each function as a cloud of points on the attractor. Some of

20 Another suitable choice of dictionary for this example is a set of radial basis functions with centers on the attractor
sampled according to the SRB measure. One could use relatively short trajectories to compute the centers and build Ψ𝑋

and Ψ𝑌 using multiple trajectories of length one from the centers.
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34 COLBROOK and TOWNSEND

these modes resemble unstable periodic orbits, which in a sense, form a backbone of the attractor
[46, 133].

5 COMPUTING SPECTRALMEASURES USING A ResDMD
FRAMEWORK

In Section 3, we developed algorithms that computed the spectral properties of isometries from
autocorrelations. Computing autocorrelations typically requires data collected as long trajectories,
that is, large𝑀2. In this section, we develop methods that build on ResDMD to compute spectral
measures of Koopman operators for measure-preserving dynamical systems from arbitrary snap-
shot data. Throughout this section, we assume that  is an isometry and that we have access to
snapshot data, 𝐵data, of the form given in (4.1). That is, we have pairs {(𝑥𝑥𝑥(𝑗), 𝑦𝑦𝑦(𝑗) = 𝐹(𝑥𝑥𝑥(𝑗)))}𝑀

𝑗=1
.

We develop rational kernels that allow us to compute smoothed approximations of spectral mea-
sures from the ResDMD matrices Ψ∗

𝑋𝑊Ψ𝑋 , Ψ∗
𝑋𝑊Ψ𝑌 , and Ψ∗

𝑌𝑊Ψ𝑌 (see Section 4.1). Moreover,
these matrices can be reused to compute spectral measures with respect to different observable
functions 𝑔.

5.1 Generalized Cauchy transform and the Poisson kernel for the
unit disc

As in Section 2.1.1, we begin by considering a unitary extension ′ of , which is defined on a
Hilbert space′ that is an extension of 𝐿2(Ω, 𝜔). Let 𝑧 ∈ ℂ with |𝑧| > 1 and 𝑔 ∈ 𝐿2(Ω, 𝜔). Since‖‖ = 1 < |𝑧| for 𝑧 ∉ 𝜎(), (′ − 𝑧)−1𝑔 = ( − 𝑧)−1𝑔 and

⟨( − 𝑧)−1𝑔,∗𝑔⟩ = ⟨′(′ − 𝑧)−1𝑔, 𝑔⟩′ = ∫
𝕋

𝜆

𝜆 − 𝑧
𝑑𝜇𝑔(𝜆) = ∫

[−𝜋,𝜋]per

𝑒𝑖𝜃

𝑒𝑖𝜃 − 𝑧
𝑑𝜈𝑔(𝜃), (5.1)

where the last equality follows from a change-of-variables.21 If 𝑧 ≠ 0 with |𝑧| < 1, then 𝑧 may
be in 𝜎() since  is not necessarily unitary. However, since |𝑧−1| > 1, 𝑧−1 ∉ 𝜎() and hence
(′ − 𝑧

−1
)−1𝑔 = ( − 𝑧

−1
)−1𝑔. Since 𝜈𝑔 is a real-valued measure, we find that

⟨𝑔, ( − 𝑧
−1
)−1𝑔⟩ = ⟨𝑔, (′ − 𝑧

−1
)−1𝑔⟩′ = ∫

[−𝜋,𝜋]per

1

𝑒𝑖𝜃 − 𝑧
−1

𝑑𝜈𝑔(𝜃) = −𝑧 ∫
[−𝜋,𝜋]per

𝑒𝑖𝜃

𝑒𝑖𝜃 − 𝑧
𝑑𝜈𝑔(𝜃). (5.2)

The leftmost and rightmost sides of (5.1) and (5.2) are independent of′, so we can safely dispense
with the extension and have an expression for a generalized Cauchy transform of 𝜈𝑔, that is,

𝙲𝜈𝑔(𝑧) =
1

2𝜋 ∫
[−𝜋,𝜋]per

𝑒𝑖𝜃

𝑒𝑖𝜃 − 𝑧
𝑑𝜈𝑔(𝜃) =

1

2𝜋

{⟨( − 𝑧)−1𝑔,∗𝑔⟩, if |𝑧| > 1,

−𝑧−1⟨𝑔, ( − 𝑧
−1
)−1𝑔⟩, if 𝑧 ≠ 0 with |𝑧| < 1.

(5.3)
The importance of (5.3) is that it relates 𝙲𝜈𝑔 to the resolvent operator ( − 𝑧)−1 for |𝑧| > 1.
In Section 5.3, we show how to compute the resolvent operator from snapshot data for |𝑧| > 1.

21 Here we use the fact that the resolvent can be written as (′ − 𝑧)−1 = ∫
𝕋
(𝜆 − 𝑧)−1 𝑑(𝜆), where  is the projection-

valued spectral measure of′. For expansions of the resolvent in the context of different dynamical systems, see [124].
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Since |𝑧| > 1, we can provide convergence and stability results even when we replace  with
a discretization.
To recover 𝜈𝑔 from 𝙲𝜈𝑔 , a derivation motivated by the Sokhotski–Plemelj formula shows that

𝙲𝜈𝑔
(
𝑒𝑖𝜃0(1 + 𝜖)−1

)
− 𝙲𝜈𝑔

(
𝑒𝑖𝜃0(1 + 𝜖)

)
= ∫

[−𝜋,𝜋]per

𝐾𝜖(𝜃0 − 𝜃) 𝑑𝜈𝑔(𝜃), (5.4)

where𝐾𝜖 is the Poisson kernel for the unit disc given in (3.9). The Poisson kernel for the unit disc is
a first-order kernel (see Proposition 5.1). In practice, it is important to develop high-order kernels
for at least three reasons: (1) A numerical tradeoff, (2) A stability tradeoff, and (3) For localization
of the kernel. We now explain each of these reasons in turn.

5.1.1 The need for high-order kernels I: A numerical tradeoff

As a model problem, consider the following generalization of the shift operator in Example 3.1:

𝑈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛼0 𝛼1𝜌0 𝜌1𝜌0

𝜌0 −𝛼1𝛼0 −𝜌1𝛼0 0

0 𝛼2𝜌1 −𝛼2𝛼1 𝛼3𝜌2 𝜌3𝜌2

𝜌2𝜌1 −𝜌2𝛼1 −𝛼3𝛼2 −𝜌3𝛼2 ⋱

0 𝛼4𝜌3 −𝛼4𝛼3 ⋱

⋱ ⋱ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝛼𝑗 = (−1)𝑗0.95

𝑗+1

2 , 𝜌𝑗 =
√

1 − |𝛼𝑗|2.

(5.5)
We seek the spectral measure with respect to the first canonical unit vector 𝑔 = 𝑒1, which is a
cyclic vector. 𝑈 is the Cantero–Moral–Velázquez (CMV) matrix for the Rogers–Szegő orthogonal
polynomials on the unit circle [106]. CMVmatrices for measures on the unit circle are analogous
to Jacobi matrices for measures on the real line [120].22 The spectral measure 𝜈𝑔 is absolutely
continuous with an analytic Radon–Nikodym derivative given by

𝜌𝑔(𝜃) =

√
2𝜋

log(0.95−1)

∞∑
𝑚=−∞

exp

(
−

(𝜃 − 2𝜋𝑚)2

2 log(0.95−1)

)
.

To compute the resolvent and hence 𝙲𝜈𝑔 , we use finite square truncations of the matrix 𝑈

(see Section 5.3). Since 𝑈 is banded, once it is truncated to an 𝑁𝐾 × 𝑁𝐾 matrix it costs (𝑁𝐾)

operations to compute 𝙲𝜈𝑔 . The dominating computational cost in evaluating [𝐾𝜖 ∗ 𝜈𝑔] is solv-
ing the shifted linear systems to compute the resolvent ( − 𝑒𝑖𝜃0(1 + 𝜖))−1. This cost increases as
𝜖 ↓ 0 and 𝑒𝑖𝜃0(1 + 𝜖) approaches the continuous spectrum of . This increase in cost is due to a
larger truncation size of𝑈 needed to capture the function ( − 𝑒𝑖𝜃0(1 + 𝜖))−1𝑔 because it becomes
more oscillatory.
Figure 10 (left) shows the approximations [𝐾𝜖 ∗ 𝜈𝑔] for the Poisson kernel and 𝜖 = 0.1, 0.01

using 𝑁𝐾 = 40 basis functions for the operator 𝑈 in (5.5). The exact Radon–Nikodym derivative
is also shown. Whilst the computation for 𝜖 = 0.1 is an accurate approximation of [𝐾𝜖 ∗ 𝜈𝑔], we
must decrease 𝜖 to approximate 𝜌𝑔. However, decreasing 𝜖 to 0.01 introduces oscillatory artifacts.

22 One applies Gram–Schmidt to {1, 𝑧, 𝑧−1, 𝑧2, 𝑧−2, …}, which leads to a pentadiagonal matrix.
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36 COLBROOK and TOWNSEND

F IGURE 10 Left: Approximation of the spectral measure of 𝑈 in (5.5) with respect to 𝑔 = 𝑒1 for a fixed
truncation size of 𝑁𝐾 = 40. The oscillations for 𝜖 = 0.01 are an artifact caused by the discrete spectrum of the
truncation. Right: The relative error in the approximation 𝜈𝜖𝑔,𝑁𝐾

with varying 𝑁𝐾 of the smoothed measure
𝜈𝜖𝑔 = [𝐾𝜖 ∗ 𝜈𝑔] for the Poisson kernel evaluated at 𝜃 = 0.2.

This is because we have fixed the truncation size, and the truncated operator’s spectral measure is
a sum of Dirac delta distributions located in the closed unit disc. To avoid this, we must select𝑁𝐾

adaptively for a given 𝜖 (see Section 5.3). Figure 10 (right) shows the relative error of approximating
[𝐾𝜖 ∗ 𝜈𝑔](0.2) for a truncation size 𝑁𝐾 and varying 𝜖. A smaller 𝜖 leads to slower convergence as
the truncation size increases.
Therefore, there is a numerical balancing act. On the one hand, we wish to stay as far away

from the spectrum as possible so that the evaluation of [𝐾𝜖 ∗ 𝜈𝑔] is computationally cheap. On the
other hand, we desire a good approximation of 𝜈𝑔, which requires small 𝜖 > 0. The Poisson kernel
leads to (𝜖 log(𝜖−1)) convergence as 𝜖 ↓ 0, making it computationally infeasible to compute the
spectral measure to more than a few digits of accuracy. High-order kernels allow us to compute
spectral measures with better accuracy. This tradeoff is significant for data-driven computations
since we want to keep 𝑁𝐾 as small as possible.

5.1.2 The need for high-order kernels II: A stability tradeoff

Continuing with (5.5), the shifted linear system involved in computing the resolvent operator
becomes increasingly ill-conditioned as 𝜖 ↓ 0 when 𝑒𝑖𝜃0 ∈ 𝜎(). This is because ‖( − 𝑒𝑖𝜃0(1 +

𝜖))−1‖ = (𝜖−1) (see Section 5.2.2). The ResDMD framework developed in Section 4 uses approx-
imations of Galerkin truncations of, with convergence to the exact truncation in the large data
limit𝑀 → ∞ as the number of data points increases (see Section 4.1.3). Therefore, the stability of
the resolvent operator is crucial for data-driven approximations as we have inexact matrix entries.
We now repeat the experiment from Section 5.1.1, but with an adaptive 𝑁𝐾 for fixed 𝜖, and we

perturb each entry of an𝑁𝐾 × 𝑁𝐾 truncation of𝑈with independentGaussian randomvariables of
mean 0 and standard deviation 𝛿 = 0.001. Figure 11 (left) shows the approximation of the spectral
measure 𝜈𝑔 with 𝑔 = 𝑒1. While 𝜖 = 0.1 appears stable to the eye, decreasing to 𝜖 = 0.01 yields
an inaccurate approximation since ‖( − 𝑒𝑖𝜃0(1 + 𝜖))−1‖ increases and the shifted linear systems
become more sensitive to noise. Figure 11 (right) shows the mean error of the approximation of
[𝐾𝜖 ∗ 𝜈𝑔] over 50 independent realizations. In contrast to the convergence tomachine precision in
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F IGURE 11 Left: Approximation of the spectral measure of 𝑈 in (5.5) with respect to 𝑔 = 𝑒1 for an adaptive
choice of 𝑁𝐾 , but with the truncated matrix perturbed by normal random variables of mean 0 and standard
deviation 𝛿 = 0.001. The oscillations for 𝜖 = 0.01 are an artifact caused by the ill-conditioning of the resolvent as
𝜖 ↓ 0. Right: The relative error in the numerical approximation 𝜈𝜖𝑔,𝑁𝐾

, corresponding to truncation size 𝑁𝐾 , of the
smoothed measure 𝜈𝜖𝑔 = [𝐾𝜖 ∗ 𝜈𝑔] for the Poisson kernel in (3.9) with the same model of matrix perturbation. The
error is averaged over 50 realizations.

Figure 10 (right), the errors in Figure 11 (right) plateau because of the perturbation of the matrix,
with a larger final error for smaller 𝜖.
The error in approximating 𝜈𝑔 with a perturbed truncation of the operator is unavoidable,

but the Poisson kernel is suboptimal in this regard. For a perturbation of order 𝛿, the accuracy
achieved by the Poisson kernel scales as (𝜖 log(𝜖−1) + 𝛿∕𝜖). Balancing these terms while ignor-
ing logarithmic factors leads to the noise-dependent choice 𝜖 ∼ 𝛿1∕2. This choice yields an overall
error scaling of(𝛿1∕2 log(𝛿−1)). High-order kernels can get arbitrarily close to the optimal scaling
of (𝛿) as 𝛿 → 0.

5.1.3 The need for high-order kernels III: Localization of the kernel

We revisit the tent map of Section 3.5.1 with the choice of 𝑔 given in (3.23). Figure 12 shows the
computed measure using the Poisson kernel, where we have chosen 𝑁𝐾 adaptively to avoid the
problem in Section 5.1.1 and 𝜖 = 0.1 so thatwith𝑀 = 25 = 32 the error in Section 5.1.2 is negligible.
For comparison, we do the same computation, but with a 6th-order kernel (see Section 5.2.1). As a
function, the Poisson kernel decays slowly away from 0, and hence the singular part of the spectral
measure at 𝜃 = 0 is not localized. In contrast,𝑚th order kernels obey a decay condition (see (3.11))
so are more localized for a particular 𝜖. For this example, this localization leads to a better approx-
imation of the Radon–Nikodym derivative away from the singularity. We have also considered
examples where the spectral measure is singular and observed that increased localization has the
added benefit of avoiding over-smoothing.

5.2 Building high-order rational kernels

We now aim to generalize the Sokhotski–Plemelj-like formula in (5.4) to develop high-order
rational kernels. Let {𝑧𝑗}𝑚𝑗=1 be distinct points with positive real part and consider the rational
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38 COLBROOK and TOWNSEND

F IGURE 1 2 Convolutions of spectral measure with Poisson kernel (𝑚 = 1) and a 6th order rational kernel
(see Section 5.2). High-order kernels have better localization properties.

function:

𝐾𝜖(𝜃) =
𝑒−𝑖𝜃

2𝜋

𝑚∑
𝑗=1

[
𝑐𝑗

𝑒−𝑖𝜃 − (1 + 𝜖𝑧𝑗)−1
−

𝑑𝑗

𝑒−𝑖𝜃 − (1 + 𝜖𝑧𝑗)

]
. (5.6)

A short derivation using (5.3) shows that

∫
[−𝜋,𝜋]per

𝐾𝜖(𝜃0 − 𝜃) 𝑑𝜈𝑔(𝜃) =

𝑚∑
𝑗=1

[
𝑐𝑗𝙲𝜈𝑔

(
𝑒𝑖𝜃0(1 + 𝜖𝑧𝑗)

−1
)
− 𝑑𝑗𝙲𝜈𝑔

(
𝑒𝑖𝜃0(1 + 𝜖𝑧𝑗)

)]

=
−1

2𝜋

𝑚∑
𝑗=1

[
𝑐𝑗𝑒

−𝑖𝜃0(1 + 𝜖𝑧𝑗)⟨𝑔, ( − 𝑒𝑖𝜃0(1 + 𝜖𝑧𝑗))
−1𝑔⟩ + 𝑑𝑗⟨( − 𝑒𝑖𝜃0(1 + 𝜖𝑧𝑗))

−1𝑔,∗𝑔⟩].
(5.7)

It follows that we can compute the convolution [𝐾𝜖 ∗ 𝜈𝑔](𝜃0) by evaluating the resolvent at the
𝑚 points {𝑒𝑖𝜃0(1 + 𝜖𝑧𝑗)}

𝑚
𝑗=1

. We use rational kernels because they allow us to compute smoothed
approximations of the spectral measure by applying the resolvent operator to functions.
However, for (5.7) to be a good approximation of 𝜈𝑔, we must carefully select the points 𝑧𝑗 and

the coefficients {𝑐𝑗, 𝑑𝑗} in (5.6). In particular, we would like {𝐾𝜖} to be an 𝑚th order kernel. To
design such a kernel, we carefully consider Lemma A.1. First, we define 𝜁𝑗(𝜖) by the relationship
1 + 𝜖𝜁𝑗(𝜖) = (1 + 𝜖𝑧𝑗)

−1 and use Cauchy’s Residue theorem to show that for any integer 𝑛 ≥ 1,

∫
[−𝜋,𝜋]per

𝐾𝜖(−𝜃)𝑒
𝑖𝑛𝜃 𝑑𝜃 =

1

2𝜋𝑖 ∫𝕋
[

𝑚∑
𝑗=1

𝑐𝑗

𝜆 − (1 + 𝜖𝑧𝑗)−1
−

𝑚∑
𝑗=1

𝑑𝑗

𝜆 − (1 + 𝜖𝑧𝑗)

]
𝜆𝑛 𝑑𝜆

=

𝑚∑
𝑗=1

𝑐𝑗(1 + 𝜖𝑧𝑗)
−𝑛 =

(
𝑚∑
𝑗=1

𝑐𝑗

)
+

𝑛∑
𝑘=1

𝜖𝑘
(𝑛
𝑘

) 𝑚∑
𝑗=1

𝑐𝑗𝜁𝑗(𝜖)
𝑘.
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It follows that condition (A.1) in Lemma A.1 holds if

⎛⎜⎜⎜⎜⎜⎝

1 … 1

𝜁1(𝜖) … 𝜁𝑚(𝜖)

⋮ ⋱ ⋮

𝜁1(𝜖)
𝑚−1 … 𝜁𝑚(𝜖)

𝑚−1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

𝑐1(𝜖)

𝑐2(𝜖)

⋮

𝑐𝑚(𝜖)

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

1

0

⋮

0

⎞⎟⎟⎟⎟⎟⎠
. (5.8)

Note also that, if this holds, the coefficients 𝑐𝑗 = 𝑐𝑗(𝜖) remain bounded as 𝜖 ↓ 0. To ensure that the
decay condition in (A.2) is satisfied, let𝜔 = (𝑒−𝑖𝜃 − 1)∕𝜖. The kernel in (5.6) can then be re-written
as

𝐾𝜖(𝜃) =
𝜖−1𝑒−𝑖𝜃

2𝜋

𝑚∑
𝑗=1

[
𝑐𝑗

𝜔 − 𝜁𝑗(𝜖)
−

𝑑𝑗

𝜔 − 𝑧𝑗

]
. (5.9)

Therefore, we have

𝜔𝐾𝜖(𝜃) =
𝜖−1𝑒−𝑖𝜃

2𝜋

𝑚∑
𝑗=1

[
𝑐𝑗 +

𝑐𝑗𝜁𝑗(𝜖)

𝜔 − 𝜁𝑗(𝜖)
− 𝑑𝑗 −

𝑑𝑗𝑧𝑗

𝜔 − 𝑧𝑗

]

=
𝜖−1𝑒−𝑖𝜃

2𝜋

𝑚∑
𝑗=1

(𝑐𝑗 − 𝑑𝑗) +
𝜖−1𝑒−𝑖𝜃

2𝜋

𝑚∑
𝑗=1

[
𝑐𝑗𝜁𝑗(𝜖)

𝜔 − 𝜁𝑗(𝜖)
−

𝑑𝑗𝑧𝑗

𝜔 − 𝑧𝑗

]
.

By repeating the same argument𝑚 times, we arrive at

𝜔𝑚𝐾𝜖(𝜃) =
𝜖−1𝑒−𝑖𝜃

2𝜋

[
𝑚−1∑
𝑘=0

𝜔𝑚−1−𝑘
𝑚∑
𝑗=1

(𝑐𝑗𝜁𝑗(𝜖)
𝑘 − 𝑑𝑗𝑧

𝑘
𝑗
) +

𝑚∑
𝑗=1

(
𝑐𝑗𝜁𝑗(𝜖)

𝑚

𝜔 − 𝜁𝑗(𝜖)
−

𝑑𝑗𝑧
𝑚
𝑗

𝜔 − 𝑧𝑗

)]
. (5.10)

This means that we should select the 𝑑𝑘’s so that

⎛⎜⎜⎜⎜⎝
1 … 1

𝑧1 … 𝑧𝑚
⋮ ⋱ ⋮

𝑧𝑚−1
1 … 𝑧𝑚−1

𝑚

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
𝑑1
𝑑2
⋮

𝑑𝑚

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1

0

⋮

0

⎞⎟⎟⎟⎟⎠
. (5.11)

We conclude that if the coefficients {𝑐𝑗}𝑚𝑗=1 and {𝑑𝑗}
𝑚
𝑗=1

satisfy (5.8) and (5.11), respectively, then

𝑚−1∑
𝑘=0

𝜔𝑚−1−𝑘
𝑚∑
𝑗=1

(𝑐𝑗𝜁𝑗(𝜖)
𝑘 − 𝑑𝑗𝑧

𝑘
𝑗
) = 0,

||||||
𝑚∑
𝑗=1

(
𝑐𝑗𝜁𝑗(𝜖)

𝑚

𝜔 − 𝜁𝑗(𝜖)
−

𝑑𝑗𝑧
𝑚
𝑗

𝜔 − 𝑧𝑗

)|||||| ≲ |𝜔|−1.
By (5.10), this means that |𝜔|𝑚|𝐾𝜖(𝜃)| ≲ 𝜖−1|𝜔|−1. Moreover, since |𝐾𝜖(𝜃)| ≲ 𝜖−1 we see that|𝐾𝜖(𝜃)| ≲ min{𝜖−1, 𝜖𝑚|𝜃|−(𝑚+1)} ≲ 𝜖𝑚(𝜖 + |𝜃|)−(𝑚+1). Using Lemma A.1, we have proved the
following proposition.

Proposition 5.1. Let {𝑧𝑗}𝑚𝑗=1 be distinct points with positive real part and let 𝐾𝜖 be given by (5.6).
Then, {𝐾𝜖} is an𝑚th order kernel for [−𝜋, 𝜋]per if the coefficients {𝑐𝑗}𝑚𝑗=1 and {𝑑𝑗}

𝑚
𝑗=1

satisfy (5.8) and
(5.11), respectively.
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40 COLBROOK and TOWNSEND

F IGURE 13 The𝑚th-order kernels (5.6) constructed with the choice (5.12) for 𝜖 = 1 and 1 ≤ 𝑚 ≤ 6.

TABLE 1 Coefficients in the rational kernels in (5.6) for 1 ≤ 𝑚 ≤ 6, the choice (5.12), and 𝜖 = 0.1. We give
the first ⌈𝑚∕2⌉ coefficients as 𝑐𝑚+1−𝑗 = 𝑐𝑗 and 𝑑𝑚+1−𝑗 = 𝑑𝑗 .

𝒎 {𝒅𝟏, … , 𝒅⌈𝒎∕𝟐⌉} {𝒄𝟏(𝝐), … , 𝒄⌈𝒎∕𝟐⌉(𝝐)}, 𝝐 = 𝟎.𝟏

2
{

1−3𝑖

2

} {
3+10𝑖

6

}
3 {−2 − 𝑖, 5}

{
−202+79𝑖

80
,
121

20

}
4

{
−39+65𝑖

24
,
17−85𝑖

8

} {
−1165710−2944643𝑖

750000
,
513570+3570527𝑖

250000

}
5

{
15+10𝑖

4
,
−39−13𝑖

2
,
65

2

} {
4052283−1460282𝑖

648000
,
−2393157+486551𝑖

81000
,
190333

4000

}
6

{
725−1015𝑖

192
,
−2775+6475𝑖

192
,
1073−7511𝑖

96

} {
24883929805+81589072062𝑖

8067360000
,
−19967590755−93596942182𝑖

1613472000
,
7898770397+102424504746𝑖

806736000

}

5.2.1 The choice of rational kernel

We are free to choose the points {𝑧𝑗}𝑚𝑗=1 in Proposition 5.1 subject to Re(𝑧𝑗) > 0, after which the
linear systems (5.8) and (5.11) provide suitable {𝑐𝑗}𝑚𝑗=1 (dependent on 𝜖) and {𝑑𝑗}

𝑚
𝑗=1

(independent
of 𝜖). As a natural extension of the Poisson kernel in (3.9), we select the points {𝑧𝑗}𝑚𝑗=1 as

𝑧𝑗 = 1 +

(
2𝑗

𝑚 + 1
− 1

)
𝑖, 1 ≤ 𝑗 ≤ 𝑚. (5.12)

The kernels that we have developed are typically not real-valued. Since 𝜈𝑔 is a probability measure
and hence real-valued, we often gain better accuracy for a particular 𝜖 by considering the kernel
Re(𝐾𝜖), and this is what we do throughout this paper. The convolution with Re(𝐾𝜖) can be com-
puted by taking the real part of the right-hand side of (5.7). The first six kernels with the choice
𝜖 = 1 are shown in Figure 13. The exact coefficients {𝑐𝑗, 𝑑𝑗}𝑚𝑗=1 for 𝜖 = 0.1 are shown in Table 1 for
the first six kernels.
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F IGURE 14 Left: The pointwise relative error in smoothed measures of the operator in (5.5) computed
using the high-order kernels in Section 5.2.1 for 1 ≤ 𝑚 ≤ 6. Right: The pointwise relative error in the computed
smoothed measure using the perturbed 𝐾𝑁𝐾

and 𝜖 ∼ 𝛿1∕(𝑚+1).

5.2.2 Revisiting the examples in Section 5.1.1 and Section 5.1.2

To demonstrate the advantages of high-order rational kernels, we revisit the operator 𝑈 given in
(5.5) and look again at two of the numerical needs for high-order kernels.

∙ A numerical tradeoff. Figure 14 (left) shows the convergence of [𝐾𝜖 ∗ 𝜈𝑔] for the rational
kernels in Section 5.2.1. We see the convergence rates predicted from Theorem 3.1. In practice,
this means that we rarely need to take 𝜖 below 0.01 for very accurate results, and often we take
𝜖 = 0.1.

∙ A stability tradeoff. Let 𝐾𝑁𝐾
be an 𝑁𝐾 × 𝑁𝐾 truncation of  (see Section 5.3 for how we do

this). An important property of our truncations is that ‖𝐾𝑁𝐾
‖ ≤ ‖‖ = 1. Using the standard

Neumann series for the inverse, it follows that any 𝜆 such that |𝜆| > 1 has ‖(𝐾𝑁𝐾
− 𝜆)−1‖ ≤

1∕(|𝜆| − 1). In general, this is the best one can hope for. Suppose that instead of 𝐾𝑁𝐾
, we have

access to �̃�𝑁𝐾
= 𝐾𝑁𝐾

+ Δwith ‖Δ‖ ≤ 𝛿. If |𝜆| = 1 + (𝜖) > 1 + 𝛿, then since ‖�̃�𝑁𝐾
‖ ≤ 1 + 𝛿we

have ‖(�̃�𝑁𝐾
− 𝜆)−1‖ ≤ 1∕(|𝜆| − 1 − 𝛿). Using the second resolvent identity for the first equality,

the relative error is bounded via

‖[(�̃�𝑁𝐾
− 𝜆)−1 − (𝐾𝑁𝐾

− 𝜆)−1]𝑔‖‖(𝐾𝑁𝐾
− 𝜆)−1𝑔‖ =

‖[−(�̃�𝑁𝐾
− 𝜆)−1Δ](𝐾𝑁𝐾

− 𝜆)−1𝑔‖‖(𝐾𝑁𝐾
− 𝜆)−1𝑔‖

≤ ‖(�̃�𝑁𝐾
− 𝜆)−1Δ‖ ≤ 𝛿|𝜆| − 1 − 𝛿

= (𝜖−1𝛿).
Theorems 3.1 and 3.2 show that an 𝑚th order kernel provides error rates of (𝜖𝑚 log(𝜖−1)) as
𝜖 → 0. Therefore, we have an error that is asymptotically of size(𝜖𝑚 log(𝜖−1)) fromusing a ker-
nel and(𝜖−1𝛿) from using a perturbed version of𝐾𝑁𝐾

. We assume that𝑁𝐾 is sufficiently large
to render the truncation error negligible. By selecting 𝜖 = 𝛿1∕(𝑚+1), we balance these two errors
and have an overall error of (𝛿 𝑚

𝑚+1 log(𝛿−1)). For large𝑚, the convergence rate is close to the
optimal rate of(𝛿). In Figure 14 (right), we show the relative error |𝜈𝜖𝑔(0.2) − 𝜌𝑔(0.2)|∕|𝜌𝑔(0.2)|
when using truncations where each entry is perturbed by independent normal
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42 COLBROOK and TOWNSEND

random variables of mean 0 and standard deviation 𝛿.23 We have chosen 𝑁𝐾 sufficiently
large and 𝜖 ∼ 𝛿1∕(𝑚+1). The error is averaged over 50 trials so that we show the expected
convergence rates.

5.3 An algorithm for evaluating a smoothed spectral measure

We now seek to evaluate [𝐾𝜖 ∗ 𝜈𝑔] at 𝜃1, … , 𝜃𝑃 ∈ [−𝜋, 𝜋]per, where {𝐾𝜖} is a rational kernel of
the form (5.6). This requires the evaluation of ( − 𝜆)−1 for different values of 𝜆 (see (5.7)). We
first describe how to evaluate [𝐾𝜖 ∗ 𝜈𝑔] at a single point 𝜃0 before precomputing a factorization to
derive an efficient scheme for evaluating at 𝜃1, … , 𝜃𝑃.

5.3.1 Evaluating a smoothed spectral measure at a single point

To evaluate [𝐾𝜖 ∗ 𝜈𝑔] at a single point 𝜃0 ∈ [−𝜋, 𝜋]per, we use the setup of ResDMD (see Sec-
tion 4.1) so that we can obtain rigorous a posteriori error bounds on the computed resolvents,
allowing us to adaptively select the dictionary size𝑁𝐾 based on the smoothing parameter 𝜖. Since is an isometry, we only need to compute ( − 𝑧)−1 for |𝑧| > 1 = ‖‖ and so we can achieve
our goal with standard Galerkin truncations of.
Theorem 5.1. Suppose that is an isometry and 𝜆 ∈ ℂ with |𝜆| > 1. Let 𝜓1, 𝜓2, … be a dictionary
of observables and 𝑉𝑁𝐾

= span{𝜓1, … , 𝜓𝑁𝐾
}, so that ∪𝑁𝐾∈ℕ𝑉𝑁𝐾

is dense in 𝐿2(Ω, 𝜔). Then, for any
sequence of observables 𝑔𝑁𝐾

∈ 𝑉𝑁𝐾
such that lim𝑁𝐾→∞ 𝑔𝑁𝐾

= 𝑔 ∈ 𝐿2(Ω, 𝜔),

lim
𝑁𝐾→∞

(𝑉𝑁𝐾
∗

𝑉𝑁𝐾
− 𝜆𝐼𝑁𝐾

)−1
𝑔𝑁𝐾

= ( − 𝜆)−1𝑔,

where 𝑉𝑁𝐾
is the orthogonal projection operator onto 𝑉𝑁𝐾

and 𝐼𝑁𝐾
is the𝑁𝐾 × 𝑁𝐾 identity matrix.

Proof. Since |𝜆| > ‖‖ and ‖𝑉𝑁𝐾
∗

𝑉𝑁𝐾
‖ ≤ ‖‖, we have the following absolutely convergent

Neumann series:

(𝑉𝑁𝐾
∗

𝑉𝑁𝐾
− 𝜆𝐼𝑁𝐾

)−1
= −

1

𝜆

∞∑
𝑘=0

1

𝜆𝑘
(𝑉𝑁𝐾

∗
𝑉𝑁𝐾

)𝑘, ( − 𝜆)−1 = −
1

𝜆

∞∑
𝑘=0

1

𝜆𝑘
𝑘.

Using |𝜆| > ‖‖, we can bound the tails of these series uniformly in 𝑁𝐾 so we just need to show
that (𝑉𝑁𝐾

∗
𝑉𝑁𝐾

)𝑘 converges strongly to 𝑘 for 𝑘 ≥ 0. This clearly holds for 𝑘 = 0 and 𝑘 = 1.
For 𝑘 > 1, we apply induction using the fact that if a sequence of matrices 𝑇𝑁𝐾

and 𝑆𝑁𝐾
converge

strongly to  and  , respectively, then the product 𝑇𝑁𝐾
𝑆𝑁𝐾

converges strongly to the composition
 ◦ . □

We now apply Theorem 5.1 to evaluate [𝐾𝜖 ∗ 𝜈𝑔] at 𝜃0. Recall from (5.7) that there are two types
of inner products to compute: (i) ⟨𝑔, ( − 𝜆)−1𝑔⟩ and (ii) ⟨( − 𝜆)−1𝑔,∗𝑔⟩ for some observ-
able 𝑔. We form a sequence of observables 𝑔𝑁𝐾

∈ 𝑉𝑁𝐾
by setting 𝑔𝑁𝐾

= 𝑉𝑁𝐾
𝑔, which can be

23 Strictly speaking, the operator norm of this perturbation need not be bounded by 𝛿, but the scaling argument for the
choice 𝜖 = 𝛿1∕(𝑚+1) remains the same.
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approximated from the snapshot data as

𝑔𝑁𝐾
=

𝑁𝐾∑
𝑗=1

𝑎𝑎𝑎𝑗𝜓𝑗, 𝑎𝑎𝑎 = (Ψ∗
𝑋𝑊Ψ𝑋)

−1Ψ∗
𝑋𝑊

⎡⎢⎢⎢⎣
𝑔(𝑥𝑥𝑥(1))

⋮

𝑔(𝑥𝑥𝑥(𝑀))

⎤⎥⎥⎥⎦ ∈ ℂ𝑁𝐾 , (5.13)

where Ψ𝑋 and 𝑊 are given in Section 4.1.1. Under suitable conditions, such as those discussed
in Section 4.1.3, lim𝑀→∞ 𝑔𝑁𝐾

= 𝑔𝑁𝐾
. Since

(𝑉𝑁𝐾
∗

𝑉𝑁𝐾
− 𝜆𝐼𝑁𝐾

)−1
𝑔𝑁𝐾

= lim
𝑀→∞

𝑁𝐾∑
𝑗=1

[
(Ψ∗

𝑋𝑊Ψ𝑌 − 𝜆Ψ∗
𝑋𝑊Ψ𝑋)

−1Ψ∗
𝑋𝑊Ψ𝑋𝑎𝑎𝑎

]
𝑗
𝜓𝑗,

it follows that our two types of inner products satisfy⟨
𝑔𝑁𝐾

,
(𝑉𝑁𝐾

∗
𝑉𝑁𝐾

− 𝜆𝐼𝑁𝐾

)−1
𝑔𝑁𝐾

⟩
= lim

𝑀→∞
𝑎𝑎𝑎∗Ψ∗

𝑋𝑊Ψ𝑋(Ψ
∗
𝑋𝑊Ψ𝑌 − 𝜆Ψ∗

𝑋𝑊Ψ𝑋)−1Ψ
∗
𝑋𝑊Ψ𝑋𝑎𝑎𝑎,

(5.14)⟨(𝑉𝑁𝐾
∗

𝑉𝑁𝐾
− 𝜆𝐼𝑁𝐾

)−1
𝑔𝑁𝐾

,∗𝑔𝑁𝐾

⟩
= lim

𝑀→∞
𝑎𝑎𝑎∗Ψ∗

𝑋𝑊Ψ𝑌(Ψ
∗
𝑋𝑊Ψ𝑌 − 𝜆Ψ∗

𝑋𝑊Ψ𝑋)
−1Ψ∗

𝑋𝑊Ψ𝑋𝑎𝑎𝑎.

(5.15)

For a given value of𝑀, the right-hand side of (5.14) and (5.15) can then be substituted into (5.7) to
evaluate [𝐾𝜖 ∗ 𝜈𝑔](𝜃0). Often we can estimate the error between these computed inner products
and the limiting value as 𝑀 → ∞ by comparing the computations for different 𝑀 or by using a
priori knowledge of the convergence rates. In Appendix C, we show how 𝑁𝐾 can be adaptively
chosen (by approximating the error in the large data limit and adding observables to the dictionary
if required) so that we approximate the inner products ⟨𝑔, ( − 𝜆)−1𝑔⟩ and ⟨( − 𝜆)−1𝑔,∗𝑔⟩ to
a desired accuracy. Thus, for a given smoothing parameter 𝜖, we have a principled way of select-
ing (a) the sample size 𝑀 and (b) the truncation size 𝑁𝐾 to ensure that our approximations
of the inner products in (5.7) are accurate. In general, the cost of point evaluation of [𝐾𝜖 ∗ 𝜈𝑔]

using these formulas is (𝑁3
𝐾) operations as it requires 𝑚 solutions of 𝑁𝐾 × 𝑁𝐾 dense linear

systems.

5.3.2 Evaluating a smoothed spectral measure at multiple points

To evaluate [𝐾𝜖 ∗ 𝜈𝑔] at 𝜃1, … , 𝜃𝑃 ∈ [−𝜋, 𝜋]per, one can be more computationally efficient than
independently computing each of the inner products in (5.14) and (5.15) for each 𝜃𝑘 for 1 ≤ 𝑘 ≤ 𝑃.
Instead, one can compute a generalized Schur decomposition and to speed up the evaluation.
Let Ψ∗

𝑋𝑊Ψ𝑌 = 𝑄𝑆𝑍∗ and Ψ∗
𝑋𝑊Ψ𝑋 = 𝑄𝑇𝑍∗ be a generalized Schur decomposition, where 𝑄 and

𝑍 are unitary matrices, and 𝑆 and 𝑇 are upper-triangular matrices. With this decomposition in
hand,

𝑎𝑎𝑎∗Ψ∗
𝑋𝑊Ψ𝑋(Ψ

∗
𝑋𝑊Ψ𝑌 − 𝜆Ψ∗

𝑋𝑊Ψ𝑋)
−1Ψ∗

𝑋𝑊Ψ𝑋𝑎𝑎𝑎 = 𝑎𝑎𝑎∗𝑄𝑇(𝑆 − 𝜆𝑇)−1𝑇𝑍∗𝑎𝑎𝑎,

𝑎𝑎𝑎∗Ψ∗
𝑋𝑊Ψ𝑌(Ψ

∗
𝑋𝑊Ψ𝑌 − 𝜆Ψ∗

𝑋𝑊Ψ𝑋)
−1Ψ∗

𝑋𝑊Ψ𝑋𝑎𝑎𝑎 = 𝑎𝑎𝑎∗𝑄𝑆(𝑆 − 𝜆𝑇)−1𝑇𝑍∗𝑎𝑎𝑎.
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44 COLBROOK and TOWNSEND

F IGURE 15 Left: Physical setup of the double pendulum. Right: Computed spectral measures for four
observables 𝑔. The constants 𝐶𝑗 are normalization factors so that ‖𝑔‖ = 1.

Now, after computing the generalized Schur decomposition costing(𝑁3
𝐾) operations, each eval-

uation requires solving𝑁𝐾 × 𝑁𝐾 upper-triangular linear systems in(𝑁2
𝐾) operations. Additional

computational savings can be realized if one iswilling to do each evaluation at 𝜃1, … , 𝜃𝑃 in parallel.
We summarize the evaluation scheme in Algorithm 4.

5.4 Numerical example: The double pendulum

The double pendulum is shown in Figure 15 (left) and is a physical system that exhibits rich
dynamic behavior. It is chaotic and, after a suitable scaling of physical constants, governed by
the following system of ordinary differential equations [82]:

�̇�1 =
2𝑝1 − 3𝑝2 cos(𝜃1 − 𝜃2)

16 − 9 cos2(𝜃1 − 𝜃2)
, �̇�2 =

8𝑝2 − 3𝑝1 cos(𝜃1 − 𝜃2)

16 − 9 cos2(𝜃1 − 𝜃2)
,

�̇�1 = −3
(
�̇�1�̇�2 sin(𝜃1 − 𝜃2) + sin(𝜃1)

)
, �̇�2 = −3

(
−�̇�1�̇�2 sin(𝜃1 − 𝜃2) +

1

3
sin(𝜃2)

)
,

where 𝑝1 = 8�̇�1 + 3�̇�2 cos(𝜃1 − 𝜃2) and 𝑝2 = 2�̇�2 + 3�̇�1 cos(𝜃1 − 𝜃2). The state is 𝑥𝑥𝑥 =

(𝜃1, 𝜃2, 𝑝1, 𝑝2) in Ω = [−𝜋, 𝜋]2per × ℝ2. We consider the Koopman operator corresponding
to discrete time-steps with Δ𝑡 = 1. The system is Hamiltonian; hence,  is unitary on 𝐿2(Ω, 𝜔)

with the usual Lebesgue measure.
To compute the resolvent, we use Algorithm 4 with a dictionary consisting of tensor-products

of the Fourier basis in 𝑥1 and 𝑥2, and Hermite functions in 𝑥3 and 𝑥4, together with an ordering
corresponding to a hyperbolic cross approximation. We simulate the dynamics using the ode45
command in MATLAB for a single time-step on an equispaced grid and use the trapezoidal rule.
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The chaotic nature of the dynamical system is not a problem aswe only collect snapshot data from
trajectories with one time step. Following the procedure outlined in Section 5.3, the maximum
value of𝑀 used in this example is 1,562,500, and the maximum value of 𝑁𝐾 used is 2528.
Figure 15 (right) shows spectral measures for four observables computed using the 6th order

kernel in Table 1 with 𝜖 = 0.1. The results are verified against the 6th order kernel with smaller 𝜖
and a larger𝑁𝐾 . We also show the results for the Poisson kernel (𝑚 = 1), which produces an over-
smoothed estimate of 𝜈𝑔. The Fourier observables (top row) display a pronounced peak at 𝜃 = 0

and relatively flat spectral measures away from zero. In contrast, the Hermite observables (bottom
row) display no peak at 𝜃 = 0 and a broader spectral measure away from zero. These observables
have a richer interplay with the dynamics, and their spectral measures are more spread out over
the spectrum of the Koopman operator.

6 HIGH-DIMENSIONAL DYNAMICAL SYSTEMS

In the numerical examples of Sections 4 and 5, the dimension of the state-space of (1.1) is modest.
However, it can be very difficult to explicitly store a dictionary for larger dimensions that arise
in applications such as fluid dynamics, molecular dynamics, and climate forecasting. DMD is a
popular approach to studying Koopman operators associated with high-dimensional dynamics.
It can yield accurate results for periodic or quasiperiodic systems but can often not adequately
capture relevant nonlinear dynamics [6, 21, 138] as it implicitly seeks to fit linear dynamics. More-
over, a rigorous connection with Galerkin approximations of Koopman operators only sometimes
holds [132].
When 𝑑 is large, we are naturally in the setting of 𝑁𝐾 ≫ 𝑀 as a sufficiently rich dictionary

must be selected. In other words, the dimension of the dictionary subspace is usually much larger
than the snapshot data when 𝑑 is large. How can we approximate spectral properties of  when
𝑑 is large and 𝑁𝐾 ≫ 𝑀? This section extends our algorithms to high dimensions and provides
applications tomolecular dynamics and the study of noise leakage of turbulent flow past a cascade
of airfoils.

6.1 Adapting our algorithms to use data-driven dictionaries

Our main idea to tackle large 𝑑 is to construct a data-driven dictionary using the kernel trick. We
use the error control aspect of ResDMD to verify the learned dictionary aposteri.

6.1.1 Kernelized EDMD

A naive construction of the matrix Ψ∗
𝑋𝑊Ψ𝑌 in Section 4.1.1 requires (𝑁2

𝐾𝑀) operations, which
becomes impractical when 𝑁𝐾 is large. Kernelized EDMD [139] aims to make EDMD practical
for large 𝑁𝐾 . The idea is to compute a much smaller matrix 𝐾EDMD that has a subset of the same
eigenvalues as 𝐾EDMD.

Proposition 6.1 Proposition 1 of [139] with additional weight matrix. Let
√
𝑊Ψ𝑋 = 𝑈Σ𝑉∗ be

a SVD, where 𝑈 ∈ ℂ𝑀×𝑀 is a unitary matrix, Σ ∈ ℂ𝑀×𝑀 is a diagonal matrix with nonincreasing
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46 COLBROOK and TOWNSEND

nonnegative entries, and 𝑉 ∈ ℂ𝑁𝐾×𝑀 is an isometry. Define the𝑀 ×𝑀 matrix

𝐾EDMD = (Σ†𝑈∗)(
√
𝑊Ψ𝑌Ψ

∗
𝑋

√
𝑊)(𝑈Σ†),

where ‘†’ is the pseudoinverse. Then, for some 𝜆 ≠ 0 and 𝑣 ∈ ℂ𝑀 , (𝜆, 𝑣) is an eigenvalue-eigenvector
pair of 𝐾EDMD if and only if (𝜆, 𝑉𝑣) is an eigenvalue-eigenvector pair of 𝐾EDMD.

Suitable matrices 𝑈 and Σ in Proposition 6.1 can be recovered from the eigenvalue
decomposition

√
𝑊Ψ𝑋Ψ

∗
𝑋

√
𝑊 = 𝑈Σ2𝑈∗. Moreover, both matrices

√
𝑊Ψ𝑋Ψ

∗
𝑋

√
𝑊 ∈ ℂ𝑀×𝑀 and√

𝑊Ψ𝑌Ψ
∗
𝑋

√
𝑊 ∈ ℂ𝑀×𝑀 can be computed using inner products:

[
√
𝑊Ψ𝑋Ψ

∗
𝑋

√
𝑊]𝑗𝑘 =

√
𝑤𝑗Ψ(𝑥𝑥𝑥

(𝑗))Ψ(𝑥𝑥𝑥(𝑘))∗
√
𝑤𝑘, [

√
𝑊Ψ𝑌Ψ

∗
𝑋

√
𝑊]𝑗𝑘 =

√
𝑤𝑗Ψ(𝑦𝑦𝑦

(𝑗))Ψ(𝑥𝑥𝑥(𝑘))∗
√
𝑤𝑘,

(6.1)

where we recall that Ψ(𝑥𝑥𝑥) is a row vector of the dictionary evaluated at 𝑥𝑥𝑥.24 Kernelized EDMD
applies the kernel trick to compute the inner products in (6.1) in an implicitly defined repro-
ducing Hilbert space  with inner product ⟨⋅, ⋅⟩ [112]. A positive-definite kernel function  ∶

Ω × Ω → ℝ induces a feature map 𝜑 ∶ ℝ𝑑 →  so that ⟨𝜑(𝑥𝑥𝑥), 𝜑(𝑥𝑥𝑥′)⟩ = (𝑥𝑥𝑥,𝑥𝑥𝑥′). This leads to
a choice of dictionary (or reweighted feature map) Ψ(𝑥𝑥𝑥) so that Ψ(𝑥𝑥𝑥)Ψ(𝑥𝑥𝑥′)∗ = ⟨𝜑(𝑥𝑥𝑥), 𝜑(𝑥𝑥𝑥′)⟩ =

(𝑥𝑥𝑥,𝑥𝑥𝑥′). Often  can be evaluated in (𝑑) operations so that the matrices √𝑊Ψ𝑋Ψ
∗
𝑋

√
𝑊 and√

𝑊Ψ𝑌Ψ
∗
𝑋

√
𝑊 can be computed in (𝑑𝑀2) operations. 𝐾EDMD can thus be constructed in

(𝑑𝑀2) operations, a considerable saving, with a significant reduction in memory consumption.
As a naive first attempt at extending our algorithms this way, one could consider Algorithm 2

with kernelized EDMD. The residual for a vector 𝑣 ∈ ℂ𝑀 becomes

𝑣∗[(Ψ𝑌𝑉)
∗𝑊(Ψ𝑌𝑉) − 𝜆(Ψ𝑌𝑉)

∗𝑊(Ψ𝑋𝑉) − 𝜆(Ψ𝑋𝑉)
∗𝑊(Ψ𝑌𝑉) + |𝜆|2(Ψ𝑋𝑉)

∗𝑊(Ψ𝑋𝑉)]𝑣

𝑣∗(Ψ𝑋𝑉)∗𝑊(Ψ𝑋𝑉)𝑣∗
. (6.2)

Unfortunately, the following simple proposition shows that the residual in (6.2) always vanishes.
This should be interpreted as over-fitting of the snapshot data when 𝑁𝐾 ≥ 𝑀.

Proposition 6.2. Suppose that 𝑁𝐾 ≥ 𝑀 and
√
𝑊Ψ𝑋 has rank 𝑀 (independent rows). For any

eigenvalue-eigenvector pair 𝜆 and 𝑣 ∈ ℂ𝑀 of 𝐾EDMD, the residual in (6.2) vanishes.

Proof. The numerator in (6.2) is the square of the 𝓁2-vector norm of
√
𝑊(Ψ𝑌 − 𝜆Ψ𝑋)𝑉𝑣. From

the decomposition
√
𝑊Ψ𝑋 = 𝑈Σ𝑉∗, we see that√

𝑊(Ψ𝑌 − 𝜆Ψ𝑋)𝑉𝑣 =
√
𝑊Ψ𝑌𝑉𝑣 − 𝜆𝑈Σ𝑣 =

√
𝑊Ψ𝑌Ψ

∗
𝑋

√
𝑊𝑈Σ†𝑣 − 𝜆𝑈Σ𝑣.

Since Σ is invertible,
√
𝑊Ψ𝑌Ψ

∗
𝑋

√
𝑊𝑈Σ† = 𝑈Σ𝐾EDMD. Hence,

√
𝑊(Ψ𝑌 − 𝜆Ψ𝑋)𝑉𝑣 =

𝑈Σ(𝐾EDMD − 𝜆)𝑣 = 0. □

In other words, the restriction𝑁𝐾 ≥ 𝑀 prevents the large data convergence (𝑀 → ∞) of Algo-
rithm 2 for fixed 𝑁𝐾 . Moreover, the residual in (6.2) may not fit into the 𝐿2(Ω, 𝜔) Galerkin

24 This is the transpose of the convention in [139].
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framework because of the implicit reproducing Hilbert space. A way to overcome these issues
is to consider two sets of snapshot data (see Section 6.1.2).

6.1.2 Kernelized versions of the algorithms

Kernelized EDMD computes the eigenvalues, eigenvectors, and corresponding Koopman modes
of 𝐾EDMD. The required operations to compute these quantities are inner products and hence can
be computed by evaluating . In particular, the 𝑘th eigenfunction𝜓𝑘 corresponding to eigenvector
𝑣𝑘 ∈ ℂ𝑀 of 𝐾EDMD can be evaluated as [139, Remark 8]

𝜓𝑘(𝑥𝑥𝑥) =
[(𝑥𝑥𝑥,𝑥𝑥𝑥(1)) (𝑥𝑥𝑥,𝑥𝑥𝑥(2)) ⋯ (𝑥𝑥𝑥,𝑥𝑥𝑥(𝑀))

]
(𝑈Σ†)𝑣𝑘, 𝑘 = 1,… ,𝑀. (6.3)

This leads to the simple kernelization of our algorithms summarized in Algorithm 5. The idea is
a two-step process: (1) We use kernelized EDMDwith a data set {𝑥𝑥𝑥(𝑗), 𝑦𝑦𝑦(𝑗)}𝑀

′

𝑗=1
to compute a dictio-

nary corresponding to the dominant eigenfunctions of 𝐾EDMD and (2) We apply our algorithms
using this dictionary on another set {�̂�𝑥𝑥(𝑗)

, �̂�𝑦𝑦
(𝑗)
}𝑀

′′

𝑗=1
of snapshot data. Of course, there are many

algorithmic details regarding the choice of kernel, the second set of snapshot data, and how to a
posteriori check that the learned dictionary is suitable. We describe these details now:

∙ Choice of kernel: The choice of kernel  determines the dictionary, and the best choice
depends on the application. In the following experiments, we use the Gaussian radial basis
function kernel

(𝑥𝑥𝑥,𝑦𝑦𝑦) = exp
(
−𝛾‖𝑥𝑥𝑥 − 𝑦𝑦𝑦‖2). (6.4)

We select 𝛾 as the squared reciprocal of the average 𝓁2-norm of the snapshot data after it is
shifted to mean zero.

∙ Regularization: The matrix
√
𝑊Ψ𝑋Ψ

∗
𝑋

√
𝑊 can be ill-conditioned [10], in which case we

can regularize and consider
√
𝑊Ψ𝑋Ψ

∗
𝑋

√
𝑊 + 𝜂‖√𝑊Ψ𝑋Ψ

∗
𝑋

√
𝑊‖ for small 𝜂 or consider a

more stable representation of the range of the feature map. This is standard practice in DMD.
However, we found that it was often not needed for Algorithm 5, due to steps 3 and 4.

∙ Acquiring a second set of snapshot data: Given snapshot data with random and indepen-
dent initial conditions, one can split the snapshot data up into two parts {𝑥𝑥𝑥(𝑗), 𝑦𝑦𝑦(𝑗)}𝑀

′

𝑗=1
and

{�̂�𝑥𝑥
(𝑗)
, �̂�𝑦𝑦

(𝑗)
}𝑀

′′

𝑗=1
, where 𝑀 = 𝑀′ +𝑀′′. For initial conditions distributed according to a quadra-

ture rule, if one already has access to𝑀′ snapshots, one must typically go back to the original
dynamical system and request𝑀′′ further snapshots. In both cases, we denote the total amount
of snapshot data as 𝑀 = 𝑀′ +𝑀′′. The first set of 𝑀′ snapshots is used in the kernelized
approach to refine a large initial dictionary of size 𝑁′

𝐾 (implicitly defined by the chosen ker-
nel) to a smaller data-driven one of size 𝑁′′

𝐾 , while the second set of𝑀
′′ snapshots are used to

apply our ResDMD algorithms. We recommend that𝑀′′ ≥ 𝑀′.
∙ Selecting the second dictionary: We start with a large dictionary of size 𝑁′

𝐾 and apply
a kernelized approach to construct a second dictionary of size 𝑁′′

𝐾 . To construct the second
dictionary, we compute the dominant 𝑁′′

𝐾 eigenvectors of 𝐾EDMD that hopefully capture the
essential dynamics. In this paper, we compute a complete eigendecomposition of𝐾EDMD; how-
ever, for problems with extremely large 𝑀′, iterative methods are recommended to compute
these dominant eigenvectors.
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48 COLBROOK and TOWNSEND

F IGURE 16 Left: Structure of ADK, which has three domains: CORE (green), LID (yellow) and NMP (red).
Middle and right: Spectral measures with respect to the dihedral angles of the selected residues.

∙ Rigorous results: It is well-known that the eigenvalues computed by kernel EDMD may suf-
fer from spectral pollution. In our setting, we do not directly use kernel EDMD to compute
eigenvalues of . Instead, we only use kernel EDMD to select a good dictionary of size 𝑁′′

𝐾 ,
after which our rigorous algorithms can be used (see Algorithms 2 to 4, with convergence as
𝑀′′ → ∞).

∙ A posteriori check of the second dictionary: We use {�̂�𝑥𝑥(𝑗)
, �̂�𝑦𝑦

(𝑗)
}𝑀

′′

𝑗=1
to check the quality of

the constructed second dictionary. By studying the residuals and using the error control in
Theorem B.1, we can tell a posteriori whether the second dictionary is satisfactory and 𝑁′′

𝐾 is
sufficiently large.

6.2 Example: MD simulation of the Adenylate Kinase enzyme
(𝒅 = 𝟐𝟎𝟎𝟒𝟔)

Molecular dynamics (MD) analyzes the movement of atoms and molecules by numerically solv-
ing Newton’s equations of motion for a system of interacting particles. Energies and forces
between particles are typically computed using potentials. MD is arguably one of the most robust
approaches for simulating macromolecular dynamics, primarily due to the availability of full
atomistic detail [43]. Recently, DMD-type and Koopman techniques are impacting MD [74, 97,
113, 114]. For example, [73] applies kernel EDMD to the positions of the carbon atoms in n-butane
(𝑑 = 12) and shows that the EDMD eigenfunctions parameterize a dihedral angle that controls
crucial dynamics.
Here, we study trajectory data from the dynamics of Adenylate Kinase (ADK), which is an

enzyme (see Figure 16) that catalyzes important phosphate reactions in cellular biology [56].
ADK is a common benchmark enzyme in MD [116] and consists of 3341 atoms split into 214
residues (specific monomers that can be thought of as parts). The trajectory data comes from
an all-atom equilibrium simulation for 1.004 × 10−6s, with a so-called CHARMM force field that
is produced on PSC Anton [118] and publicly available [8]. The data consists of a single trajectory
of the positions of all atoms as ADK moves. To make the system Hamiltonian, we append the
data with approximations of the velocities computed using centered finite differences. This leads
to 𝑑 = 6 × 3341 = 20046. We vertically stack the data (as discussed in Section 4) and sample the
trajectory data every 240 × 10−12s so that𝑀 = 4184.
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To apply the kernelized version of Algorithm 4, we subselect𝑀′ = 2000 initial conditions from
the trajectory data and used the Gaussian radial basis function kernel in (6.4). We select 𝑁′′

𝐾 =

1000 EDMD eigenfunctions and append the dictionary with the four observables of interest that
are discussed below. Accuracy of the corresponding matrices in (4.7) is verified by comparing to
smaller𝑀′′ and also by computing pseudospectra with Algorithm 3.
ADK has three parts of its molecule called CORE, LID, and NMP (see Figure 16 (left)). The

LID and NMP domains move around the stable CORE. We select the most mobile residue from
the LID and NMP domains by computing root-mean-square-fluctuations. These residues have
canonical dihedral angles (𝜙, 𝜓) defined on the backbone atoms [103] that determine the over-
all shape of the residue. Figure 16 (middle, right) shows the spectral measures with respect
to these dihedral angles (where we have subtracted the mean angle value) for both selected
residues. These spectral measures are computed using the sixth-order rational kernel with 𝜖 = 0.1

(see Table 1). The computed spectral measures are verified with higher order kernels and smaller
𝜖, and through comparison with a polynomial kernel  instead of a Gaussian radial basis func-
tion kernel. The spectral measures for the angles in the LID residue are much broader than for
the NMP residue. This hints at a more complicated dynamical interaction and may have biolog-
ical consequences. We hope that this example can be a catalyst for the use of spectral measures
in MD.

6.3 Example: Turbulent flow past a cascade of aerofoils (𝒅 = 𝟐𝟗𝟓𝟏𝟐𝟐)

Some of themost successful applications of DMD are in fluid dynamics [24, 27, 90, 107, 128]. Here,
we consider a large-scale wall-resolved turbulent flow past a periodic cascade of aerofoils with a
stagger angle 56.9◦ and a one-sided tip gap. The setup is motivated by the need to reduce noise
sources from flying objects [100]. We use a high-fidelity simulation that solves the fully nonlinear
Navier–Stokes equations [76] with Reynolds number 3.88 × 105 andMach number 0.07. The data
consists of a 2D slice of the pressure field, measured at 295,122 points, for trajectories of length
798 that are sampled every 2 × 10−5s. We stack the data in the form of (4.1) so that𝑀 = 797.
To apply the kernelized version of Algorithm 2, we subselect𝑀′ = 350 initial conditions from

the trajectory data and used the Gaussian radial basis function kernel in (6.4). We select 𝑁′′
𝐾 =

250 EDMD eigenfunctions as our dictionary. Accuracy of the corresponding matrices in (4.7) is
verified by comparing to smaller𝑀′′ and also by computing pseudospectra with Algorithm 3.
Figure 17 shows the computed Koopman modes for a range of representative frequencies. We

also show the corresponding Koopman modes computed using DMD. In the case of DMD and
ResDMD, each mode is only defined up to a global phase. Moreover, the color maps for each 𝜆

differ because of the pressure modulus variations with frequency. For the first row of Figure 17,
ResDMD shows stronger acoustic waves between the cascades. Detecting these vibrations is
important as they can damage turbines in engines [99]. For the second and third row of Figure 17,
ResDMD shows larger scale turbulent fluctuations past the trailing edge corresponding to the
figure’s right. This can be crucial for understanding acoustic interactions with nearby structures
such as subsequent blade rows [140]. DMD shows a clear acoustic source for the third row
just above the wing. This source is less distinct in the case of ResDMD because of nonlinear
interference. The residuals for ResDMD are also shown and are small, particularly given the
enormous state-space dimension. This example demonstrates two benefits of the kernelized
version of ResDMD (see Algorithms 2 and 3) compared with DMD: (1) ResDMD can capture the
nonlinear dynamics, and (2) It computes residuals as well, thus providing an accuracy certificate.
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50 COLBROOK and TOWNSEND

F IGURE 17 Left column: Modes computed by DMD. Right column: Modes computed by ResDMD with
computed residuals. Each row corresponds to the different values of 𝜆 that correspond to certain physical
frequencies of noise pollution.
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APPENDIX A: A USEFUL CRITERION FOR𝒎th ORDER KERNELS
The following lemma is used to prove Proposition 3.1 and build𝑚th order rational kernels of the
form (5.6). It provides sufficient conditions for a family of integrable functions to be an𝑚th order
kernel.

Lemma A.1. Let {𝐾𝜖 ∶ 𝜖 ∈ (0, 1]} be a family of integrable functions on the periodic interval
[−𝜋, 𝜋]per that integrate to 1. Suppose that there exists a constant 𝐶 such that for any integer 𝑛 with
0 < 𝑛 ≤ 𝑚 − 1, ||||||∫[−𝜋,𝜋]per 𝐾𝜖(−𝜃)𝑒

𝑖𝑛𝜃𝑑𝜃 − 1

|||||| ≤ 𝐶𝜖𝑚 log(𝜖−1), (A.1)

and such that |𝐾𝜖(𝜃)| ≤ 𝐶𝜖𝑚

(𝜖 + |𝜃|)𝑚+1
, (A.2)

for any 𝜃 ∈ [−𝜋, 𝜋]per and 𝜖 ∈ (0, 1]. Then {𝐾𝜖} is an𝑚th order kernel for [−𝜋, 𝜋]per.

Proof of Lemma A.1. There are three properties that an 𝑚th order kernel must satisfy (see Def-
inition 3.1). The lemma statement already assumes properties (i) and (iii). To show part (ii)
of Definition 3.1, let 𝑛 be an integer and consider 𝜃𝑛 with 𝑛 < 𝑚. We use the convergent power
series for the principal branch of the logarithm around 1 to write, for 𝜃 ∈ [−𝜋∕4, 𝜋∕4],

𝜃𝑛 =

∞∑
𝑘=1

𝑎𝑘,𝑛(𝑒
𝑖𝜃 − 1)𝑘 =

𝑚−1∑
𝑘=1

𝑎𝑘,𝑛(𝑒
𝑖𝜃 − 1)𝑘

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
=𝑝𝑛,𝑚(𝜃)

+𝜃𝑚
(𝑒𝑖𝜃 − 1)𝑚

𝜃𝑚

∞∑
𝑘=𝑚

𝑎𝑘,𝑛(𝑒
𝑖𝜃 − 1)𝑘−𝑚

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=ℎ𝑛,𝑚(𝜃)

,

where 𝑎𝑘,𝑛 ∈ ℂ and the domain of the trigonometric polynomial 𝑝𝑛,𝑚 is extended to
[−𝜋, 𝜋]per. We note that ℎ𝑛,𝑚(𝜃) is a bounded continuous function on [−𝜋∕4, 𝜋∕4]. Since| ∫

[−𝜋,𝜋]per
𝐾𝜖(−𝜃)𝑝𝑛,𝑚(𝜃)𝑑𝜃 − 𝑝𝑛,𝑚(0)| ≲ 𝜖𝑚 log(𝜖−1), we know by (A.2) that

|||||∫
𝜋∕4

−𝜋∕4

𝜃𝑛𝐾𝜖(−𝜃) 𝑑𝜃
||||| ≲ ∫

𝜋∕(4𝜖)

0

𝜖𝑚𝜏𝑚

(1 + 𝜏)𝑚+1
𝑑𝜏 + ∫|𝜃|>𝜋∕4|𝐾𝜖(−𝜃)||𝑝𝑛,𝑚(𝜃)|𝑑𝜃 + 𝜖𝑚 log(𝜖−1)

≲ 𝜖𝑚 log(𝜖−1) + ∫|𝜃|>𝜋∕4
𝜖𝑚‖𝑝𝑛,𝑚‖𝐿∞
(𝜖 + 𝜋∕4)𝑚+1

𝑑𝜃 ≲ 𝜖𝑚 log(𝜖−1).
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Furthermore, by (A.2) we obtain

|||||∫[−𝜋,−𝜋∕4)∪(𝜋∕4,𝜋] 𝜃𝑛𝐾𝜖(−𝜃) 𝑑𝜃
||||| ≤ 𝜋𝑛(2𝜋 − 𝜋∕2)

𝐶𝜖𝑚

(𝜖 + 𝜋∕4)𝑚+1
≲ 𝜖𝑚.

Property (ii) of Definition 3.1 now follows by the symmetry of (3.10) under the mapping 𝜃 ↦

−𝜃. □

APPENDIX B: ResDMD FOR COMPUTING SPECTRA AND PSEUDOSPECTRA
In this section, we show how to modify ResDMD in Section 4.2 to rigorously compute the global
spectral properties of the Koopman operator . Recall that we assume that  is a closed and
densely defined operator. Throughout this section, we make the following assumption about the
dictionary {𝜓𝑗}

𝑁𝐾

𝑗=1
:

∙ Assumption: span{𝜓 ∈ 𝑉𝑁𝐾
∶ 𝑁𝐾 ∈ ℕ} forms a core of.

This assumption means that the closure of the restriction of to span{𝜓 ∈ 𝑉𝑁𝐾
∶ 𝑁𝐾 ∈ ℕ} is.

In other words, the assumption allows us to study the infinite-dimensional operator , which
acts on a possibly strict subdomain() ⊂ 𝐿2(Ω, 𝜔), by considering its action on the observables
in 𝑉𝑁𝐾

. This is vital for capturing the full operator , and hence, equivalently, the full dynam-
ics. To simplify our arguments, we also assume that 𝜓𝑗 is independent of 𝑁𝐾 for a fixed 𝑗, and
that 𝑉𝑁𝐾

⊂ 𝑉𝑁𝐾+1. These last two assumptions can be dropped with minor modifications to our
arguments.
We begin by re-writing the quantity ‖( − 𝜆)−1‖−1 as a minimal residual. Given a linear oper-

ator 𝑇 with domain (𝑇), we define the injection modulus  (𝑇) = inf {‖𝑇𝜓‖ ∶ ‖𝜓‖ = 1, 𝜓 ∈

(𝑇)}. It is well-known that

‖( − 𝜆)−1‖−1 = min{ ( − 𝜆), (∗ − 𝜆)} ≤  ( − 𝜆) = inf
𝑔∈(),𝑔≠0

‖( − 𝜆)𝑔‖‖𝑔‖ ,

with  ( − 𝜆) =  (∗ − 𝜆) if 𝜆 ∉ 𝜎(). Therefore, 𝜎() = {𝜆 ∶ min{ ( − 𝜆), (∗ − 𝜆)} =

0}.

B.1 The metric space
Before discussing the convergence of Algorithm 3, we must be precise about what convergence
means. A reliable algorithm for computing a spectral set should converge locally on compact sub-
sets of ℂ. In other words, it should converge to the complete spectral set and have no limiting
points not in it. We will see that our algorithms achieve this, and we use the following metric
space to quantify this convergence.
In general, 𝜎() is a closed and possibly unbounded subset ofℂ. We therefore use the Attouch–

Wets metric defined by [9]:

𝑑AW(𝐶1, 𝐶2) =

∞∑
𝑛=1

2−𝑛 min

{
1, sup|𝑥|≤𝑛|dist(𝑥, 𝐶1) − dist(𝑥, 𝐶2)|}, (B.1)
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58 COLBROOK and TOWNSEND

where 𝐶1, 𝐶2 ∈ Cl(ℂ) and Cl(ℂ) is the set of closed nonempty25 subsets ofℂ. This metric general-
izes the familiar Hausdorff metric on compact sets to unbounded closed sets and corresponds to
local uniform convergence on compact subsets ofℂ. If the spectral set is bounded, the two topolo-
gies and notions of convergence agree. An intuitive characterization of theAttouch–Wets topology
we use in our proofs is as follows. For any closed nonempty sets 𝐶 and 𝐶𝑛, 𝑑AW(𝐶𝑛, 𝐶) → 0 if and
only if for any 𝛿 > 0 and 𝐵𝑚(0) (closed ball of radius 𝑚 ∈ ℕ about 0), there exists 𝑁 such that if
𝑛 > 𝑁 then 𝐶𝑛 ∩ 𝐵𝑚(0) ⊂ 𝐶 + 𝐵𝛿(0) and 𝐶 ∩ 𝐵𝑚(0) ⊂ 𝐶𝑛 + 𝐵𝛿(0).

B.2 Computing approximate point pseudospectra
We first compute the approximate point pseudospectrum, which is given by

𝜎𝜖,ap() ∶= cl({𝜆 ∈ ℂ ∶  ( − 𝜆) < 𝜖}). (B.2)

In other words, 𝜎𝜖,ap() is the closure of the set of all 𝜆 such that there exists 𝑔 ∈ () of
norm 1 with ‖( − 𝜆)𝑔‖ < 𝜖. Such an observable 𝑔 is known as an (𝜖-)approximate eigenfunction.
Moreover, 𝜎𝜖() = 𝜎𝜖,ap() ∪ {𝜆 ∶ 𝜆 ∈ 𝜎p(∗)}. Thus 𝜎𝜖,ap() is equivalent to the usual pseu-
dospectrum 𝜎𝜖(), up to the eigenvalues of ∗. In most cases of interest, we have 𝜎𝜖,ap() =

𝜎𝜖().
To compute 𝜎𝜖,ap(), we begin by providing approximations of the function 𝜆 ↦  ( − 𝜆)

using the residual in (4.6). The following lemma shows how to do this.

Lemma B.1. Define a relative residual as

𝜏𝑀,𝑁𝐾
(𝜆,)

= min
𝑔𝑔𝑔∈ℂ𝑁𝐾

√√√√√√∑𝑁𝐾

𝑗,𝑘=1
𝑔𝑗𝑔𝑘

[
(Ψ∗

𝑌𝑊Ψ𝑌)𝑗𝑘 − 𝜆(Ψ∗
𝑌𝑊Ψ𝑋)𝑗𝑘 − 𝜆(Ψ∗

𝑋𝑊Ψ𝑌)𝑗𝑘 + |𝜆|2(Ψ∗
𝑋𝑊Ψ𝑋)𝑗𝑘

]
∑𝑁𝐾

𝑗,𝑘=1
𝑔𝑗𝑔𝑘(Ψ

∗
𝑋𝑊Ψ𝑋)𝑗𝑘

.

(B.3)

Then, assuming (4.7) holds,

lim
𝑀→∞

𝜏𝑀,𝑁𝐾
(𝜆,) = 𝜏𝑁𝐾

(𝜆,) ∶= min
𝑔∈𝑉𝑁𝐾

√√√√√∫
Ω
|[𝑔](𝑥𝑥𝑥) − 𝜆𝑔(𝑥𝑥𝑥)|2 𝑑𝜔(𝑥𝑥𝑥)

∫
Ω
|𝑔(𝑥𝑥𝑥)|2 𝑑𝜔(𝑥𝑥𝑥) . (B.4)

Moreover, 𝜏𝑁𝐾
(𝜆,) is a nonincreasing function of 𝑁𝐾 and converges uniformly down to  ( − 𝜆)

on compact subsets of ℂ as a function of the spectral parameter 𝜆.

Proof. The limit (B.4) follows trivially from the convergence of matrices in (4.7). Since 𝑉𝑁𝐾
⊂

𝑉𝑁𝐾+1, 𝜏𝑁𝐾
(𝜆,) is a nonincreasing function of𝑁𝐾 . By definition, we also have that 𝜏𝑁𝐾

(𝜆,) ≥
 ( − 𝜆) for every 𝜆 and 𝑁𝐾 . Now let 0 < 𝜖 < 1 and choose 𝑔 ∈ () of norm 1 such that‖( − 𝜆)𝑔‖ ≤  ( − 𝜆) + 𝜖. Since span{𝜓 ∈ 𝑉𝑁𝐾

∶ 𝑁𝐾 ∈ ℕ} forms a core of , there exists
some 𝑛 and 𝑔𝑛 ∈ 𝑉𝑛 such that ‖( − 𝜆)𝑔𝑛‖ ≤ ‖( − 𝜆)𝑔‖ + 𝜖 and ‖𝑔 − 𝑔𝑛‖ ≤ 𝜖. We find that

25We can add the empty set as an isolated point of this metric space to cover the case that 𝜎() may be empty. In what
follows, this is implicitly done in our algorithms since the output is eventually the empty set in such circumstances.
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‖𝑔𝑛‖ ≥ 1 − 𝜖 and hence that 𝜏𝑛(𝜆,) ≤ ( ( − 𝜆) + 2𝜖)∕(1 − 𝜖). Since this holds for any 0 < 𝜖 <

1, lim𝑁𝐾→∞ 𝜏𝑁𝐾
(𝜆,) =  ( − 𝜆). Since  ( − 𝜆) is Lipschitz continuous in 𝜆 and hence con-

tinuous, 𝜏𝑁𝐾
(𝜆,) converges uniformly down to  ( − 𝜆) on compact subsets of ℂ by Dini’s

theorem. □

In other words, in the large data limit, we can compute 𝜏𝑁𝐾
(𝜆,), which is at least as large

as  ( − 𝜆), and converges uniformly as our truncation parameter 𝑁𝐾 increases. To compute
𝜏𝑀,𝑁𝐾

(𝜆,), one can first diagonalize Ψ∗
𝑋𝑊Ψ𝑋 to compute (Ψ∗

𝑋𝑊Ψ𝑋)
−1∕2 and then the problem

reduces to computing a standard singular value decomposition. To turn 𝜏𝑁𝐾
(𝜆,) into an approx-

imation of 𝜎𝜖,ap(), we search for points where this function is less than 𝜖. Suppose thatGrid(𝑁𝐾)

is a sequence of finite grids such that for any 𝜆 ∈ ℂ, lim𝑁𝐾→∞ dist(𝜆, Grid(𝑁𝐾)) = 0. For example,
we could take

Grid(𝑁𝐾) =
1

𝑁𝐾
[ℤ + 𝑖ℤ] ∩ {𝑧 ∈ ℂ ∶ |𝑧| ≤ 𝑁𝐾}. (B.5)

In practice, one considers a grid of points over the region of interest in the complex plane. We
then define

Γ𝜖𝑁𝐾
() ∶=

{
𝜆 ∈ Grid(𝑁𝐾) ∶ 𝜏𝑁𝐾

(𝜆,) < 𝜖
}
.

Our algorithm is summarized in Algorithm 3. Note that because of the nature of the nonlinear
pencil in (B.3), one cannot use decompositions such as the generalized Schur decomposition to
speed up the computational time. We can now state our convergence theorem, which says that
the output of Algorithm 3 lies in 𝜎𝜖,ap() and converges to 𝜎𝜖,ap() as𝑀 → ∞.

Theorem B.1. Let 𝜖 > 0. Then, Γ𝜖𝑁𝐾
() ⊂ 𝜎𝜖,ap() and

lim
𝑁𝐾→∞

𝑑AW

(
Γ𝜖𝑁𝐾

(), 𝜎𝜖,ap()
)
= 0. (B.6)

In other words, we recover the full approximate point pseudospectrum without spectral pollution.

Proof. If 𝜆 ∈ Γ𝜖𝑁𝐾
(), then  ( − 𝜆) ≤ 𝜏𝑁𝐾

(𝜆,) < 𝜖 by Lemma B.1. It follows that Γ𝜖𝑁𝐾
() ⊂

𝜎𝜖,ap(). Now suppose that 𝜎𝜖,ap() ≠ ∅. It follows that there exists 𝜆 ∈ ℂ with  ( − 𝜆) < 𝜖.
Since ( − 𝜆) is continuous in 𝜆 and lim𝑁𝐾→∞ dist(𝜆, Grid(𝑁𝐾)) = 0, it follows that Γ𝜖𝑁𝐾

() ≠ ∅

for large 𝑁𝐾 . We use the characterization of the Attouch–Wets topology. Suppose that 𝑚 is
large such that𝐵𝑚(0) ∩ 𝜎𝜖,ap() ≠ ∅. SinceΓ𝜖𝑁𝐾

() ⊂ 𝜎𝜖,ap(), we clearly haveΓ𝜖𝑁𝐾
() ∩ 𝐵𝑚(0) ⊂

𝜎𝜖,ap(). Hence, to prove (B.6), wemust show that given 𝛿 > 0, there exists 𝑛0 such that if𝑁𝐾 > 𝑛0
then 𝜎𝜖,ap() ∩ 𝐵𝑚(0) ⊂ Γ𝜖𝑁𝐾

() + 𝐵𝛿(0). Suppose for a contradiction that this statement is false.
Then, there exists 𝛿 > 0, 𝜆𝑛𝑗 ∈ 𝜎𝜖,ap() ∩ 𝐵𝑚(0), and 𝑛𝑗 → ∞ such that dist(𝜆𝑛𝑗 , Γ

𝜖
𝑛𝑗
()) ≥ 𝛿.

Without loss of generality, we can assume that 𝜆𝑛𝑗 → 𝜆 ∈ 𝜎𝜖,ap() ∩ 𝐵𝑚(0). There exists some 𝑧
with  ( − 𝑧) < 𝜖 and |𝜆 − 𝑧| ≤ 𝛿∕2. Let 𝑧𝑛𝑗 ∈ Grid(𝑛𝑗) such that |𝑧 − 𝑧𝑛𝑗 | ≤ dist(𝑧, Grid(𝑛𝑗)) +

𝑛𝑗
−1. In particular, note that lim𝑛𝑗→∞ |𝑧 − 𝑧𝑛𝑗 | = 0. Moreover,

𝜏𝑛𝑗 (𝑧𝑛𝑗 ,) ≤ |||𝜏𝑛𝑗 (𝑧𝑛𝑗 ,) −  ( − 𝑧𝑛𝑗 )
||| + ||| ( − 𝑧) −  ( − 𝑧𝑛𝑗 )

||| +  ( − 𝑧)
⏟⎴⏟⎴⏟

<𝜖

. (B.7)
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60 COLBROOK and TOWNSEND

But,  ( − 𝜆) is continuous in 𝜆 and 𝜏𝑛𝑗 converges uniformly to  ( − ⋅) on compact subsets of
ℂ by LemmaB.1. It follows that the first two terms on the right-hand side of (B.7)must converge to
zero. Hence for large 𝑛𝑗 , 𝜏𝑛𝑗 (𝑧𝑛𝑗 ,) < 𝜖 so that 𝑧𝑛𝑗 ∈ Γ𝜖𝑛𝑗 (). But |𝑧𝑛𝑗 − 𝜆| ≤ |𝑧 − 𝜆| + |𝑧𝑛𝑗 − 𝑧| ≤
𝛿∕2 + |𝑧 − 𝑧𝑛𝑗 |, which is smaller than 𝛿 for large 𝑛𝑗 , and we reach the desired contradiction. □

Theorem B.1 is stated for an algorithm that uses 𝜏𝑁𝐾
. Strictly speaking, 𝜏𝑁𝐾

is only com-
puted as 𝑀 → ∞ (see Lemma B.1). In practice, this is not an issue since we can often estimate
the accuracy of the quadrature rule for the computed inner products by using known conver-
gence rates as 𝑀 → ∞ (see Section 4.1.3) or by comparing answers for different values of 𝑀.
We can then combine these estimates and adaptively select 𝑀 based on 𝑁𝐾 so that 𝜏𝑁𝐾

is suf-
ficiently accurate. For example, if 𝜏𝑁𝐾

is approximated to accuracy (𝑁−1
𝐾 ) by �̃�𝑁𝐾

we can set
Γ𝜖𝑁𝐾

() = {𝜆 ∈ Grid(𝑁𝐾) ∶ �̃�𝑁𝐾
(𝜆,) + 𝑁

−1∕2
𝐾 < 𝜖}, where the 𝑁

−1∕2
𝐾 term is to ensure that it

eventually dominates the quadrature error.

B.3 Recovering the full spectrum and pseudospectrum
In this subsection, we make the following additional assumption:

∙ Assumption: span{𝜓 ∈ 𝑉𝑁𝐾
∶ 𝑁𝐾 ∈ ℕ} forms a core of∗.

If wehave access to thematrix elements ⟨∗𝜓𝑗,∗𝜓𝑖⟩, thenwe can apply the techniques described
in Section 4 to compute 𝜏𝑁𝐾

(𝜆,∗) in the large data limit𝑀 → ∞. Define

Γ̂𝜖𝑁𝐾
() =

{
𝜆 ∈ Grid(𝑁𝐾) ∶ min{𝜏𝑁𝐾

(𝜆,), 𝜏𝑁𝐾
(𝜆,∗)} < 𝜖

}
.

The proof of Theorem B.1 can be adapted to show that Γ̂𝜖𝑁𝐾
() ⊂ 𝜎𝜖(), as well as the conver-

gence lim𝑁𝐾→∞ 𝑑AW(Γ̂𝜖𝑁𝐾
(), 𝜎𝜖()) = 0. Unfortunately, in general, one does not have access to

approximations of ⟨∗𝜓𝑗,∗𝜓𝑖⟩. Nevertheless, one can overcome this.
To compute 𝜎𝜖(), we note that because of TheoremB.1, it is enough to compute 𝜎𝜖,ap(∗) since

𝜎𝜖() = 𝜎𝜖,ap() ∪ {𝜆 ∶ 𝜆 ∈ 𝜎𝜖,ap(∗)}. Let𝑁1,𝑁2 ∈ ℕ, with𝑁1 ≥ 𝑁2, and consider the matrices
Ψ𝑋 and Ψ𝑌 computed using 𝑁1 dictionary functions. Assume that (4.7) holds and let

𝐿𝑁1
(𝜆) = lim

𝑀→∞
Ψ∗
𝑋𝑊Ψ𝑌(Ψ

∗
𝑋𝑊Ψ𝑋)

−1Ψ∗
𝑌𝑊Ψ𝑋 − 𝜆Ψ∗

𝑌𝑊Ψ𝑋 − 𝜆Ψ∗
𝑋𝑊Ψ𝑌 + |𝜆|2Ψ∗

𝑋𝑊Ψ𝑋 ∈ ℂ𝑁1×𝑁1 .

Note that this matrix can be obtained from the given data in the large data limit𝑀 → ∞. Let 𝑆

denote the orthogonal projection onto a subspace 𝑆 ⊂ 𝐿2(Ω, 𝜔). If 𝑔 =
∑𝑁2

𝑗=1
𝜓𝑗𝑔𝑗 ∈ 𝑉𝑁2

, then

⟨𝑉𝑁1
(∗ − 𝜆)𝑔,𝑉𝑁1

(∗ − 𝜆)𝑔
⟩
=

𝑁2∑
𝑗,𝑘=1

𝑔𝑗𝑔𝑘[𝐿𝑁1
(𝜆)]𝑗𝑘. (B.8)

In other words, this inner product is given by a square𝑁2 × 𝑁2 truncation of the matrix 𝐿𝑁1
(𝜆) ∈

ℂ𝑁1×𝑁1 . The following lemma uses the fact that (B.8) provides an increasingly more accurate
approximation of the inner product ⟨(∗ − 𝜆)𝑔, (∗ − 𝜆)𝑔⟩, as 𝑁1 → ∞.

LemmaB.2. Define 𝜐𝑁1,𝑁2
(𝜆,) = min𝑔∈𝑉𝑁2

,‖𝑔‖=1√∑𝑁2

𝑗,𝑘=1
𝑔𝑗𝑔𝑘[𝐿𝑁1

(𝜆)]𝑗𝑘 . Then, 𝜐𝑁1,𝑁2
(𝜆,) is

a nondecreasing function of𝑁1 and, for fixed𝑁2, converges uniformly up to 𝜏𝑁2
(𝜆,∗) on compact

subsets of ℂ as a function of 𝜆 as𝑁1 → ∞.
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Proof. It is clear that 𝜐𝑁1,𝑁2
(𝜆,) is a nondecreasing function of 𝑁1. Since 𝑉𝑁1

converges
strongly to the identity and (∗ − 𝜆)∗

𝑉𝑁2
acts on a finite-dimensional subspace, we also have

that lim𝑁1→∞ ‖(𝑉𝑁1
− 𝐼)(∗ − 𝜆)∗

𝑉𝑁2
‖ = 0. The uniform convergence of 𝜐𝑁1,𝑁2

(𝜆,) up to

𝜏𝑁2
(𝜆,∗) on compact subsets of ℂ now follows from Dini’s theorem. □

The following theorem shows that we have inclusion and convergence.

TheoremB.2. Let 𝜖 > 0 and define Γ̂𝜖𝑁2,𝑁1
() = {𝜆 ∈ Grid(𝑁2) ∶ 𝜐𝑁1,𝑁2

(𝜆,) + 1∕𝑁2 ≤ 𝜖}. Then
lim𝑁1→∞ Γ̂𝜖𝑁2,𝑁1

() = Γ̂𝜖𝑁2
() = {𝜆 ∈ Grid(𝑁2) ∶ 𝜏𝑁2

(𝜆,∗) + 1∕𝑁2 ≤ 𝜖} =∶ Γ̂𝜖𝑁2
(). Moreover,

we have Γ̂𝜖𝑁2
() ⊂ 𝜎𝜖,ap(∗) and lim𝑁2→∞ 𝑑AW(Γ̂𝜖𝑁2

(), {𝜆 ∶ 𝜆 ∈ 𝜎𝜖,ap(∗)}) = 0.

Proof. We prove that Γ̂𝜖𝑁2
() = lim𝑁1→∞ Γ̂𝜖𝑁2,𝑁1

() exists and is given by {𝜆 ∈ Grid(𝑁2) ∶

𝜏𝑁2
(𝜆,∗) + 1∕𝑁2 ≤ 𝜖}. The rest of the proof carries over from Theorem B.1 and its proof with

minor modifications. (The additional term 𝑁−1
2 is needed to ensure convergence to the pseu-

dospectrum in the second limit - it is added so that we can use “≤” instead of “<” in the
definition of Γ̂𝜖𝑁2,𝑁1

to ensure the existence of the first limit via the following argument.) Fix
𝜆 ∈ Grid(𝑁2). If 𝜏𝑁2

(𝜆,∗) + 𝑁−1
2 ≤ 𝜖, then by Lemma B.2, 𝜐𝑁1,𝑁2

(𝜆,) + 𝑁−1
2 ≤ 𝜖. It follows

that Γ̂𝜖𝑁2
() ⊂ Γ̂𝜖𝑁2,𝑁1

(). If 𝜏𝑁2
(𝜆,∗) + 𝑁−1

2 > 𝜖, then since lim𝑁1→∞ 𝜐𝑁1,𝑁2
(𝜆,) = 𝜏𝑁2

(𝜆,∗),
𝜐𝑁1,𝑁2

(𝜆,) + 𝑁−1
2 > 𝜖 for large 𝑁1. The theorem now follows. □

Combining Theorem B.1 and Theorem B.2, we have the following corollary that shows how the
full spectrum and pseudospectrum can be recovered.

Corollary B.1. For any 𝜖 > 0,

lim
𝑁2→∞

lim
𝑁1→∞

[
Γ𝜖𝑁2

() ∪ Γ̂𝜖𝑁2,𝑁1
()

]
= 𝜎𝜖().

Additionally,

lim
𝜖↓0

lim
𝑁2→∞

lim
𝑁1→∞

[
Γ𝜖𝑁2

() ∪ Γ̂𝜖𝑁2,𝑁1
()

]
= 𝜎(),

where the convergence holds in the Attouch–Wets topology.

As a final remark, the reader may notice that a few of our algorithms require us to take several
parameters successively to infinity. These limits do not generally commute, and itmay be impossi-
ble to rewrite them in fewer limits or develop a different algorithm that uses fewer limits. This is a
generic feature of infinite-dimensional spectral problems [29] and has given rise to the Solvability
Complexity Index [35, 60]. We do not go into the details, but there are many open questions on
the foundations of computing spectral properties of Koopman operators.

APPENDIX C: COMPUTING RATIONAL KERNEL CONVOLUTIONSWITH ERROR
CONTROL
This section shows that the required convolutions with rational kernels can be computed rigor-
ously with error control. Recall from (5.7) that there are two types of inner products that we need
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62 COLBROOK and TOWNSEND

to compute: (i) ⟨𝑔, ( − 𝜆)−1𝑔⟩, and (ii) ⟨( − 𝜆)−1𝑔,∗𝑔⟩ for some observable 𝑔. Here, we show
that the inner products can be computed with error control via the right-hand sides of (5.14) and
(5.15) by adaptively selecting the truncation size 𝑁𝐾 for a fixed smoothing parameter 𝜖. Without
loss of generality, we assume that 𝑔 is normalized so that ‖𝑔‖ = 1 and we denote 𝑔𝑁𝐾

= Ψ𝑎𝑎𝑎. To
compute the error bounds in the large data limit, we also use the fact that

ℎ𝑁𝐾
=

𝑁𝐾∑
𝑗=1

[
(Ψ∗

𝑋𝑊Ψ𝑌 − 𝜆Ψ∗
𝑋𝑊Ψ𝑋)

−1Ψ∗
𝑋𝑊Ψ𝑋𝑎𝑎𝑎

]
𝑗
𝜓𝑗 = Ψℎℎℎ ≈ (𝑉𝑁

∗
𝑉𝑁

− 𝜆𝐼𝑁)
−1𝑔𝑁𝐾

.

The following theorem shows that we can bound the error of using the right-hand sides of (5.14)
and (5.15) to approximate the desired inner products.

Theorem C.1. Let 𝜆 ∈ ℂ with |𝜆| > 1. Consider the setup of Section 5.3 with ‖𝑔‖ = 1 and let

𝛿1(𝑁𝐾) = ‖𝑔 − 𝑔𝑁𝐾
‖,

𝛿2(𝑁𝐾) = ‖( − 𝜆)(𝑉𝑁𝐾
∗

𝑉𝑁𝐾
− 𝜆𝐼𝑁𝐾

)−1𝑔𝑁𝐾
− 𝑔𝑁𝐾

‖,
𝛿3(𝑁𝐾) = ‖(𝑉𝑁𝐾

∗
𝑉𝑁𝐾

− 𝜆𝐼𝑁𝐾
)−1𝑔𝑁𝐾

‖.
Then, lim𝑁𝐾→∞ 𝛿1(𝑁𝐾) = lim𝑁𝐾→∞ 𝛿2(𝑁𝐾) = 0 and 𝛿3(𝑁𝐾) remains bounded as𝑁𝐾 → ∞. More-
over,

||||⟨𝑔𝑁𝐾
, (𝑉𝑁𝐾

∗
𝑉𝑁𝐾

− 𝜆𝐼𝑁𝐾
)−1𝑔𝑁𝐾

⟩
−
⟨
𝑔, ( − 𝜆)−1𝑔

⟩|||| ≤ 𝛿1(𝑁𝐾) + 𝛿2(𝑁𝐾)|𝜆| − 1
+ 𝛿1(𝑁𝐾)𝛿3(𝑁𝐾),

||||⟨(𝑉𝑁𝐾
∗

𝑉𝑁𝐾
− 𝜆𝐼𝑁𝐾

)−1𝑔𝑁𝐾
,∗𝑔𝑁𝐾

⟩
−
⟨
( − 𝜆)−1𝑔,∗𝑔

⟩|||| ≤ 𝛿1(𝑁𝐾) + 𝛿2(𝑁𝐾)|𝜆| − 1
+ 𝛿1(𝑁𝐾)𝛿3(𝑁𝐾).

Assuming (4.7), 𝛿2(𝑁𝐾) and 𝛿3(𝑁𝐾) can be computed in the large data limit via

𝛿2(𝑁𝐾)
2 = lim

𝑀→∞
ℎℎℎ∗Ψ∗

𝑋𝑊Ψ𝑋ℎℎℎ ⋅ res(𝜆, ℎ𝑁𝐾
)2 − 2Re

(
𝑎𝑎𝑎∗(Ψ∗

𝑋𝑊Ψ𝑌 − 𝜆Ψ∗
𝑋𝑊Ψ𝑋)ℎℎℎ

)
+𝑎𝑎𝑎∗Ψ∗

𝑋𝑊Ψ𝑋𝑎𝑎𝑎,

(C.1)

𝛿3(𝑁𝐾)
2 = lim

𝑀→∞
ℎℎℎ∗Ψ∗

𝑋𝑊Ψ𝑋ℎℎℎ. (C.2)

Proof. First, by assumption, lim𝑁𝐾→∞ 𝛿1(𝑁𝐾) = 0. Using this, together with Theorem 5.1 and the
fact that  is bounded, it follows that lim𝑁𝐾→∞ 𝛿2(𝑁𝐾) = 0. Similarly, 𝛿3(𝑁𝐾) remains bounded
as 𝑁𝐾 → ∞. Since |𝜆| > 1 and ‖‖ = 1, the arguments in Section 5.2.2 show that ‖( − 𝜆)−1‖ ≤
1∕(|𝜆| − 1). It follows that

‖(𝑉𝑁𝐾
∗

𝑉𝑁𝐾
− 𝜆𝐼𝑁𝐾

)−1𝑔𝑁𝐾
− ( − 𝜆)−1𝑔‖ ≤ ‖( − 𝜆)(𝑉𝑁𝐾

∗
𝑉𝑁𝐾

− 𝜆𝐼𝑁𝐾
)−1𝑔𝑁𝐾

− 𝑔‖|𝜆| − 1

≤ ‖( − 𝜆)(𝑉𝑁𝐾
∗

𝑉𝑁𝐾
− 𝜆𝐼𝑁𝐾

)−1𝑔𝑁𝐾
− 𝑔𝑁𝐾

‖ + ‖𝑔 − 𝑔𝑁𝐾
‖|𝜆| − 1

≤ 𝛿1(𝑁𝐾) + 𝛿2(𝑁𝐾)|𝜆| − 1
.
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We now re-write the inner product⟨
𝑔𝑁𝐾

, (𝑉𝑁𝐾
∗

𝑉𝑁𝐾
− 𝜆𝐼𝑁𝐾

)−1𝑔𝑁𝐾

⟩
=
⟨
𝑔, ( − 𝜆)−1𝑔

⟩
+
⟨
𝑔𝑁𝐾

− 𝑔, (𝑉𝑁𝐾
∗

𝑉𝑁𝐾
− 𝜆𝐼𝑁𝐾

)−1𝑔𝑁𝐾

⟩
+
⟨
𝑔, (𝑉𝑁𝐾

∗
𝑉𝑁𝐾

− 𝜆𝐼𝑁𝐾
)−1𝑔𝑁𝐾

− ( − 𝜆)−1𝑔
⟩
.

Since ‖𝑔‖ = 1, it follows by the Cauchy–Schwarz inequality that

||||⟨𝑔𝑁𝐾
, (𝑉𝑁𝐾

∗
𝑉𝑁𝐾

− 𝜆𝐼𝑁𝐾
)−1𝑔𝑁𝐾

⟩
−
⟨
𝑔, ( − 𝜆)−1𝑔

⟩|||| ≤ 𝛿1(𝑁𝐾) + 𝛿2(𝑁𝐾)|𝜆| − 1

+ 𝛿1(𝑁𝐾)
‖‖‖(𝑉𝑁𝐾

∗
𝑉𝑁𝐾

− 𝜆𝐼𝑁𝐾
)−1𝑔𝑁𝐾

‖‖‖.
Similarly, since ‖∗‖ ≤ 1, we obtain

||||⟨(𝑉𝑁𝐾
∗

𝑉𝑁𝐾
− 𝜆𝐼𝑁𝐾

)−1𝑔𝑁𝐾
,∗𝑔𝑁𝐾

⟩
−
⟨
( − 𝜆)−1𝑔,∗𝑔

⟩|||| ≤ 𝛿1(𝑁𝐾) + 𝛿2(𝑁𝐾)|𝜆| − 1

+ 𝛿1(𝑁𝐾)
‖‖‖(𝑉𝑁𝐾

∗
𝑉𝑁𝐾

− 𝜆𝐼𝑁𝐾
)−1𝑔𝑁𝐾

‖‖‖.
This proves the upper bounds of the theorem. The equalities in (C.1) and (C.2) follow from
expanding the inner products and from the definition of ℎℎℎ. □

From Theorem C.1 we see that if 𝛿1(𝑁𝐾) is known, then we can compute the inner prod-
ucts ⟨𝑔, ( − 𝜆)−1𝑔⟩ and ⟨( − 𝜆)−1𝑔,∗𝑔⟩ to any desired accuracy by adaptively selecting 𝑁𝐾 .
Moreover, the error bounds in Theorem C.1 can be computed in (𝑁2

𝐾) operations without the
generalized Schur decomposition. In practice, we increase 𝑁𝐾 , keeping track of the computed
inner product until convergence is apparent.
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