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Notation

We use the following notation and further notation will be introduced whenever appropriate.

separable Hilbert space

set of bounded linear operators on H

closed ball (in a metric space) of radius r centred at x
open ball (in a metric space) of radius r centred at x
closure of a set S in a topological space

Hausdorff distance between compact sets S and 7
real part of complex number z

imaginary part of complex number z

conjugate of complex number z

smallest singular value of rectangular matrix C, extended to operators in (3.2.1

adjoint of operator A (when defined on a Hilbert space)

domain of operator A

resolvent operator of operator A defined as (A — zI)~! for z ¢ Sp(4)

spectrum of operator A defined as {z € C : R(z, A) does not exist as a bounded operator }
pseudospectrum of operator A defined as cl({z € C : ||(A — 2I)7!|| > 1/e}) fore > 0
discrete spectrum of operator A (evals. of finite multiplicity isolated from rest of Sp(A))
essential spectrum of operator A which we define as {z € C : A — 21 is not Fredholm}
essential numerical radius of operator A defined as sup{|z| : z € Sp.(A)}

numerical range of operator A defined as {(A&, ) : ||€|| = 1}

essential numerical range of operator A defined as (¢ compace LW (A + K))

If A € B(H), then the pseudospectrum can equivalently be defined as

Spe(4) ={z € C: |R(z,4)| 7" < ¢},

where we use the convention that ||[S~!|| = co and ||[S~!||=! = 0 if S=! does not exist. We also remind

the reader that the Hausdorff distance between S and 7T is

du(S,T) = max {sup dist(A, 7), sup dist(A, 8)} ,
AES AET

where dist(A, 7) = inf ,c7 |p — A|. Finally, when considering decision problems, we will use the discrete

metric on {0, 1}, with 1 interpreted as ‘yes’ and 0 interpreted as ‘no’.

v



Chapter 1

Introduction

Given a suitable linear operator A on some Hilbert space H, the spectrum of A is defined by
Sp(A) := {z € C: (A — zI)~" does not exist as a bounded operator}

This set includes the familiar notion of eigenvalues, but in general is much richer! For example we
might have continuous spectra. It is hard to overestimate the importance of computing spectra of infinite-
dimensional operators in applied mathematics, quantum chemistry/mechanics, matter physics, statistical
mechanics, optics and many other fields. Amongst its uses, the spectrum allows scientists to conduct sta-
bility, vibrational and asymptotic analysis, compute the energy levels of physical systems, diagonalise or
decompose operators for analysis, perform data-driven analysis of systems, and compute solutions to PDEs.
The problem of computing spectra is one of the most studied areas of computational mathematics over the
last half-century, investigated by mathematicians and physicists alike since the 1950s. However, the many
applications and theoretical studies of spectra depend on computations which are infamously difficult.

Computational approaches to obtain spectral information date back to leading mathematicians and
physicists such as Anderson [[And58]], Goldstine [GMvNS9], Kato [Kat49], Murray [GMvNS59], Schrédinger
[Sch40], Schwinger [Sch60b, [Sch60a]] and von Neumann [GMvNS9]. For example, Schwinger introduced
finite-dimensional approximations to quantum systems in infinite-dimensional spaces that allow for spec-
tral computations, ideas which were already present in the work of Weyl [Wey50]. In [DVV94]], Digernes,
Varadarajan, and Varadhan proved convergence of spectra of Schwinger’s finite-dimensional discretisation
matrices for Schrodinger operators with continuous potentials bounded below and diverging at infinity (the
resolvents of which are compact). We will solve this problem in a much more general setting in Chapter 3]

From an operator point of view, the computational spectral problem goes back as far as Szeg6’s work
[Sze20] on finite section approximations. Since then, it has been studied intensely by both mathemati-
cians [[Aro51}, [Kat49] [DLT8S| B6t94! [B6t96, [LS96, BS99, BCNO1L [Zwo99), BBIN10, BINT1l [Zwo13] and
physicists [Sch40, IAndS8., IBC71} [Hof76! [Lie0S) IDS06b]. For instance, the seminal work of Fefferman and
Seco [EFS90} [ES92| [ES93, [ES94b), [ES94cl [ES95L [ES96b, [IES96al [FS94al] on proving the Dirac—Schwinger
conjecture is a striking example of computations used in order to obtain complete information about the
asymptotic behaviour of the ground state of a family of Schrédinger operators.

The corresponding literature is vast (see [Col20a] for further discussion). However, whilst the above
results undoubtedly represent triumphs for computational mathematics and theoretical physics, they only

partially solve the problem and only hold for specific cases.
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1.1 The goal

A reliable algorithm computing the spectrum should converge locally on compact subsets of C. In other
words, it should converge to the full spectrum and have no limiting points that are not in the spectrum.
Moreover, we wish to have a guarantee that any point in the output is close to the spectrum, up to a chosen
error tolerance. A key question is: do such algorithms exist? Despite more than 90 years of quantum theory,
the answer to this question has been unknown, even for the case of general Schrodinger operators and even
when also excluding the additional property of error control. Arveson, who helped develop the combination
of spectral computations and C*-algebra technique [Arv93al |Arv93bl|Arv94a, |Arvo4bl, summarises this

open question for the problem of computing spectra of general self-adjoint operators

“Most operators that arise in practice are not presented in a representation in which they are
diagonalized, and it is often very hard to locate even a single point in the spectrum... Thus, one
often has to settle for numerical approximations [to the spectrum], and this raises the question
of how to implement the methods of finite dimensional numerical linear algebra to compute the
spectra of infinite dimensional operators. Unfortunately, there is a dearth of literature on this

basic problem and, so far as we have been able to tell, there are no proven techniques.”

— W. Arveson, UC Berkeley [Arv94b|
It is precisely the computational spectral problem, encapsulated in Arveson’s question and dating back
to the work of Schwinger in the 1960s [Sch60b, [Sch60a], that this course addresses. The boundaries of
what computers can achieve in computational spectral theory and mathematical physics remain largely

unknown, leaving many open questions that have been unsolved for decades. Our goal is to solve some of

these long-standing problems. Determining these computational boundaries means two things:
* Developing new algorithms that can handle problems previously out of reach,
¢ Providing mathematical proofs that the new algorithms are optimal.

In this course, we will do both for a range of infinite-dimensional spectral problems.

1.2 A motivating example

The spectrum of a general operator on a separable Hilbert space cannot be computed in finitely many
operations. This holds even in the finite-dimensional case (which is mathematically equivalent to polyno-
mial root-finding), and, in general, finite-dimensional spectral problems are solved numerically via iterative

methodsE] We must, therefore, give a precise meaning to a ‘computational spectral problem’. For instance,

I"This combination can be traced back to the work of Béttcher and Silbermann [BS83].

2There is, of course, a rich literature on using finite-dimensional algorithms to compute the spectrum of infinite-dimensional
operators. Arveson is referring to the existence of a procedure that converges in general, using, for example, matrix elements of the
operator with respect to an orthonormal basis.

3Computing the eigenvalues and eigenvectors of finite-dimensional matrices dates back to Wilkinson [Wil63] with guaranteed
convergence for self-adjoint matrices via Wilkinson shifts, see [Par98].
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suppose our operator is bounded and acts on [?(N). We can represent A by an infinite matrix

a1l aiz2 a13

21 a22 (23 (1 ) 1)

with respect to the canonical basis. Consider the case that an ‘algorithm’ can access matrix elements of A,
which is natural for many Hamiltonian operators in physics. The algorithm uses a finite number of matrix
elements, though it can adaptively choose which ones to use, and produces an output I',,(4) C C. For
example, if each a;; is rational (or a rational approximation of a complex number), we could consider the
output being produced by a Turing machine [Tur36]]. If we allow real number arithmetic, then we could
consider a Blum—Shub—Smale (BSS) [BCSS98] machine. At the very least, we should enforce ConsistencyE]
in how the algorithm reads information and produces an output (see Definition [2.1.1] in Chapter [Z). The
algorithm is written with a subscript n because it is usual in numerical analysis to have a sequence of
approximations (or even a sequence of different algorithms) that converge as n — oo. For example, in
finite dimensions, n could correspond to the number of iterations of the famous QR algorithm, which
converges under favourable conditions (see [CH19] for the infinite-dimensional version). The question is:
do algorithms exist that converge in infinite dimensions? Surprisingly, the answer to this question is ‘no’

for many important problems, regardless of one’s model of computation.

1.2.1 A ‘three limit’ algorithm

In [Hanl1] it was shown that, without any structural assumptions, it is possible to build an algorithm
depending on three parameters, so that for general bounded operators acting on the canonical Hilbert space

12(N) the following holds with respect to the Hausdorff metric
il T (4) = $p(4).
In other words, the process uses three successive limits. The algorithm roughly works as follows:
* For given nq,ny € N, define the function
Vg (2) = min {Gint (P, (A — 2I) Py, ), Oine (P, (A" —ZI)P,,)} .
[DRAW PICTURE ON BOARD]
¢ One can prove that as n; — oo,
Vg (2) T Vny (2) := min {oint((A — 2I) Py, ), oins (A" = ZI)Pp,)} .
Similarly, as no — oo,
Yoy (2) 4 1(2) 1= min {oine(A — 21), o1 (A" = ZD)} = [|(A — 21) 74|~ = | R(=, 4) ",

with locally uniform convergence (uniform on compact subsets of C).

Exercise: Prove these statements and that Sp(A) = {z € C : y(z) = 0} .

4Qur discussion can also be extended to the case of random algorithms, though we do not discuss this topic in this course.
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¢ Define
1
Fn31n27n1 (A) = {Z € an :'YnQ,nl(Z) < },

where G,, = B,,(0) N 2(Z + iZ). Then
. 1

0 T (4) = Do) 1= {5 € G900 < ).

And

1

T a(4) = Doy (4) = {2 €€ 9(:) = - |
ng—00 ns

This set is called the (ng L )pseudospectrum of A. The final limit then shrinks this set to the spectrum.

Exercise: Prove that lim,,,_, I's, (4) = Sp(4).

[DRAW PICTURE ON BOARD]

Question: Can we do away with the three limits?

Answer: No! Three successive limits turns out to be sharp if we consider the whole class of bounded
operators. This means it is impossible to compute spectra of completely general operators using two limits
(i.e., for all operators, without further information, even though standard algorithms can converge for dif-
ferent classes of operators) in any model of computation. This is most easily proven by embedding certain

combinatorial problems of descriptive set theory within this problem - see Chapter[2]

This result gives rise to the solvability complexity index (SCI). Informally, the SCI is the number of
successive limits needed to solve a computational problem, a measure of its difficulty. We will make this
precise in Chapter[2] The SCI covers many areas in computational mathematics, extending beyond the spec-
tral problem. It also has roots in the work of Smale [Sma81l[Sma97]], and his programme on the foundations
of computational mathematics and scientific computing, though it is quite distinct. The notions of Turing
computability [Tur36] and computability in the Blum—Shub—Smale (BSS) [BCSS98]] sense become special

cases, and impossibility results that are proven in the SCI hierarchy hold in all models of computation.

1.2.2 A ‘one limit’ algorithm with error control

The fact that general spectral problems require three limits poses a severe problem in applications: how
can we guarantee that the outputs of numerical simulations converge and are sound? Fortunately, there is
another class in the SCI hierarchy: ;. This is the class of problems which require only one limit and for
which there exists a convergent algorithm whose output is guaranteed to be included in the e-neighbourhood
of the spectrum, for an arbitrarily small e. In other words, given an output, we know that it is sound, but we
do not know if we have approximated all of the spectrum yet (though we must eventually converge to all of
the spectrum).

Under very general assumptionsE]there exists an algorithm I';, (A) such that

lim_dir (T (4), Sp(A)) = 0,

n—o0
with dy the usual Hausdorff metric on non-empty compact subsets of C. We also obtain error control, in
the sense that the algorithm computes an error bound F,, (4; z) such that

dist(z,Sp(A4)) < E,(4;z) VzeT,(A) and lim sup E,(4;z)=0. (1.2.2)

N0 el (A)

5The assumptions hold in the majority of applications. See and for the precise details.
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Ground State State Nearest —5 log(Abs Val),

Figure 1.1: The ground ‘state’ for the Penrose Laplacian from and an approximate state corre-
sponding to energy nearest —5. The algorithm allows us to choose which states to compute without direct
diagonalisation. It should be emphasised that we are not necessarily approximating eigenvectors since the
spectrum may not consist solely of eigenvalues.

This notion of error control, denoted by X1, is discussed in detail in @ along with its dual notion II;. The
constructed algorithm is parallelisable and can also be extended to compute quantities such as approximate
states (see Figure [I.T). The results hold when considering infinite matrix representations of operators, and
also for partial differential operators when sampling the coefficients.

However, stricter error control, in the sense of computing F,, with
du(T'n(A),Sp(A)) < E,(A) (1.2.3)

is in general impossible (we denote this stricter sense of error control by A;) in any model of computation.

As a very simple example, consider the class of all bounded diagonal operators A € B(I%(N)) of the form
ai

A= . a;eC. (1.2.4)
as

Since an algorithm can only deal with a finite amount of information at any one time (i.e., finitely many
of the a;), it is clear that the problem of computing the spectrum Sp(A) cannot be done with error control
in the sense of . However, one can simply choose an algorithm T';, to collect {a;}}_; and then one
trivially has that ', (A) — Sp(A4) as n — oo. We also clearly have the extra feature that

T'n(A) C Sp(A), neN.

In particular, we have convergence from below, and this is much stronger than just convergence, since
I',,(A) always produces a correct output. Such a type of convergence is incredibly important, since it gives
a guarantee of reliability. We extend this type of convergence (up to an arbitrarily small user-chosen error
tolerance given by the E,, in (I.2.2)) to a vast number of spectral problems. In some sense, given the
above simple example, we show that the computational spectral problem is not harder than computing the

spectrum of a diagonal operator.
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An example from physics

Suppose that A is sparse, meaning that it has only finitely many non-zero entries in each column, and sup-
pose also that A* = A (self-adjoint). As an example, we consider Schrodinger operators on quasicrystals.
Quasicrystals are non-repeating (aperiodic) structures with a long-range, self-similar nature. More gener-
ally, systems with long-range order and short-range disorder are abundant in nature. Currently, aperiodic
systems are not nearly as well understood as their periodic cousins. We might ask, then: what are the
physics of aperiodic systems? Understanding spectral properties is key to answering these types of ques-
tions. However, the aperiodic nature of quasicrystals, which makes them so interesting to study in the first
place, also makes it a considerable challenge to approximate spectra associated with these systems!

We consider a Penrose tile, a canonical model of a quasicrystal in 2D, and generated the lattice shown
in Figure by considering a lattice ‘site’ to exist at each vertex (the black dots) and tunnelling bonds
along the edges of the tiles. The model taken is that of a charged single-particle, which can exist on the set
of sites and can tunnel between the sites along the bonds. We then apply a perpendicular magnetic field,
which modifies the tunnelling strengths to enforce the usual circular motion of a free charged particle in a

magnetic field. The operator in this scenario is a Hamiltonian A which, in matrix form, is given by

(Aw)j = - Z eiakijm

(3,k)
with summation over sites connected by an edge. Here «y;; is a phase factor that is given in terms of the
strength of the magnetic field and « denotes the wave function.

The most common approach to computing spectra is to truncate the operator. Physically, in our example,
this corresponds to truncating the tile and studying the interactions of a finite number of sites within the
truncation (Figure [I.2b). Mathematically, this corresponds to studying a finite section of the operator and
computing spectra of the corresponding finite-dimensional system (eigenvalues of finite square matrices
shown as a red box in Figure[I.2). In this model, the dimension of this finite-dimensional system is precisely
the number of sites included in the truncation. Figure shows the output of this approach, where the
approximation of the spectrum is plotted for different magnetic field strengths. We have labelled portions
of this picture as ‘spectral pollution’. This approach does not approximate the correct solution and does not
provide any form of error bounds.

Instead, we can compute spectra as follows, by reducing the number of limits in the above algorithm:

* Since A is sparse, we have access to f : N — N such that (I — Pf(n))APn =0.
Exercise: Prove that v, (2) = Vn,, £(ns) (2)-

* Since A is self-adjoint, we can avoid the final shrinking step.

Exercise: Prove that v(z) = dist(z, Sp(4)).
* We will see later how to compute 7y, (z) and use a local optimisation routine to compute Sp(A)!

Physically, the rectangular truncation Py(,) AP, corresponds to including the interactions of the fi-
nite truncation with the rest of the tile (Figure [I.2t). We can think of this as a tool for studying the full
infinite-dimensional operator directly, even on a finite computer. Leveraging this idea, we can now approx-
imate spectra in such a way that (i) our approximations approach the correct solution as our truncation size
increases, and (ii) such that we can explicitly bound the error of any computed approximation. The practi-

tioner can now provide a desired error bound, which our algorithm will then adaptively realise. Figure[I.3p
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Figure 1.3: Computation of spectra using (a) finite section and (b) the proposed method.
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shows the output of this approach for our example. We now (i) have the correct gaps in the spectrum, (ii) ap-
proximate the correct spectrum, and, for this example, (iii) have a guaranteed error bound of 0.01. With this
technique in hand, we can reliably probe the bulk physical properties of such aperiodic systems. Indeed,
this technique is already allowing for the discovery and investigation of new physics in quasicrystalline

systems, including their transport and topological properties [JCNT21].



Chapter 2

The Solvability Complexity Index

This chapter discusses the Solvability Complexity Index (SCI) hierarchy. We use this to show that the
algorithms in this course realise the boundary of what computers can achieve. All of the results concerning
the hierarchy itself are placed in one chapter. For further discussion on the hierarchy, the reader is advised

to consult [Col20a, BACH™20]. For extensions to randomised algorithms, see [CAH22al.

Disclaimer: This is not a course on logic or descriptive set theory. This chapter is quite dense but
is largely self-contained. However, once completed, we will have the tools to tackle infinite-dimensional

spectral computations.

2.1 The Basic SCI Hierarchy

First, we define a computational problem. The four basic objects of a computational problem are:
* ): some set, called the primary set,
¢ A: aset of complex-valued functions on 2, called the evaluation set,
e M: a metric space,
e =:Q — M the problem function.

) is the class of objects that give rise to our computational problem. The problem function = : @ — M is
the map we wish to compute. The set A is the collection of functions that provide us with the information
we are allowed access to. The collection {=Z, 2, M, A} is referred to as a computational problem.

For example, we could have 2 = B(I(N)) and = the problem function that takes A € () and maps it
to its spectrum Sp(A). Since the spectrum is a non-empty compact subset of C (in this case), we can let
M be the set of non-empty compact subsets of C equipped with the Hausdorff metric. In this case, A could
correspond to the evaluation of matrix entries of a given A € ().

Occasionally we will consider a function = such that for A € Q2 we have that Z(A) C M. In this case,
we still require that algorithms produce a single-valued output. However, we replace the metric in order to

define convergence. In particular, I',,(A) — Z(A) as n — oo means infyc=4) dp(I'n(A),y) — 0.
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Definition 2.1.1 (General Algorithm). Given a computational problem {Z,Q), M, A}, a general algorithm
is a mapping T : Q — M such that for each A € )

(i) there exists a (non-empty) finite subset of evaluations Ar(A) C A,
(ii) the action of T on A only depends on { Ay} jep.(a) where Ay := f(A),
(iii) for every B € Q such that By = Ay for every f € Ar(A), it holds that Ar(B) = Ar(A).

The three properties of a general algorithm are the most basic natural properties we would expect any
deterministic computational device to obey. The first condition says that the algorithm can only take a finite
amount of information, though it is allowed adaptively to choose, depending on the input, the finite amount
of information it reads. The second condition ensures that the algorithm’s output only depends on its input,
or rather the information that it has accessed. The final condition is very important and ensures that the
algorithm produces outputs and accesses information in a consistent manner. In other words, if it sees the
same information for two different inputs, then it cannot behave differently for those inputs.

Note that the definition of a general algorithm allows a stronger form of computation than the definition
of a Turing machine [Tur36] (digital computer) or a Blum—Shub—Smale (BSS) machine [BCSS98] (analog
computer). A general algorithm has no restrictions on the operations allowed. Whilst complete generality

seem to be at odds with practical computation, we use this model for two primary reasons:

(i) Strongest lower bounds (and complementary strongest upper bounds): Since Definition[2.1.1|is com-
pletely general, the lower bounds hold in any model of computation, such as a Turing machine or a
Blum—Shub—Smale machine. This is not an issue for practical computation since the algorithms in
this course can be made to work using only arithmetic operations over the rationals. Hence, we obtain

the strongest possible lower bounds and the strongest possible upper bounds.

(i1) Focus on information: Using the concept of a general algorithm considerably simplifies the proofs
of lower bounds. The proven lower bounds are due to the problem at hand being inherently non-
computable. It is not a question of the type of operations allowed being too restrictive, but rather that

the information about each input available to the algorithm is insufficient to solve the problem.
With a definition of a general algorithm, we can define the concept of towers of algorithms.

Definition 2.1.2 (Tower of algorithms). Given a computational problem {Z,Q, M, A}, a tower of algo-
rithms of height k for {Z,Q, M, A} is a collection of sequences of functions

Fpe : Q—=>M, Tppne i Q=M .0 Ty ot Q= M,

where ny, ...,n1 € Nand the functions I'y,, ., at the lowest level in the tower are general algorithms in

the sense of Definition|[2.1.1) Moreover, for every A € (Q,

2(A) = lim Ty, (A),

N —00

Lnp(A)= lim Ty, oy (A),

Nj—1—+00

Pogrna(A) = lim Ty (A),

ni—00

with convergence in the metric space M.

10
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Throughout this course, a general tower will refer to the very general definition in Definition [2.1.2]
specifying that there are no further restrictions. This will be denoted by « = G. When we specify the type
of tower, we specify requirements on the functions I'y,, ., in the hierarchy, in particular, what kind of

operations may be allowed. A tower of algorithms for a computational problem is the toolbox allowed.

Definition 2.1.3 (Arithmetic tower). Given a computational problem {2, ), M, A}, an arithmetic tower of
algorithms of height k for {2, Q, M, A} is a tower of algorithms where the lowest functionsT' =T, . :
Q — M satisfy the following: For each A € () the action of T on A consists of only performing finitely
many arithmetic operations and comparisons on {Ay} e (a), where we remind the reader that Ay =

f(A). For arithmetic towers we let = A.

Definition 2.1.4 (Solvability Complexity Index). A computational problem {=,Q, M, A} is said to have
Solvability Complexity Index SCI(Z,Q, M, A),, = k, with respect to a tower of algorithms of type o, if k
is the smallest integer for which there exists a tower of algorithms of type « of height k. If no such tower
exists then SCI(Z,Q, M, A), = oo. If there exists a tower {I',, }nen of type « and height one such that
E =T, for some ny < oo, then we define SCI(Z,Q2, M, A), = 0.

With the definition of the SCI, we can define the SCI hierarchy. Without any extra structure on the
metric space M, the A}’ classes are the finest refinement we can obtain in terms of the SCI. However, as

described below, when more structure is allowed, the hierarchy becomes much richer.

Definition 2.1.5 (The Solvability Complexity Index hierarchy). Consider a collection C of computational
problems and let T be the collection of all towers of algorithms of type « for the computational problems

in C. Define
Af = {{E,Q} € C | SCI(E,Q), = 0}
A%, = {{2,Q} €C|SCIE Qo <m},  meN
as well as

AT ={{E,Q}eC|I{Thlnen € T s.t. VA Qd(T,(4),E(A)) < 27"}

2.2 Error Control Extensions of the SCI Hierarchy

When there is extra structure on the metric space M, say M = R or M = {0, 1} with the standard metrics
(or more generally, a totally ordered set), one may be able to define convergence of functions from above
or below. This is an extra form of structure that allows for a type of error control. Such error control is

important, for example, in computer-assisted proofs, and of course, crucial in scientific computing.

Definition 2.2.1 (The SCI Hierarchy for a Totally Ordered Set). Given the set-up in Definition and
suppose in addition that M is a totally ordered set. Define

S =TI = A,
Yr={{E,0} € Ay | I{T,,} € T s.t. T, (A) /N E(A) VA € Q},
OY = {{E,Q} € Ay | F{T1} € T s.t. T (A) \(E(A) VA € O},
where /* and "\, denotes convergence from below and above respectively, as well as, for m € N,
Yo ={{EY e | I {Tn . ETst. Ty (A) S E(A) VA € QF,
Oy ={{E,Q e A2 | I{Th,rm €T st. Ty (A) \(E(A) VA € Q}.

11
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If the metric space M = {0, 1}, it is clearly a totally ordered set and hence, from Deﬁnition we
obtain the SCI hierarchy for arbitrary decision problems. We want to generalise the above notions of error
control to scenarios suitable for spectral computations. In the case where M is the collection of non-empty
compact subsets of another metric space M, it is custom to equip M with the Hausdorff metric

du(X,Y) = max q sup inf d(z,y),sup inf d(z, .
) = {sup i o), sup it (o) |

In the case where M is the collection of non-empty closed subsets of M’, we use the Attouch—Wets metric

daw(C1.C2) = 3 27" min {1, SUDg ., (2 )< |dist(z, C1) — dist(z, 02)|} ,

n=1
where C and C5 are non-empty closed subsets of C, xg € M’ is some fixed element of M’ and where
d(x,C) is the usual distance between the point z and a set C. Note that daw (C1,C2) € [0,1]. In the
case that M’ = C with the usual metric, we take o = 0 without loss of generality. One should view
the Attouch—Wets metric as a generalisation of the familiar Hausdorff metric on compact subsets. In other
words, we seek local uniform convergence. In fact, both metrics can be viewed in terms of metrics on
spaces of continuous functions [Bee93].

The following provides the generalisation and we remark on the intuition behind this definition below.

Definition 2.2.2 (The SCI Hierarchy (Attouch—Wets/Hausdorff metric)). Given the set-up in Definition
and suppose in addition that (M, d) is the Attouch—Wets or the Hausdor[f metric induced by another
metric space M'. Define for m € N

g =115 = Ag,
5P = (2.9} € A [I{Tu} € T, {Xu(A)) € Misit. Tu(A) C Xa(4),
Tim T, (A4) = Z(4), d(X,(4),2(4)) <27 VA€ Q},

O = {{E,Q} € Ap [ I{T} € T, {Xn(4)} € M s.t. E(A) < X, (A),

lim T,,(A4) = Z(A), d(X,(A),[,(A)) <27" VA e},

n—roo

where C aq means inclusion in the metric space M’. Moreover,
Zro;LJrl = {{E’ Q} € Am+2 | 3 {an+1,...,n1} €T, {X’ﬂm+1 (A)} C M.t an+1 (A) /g, Xn77L+1(A)7
lim T
MNm41—>00

oy o ={{E, e | I{Th, i €T, {Xn,. (A)} C Mz E(A) /g/ Xonir (4),

(1]

(A) =2(4), d(Xn,,,,(4),E(A)) <27+ VA€ Q},

Mm+1

lim I, . (4=

MNm41—>00

(1]

(A), d(Xn, .\ (A), T, (A) < 277000 YA€ Q).

Intuitively, this captures convergence from below or above respectively, up to a small error parameter
27", Note that to build a X, algorithm in the Hausdorff case, it is enough (by taking subsequences of n)
to construct I', (A) such that ', (A) C E(A) + Bg, (4)(0) with some computable E,,(A) that converges
to zero. A visual demonstration of these classes for the Hausdorff metric is shown in Figure The SCI

hierarchy gives rise to the following structure:

12
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1L

£

Figure 2.1: Meaning of ¥; and IT; convergence for problem function = computed in the Hausdorff metric.
The red area represents Z(A), whereas the green areas represent the output of the algorithm I',,(A4). 34
convergence means convergence as n — 0o but each output point in I',,(A) is at most distance 2~ from

f2

Z(A). Similarly, in the case of II;, we have convergence as n — oo but any point in Z(A) is at most
distance 2" from I';,(A). The same notion holds for 3; and II; in the Attouch—Wets topology, but now
when restricting to arbitrary compact balls (see Lemma@.

11§ g g
I - < < < &
Aj ¢ AF ¢ SPUTS ¢ A ¢ DgUTIE C A ¢
I < o3 < o3 Q<
by by Dy

Note, it is precisely the classes X¢ and II{' that are crucial in computer-assisted proofs.
To say a bit more about the structure, we need the following definition (which holds for standard spaces

such as {0, 1} or R with the usual metric).

Definition 2.2.3. Given a totally ordered metric space (M, d), we say that the metric is order respecting if
Sforany a,b,c € M witha < b < ¢ we have d(a,b) < d(a, ).

The following proposition gives some insight into the extended SCI hierarchy as defined above, and

shows that the results of later chapters are sharp.

Proposition 2.2.4 (Properties of the SCI hierarchy II). Given the above set-up, let (M, d) be either the
Hausdorff or Attouch—Wets metric or a totally ordered metric space with order respecting metric. Let

k = 1,2 or 3, then we have the following.

(i) A =S¢ NTIC. In particular, if for a problem = : Q@ — M we have AS # {Z,Q} € Xg, where
X = X or Il and « denotes any type of tower, then {Z,Q} € Y,*, where Y =11 or X respectively.

(it) Suppose for a computational problem = : Q0 — M we have a corresponding convergent Zﬁ tower
rk x....n, nd a corresponding convergent 1 tower T2 rromy - Suppose also that we can compute for
every A € Q the distance d(T;,, , (A),T% . (A)) to arbitrary precision using finitely many

arithmetic operations and comparisons. Then {Z,Q} € Af.

Exercise (hard): Prove Proposition M

Throughout this course, we will prove results of the form Ag # {E,Q} € X Part (i) says that this
is an optimal classification in the SCI hierarchy if £ < 3. It is an open problem whether part (i) of the

proposition extends to larger k (the proof for £ = 3 is already very technical).

13
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2.3 A Link with Descriptive Set Theory

Next, we shall link the SCI hierarchy in a particular specific case to the Baire hierarchy (on a suitable
topological space). As well as being interesting in its own right, this link provides canonical problems high
up in the SCT hierarchy. In particular, the results proven here hold for towers of general algorithms, without
restrictions such as arithmetic operations or notions of recursivity. This fact will be used extensively in the
proofs of lower bounds for spectral problems that have SCI > 2, where we typically reduce the problems
discussed in this section to the given spectral problem.

It is beyond the scope of this course to provide an extensive discussion of descriptive set theory, but
we refer the reader to [[KL87, Mos09]] for excellent introductions that cover the main ideas It should be
stressed that such a link to existing hierarchies only exists in special cases (when €2 and M are particularly
well-behaved). Even when such a link exists, the induced topology on {2 is often too complicated, unnat-
ural or strong to be useful from a computational viewpoint. We also take the view that for problems of
scientific interest, the mappings A and metric space M are often given to us apriori from the corresponding

applications and may not be compatible with topological viewpoints of computation.

2.3.1 Some results from descriptive set theory

We briefly state the definition of the Borel hierarchy as well as some well-known theorems from descriptive

set theory. Let X be a metric space and define
YW(X)={UcC X:Uisopen}, MN{(X)=~%%X)={FC X :Fisclosed},
where for a class U, ~U denotes the class of complements (in X) of elements of /. Inductively define

SUX) = {Unendy : A, € I &, <€}, if € > 1,
I(X) =~3(X), AL(X)=3¢(X)NI(X).

The full Borel hierarchy extends to all £ < w; (w; being the first uncountable ordinal) by transfinite induc-

tion but we do not need this here.

Definition 2.3.1 ([KL87l). Given a class of subsets, U, of a metric space X and given another metric space

Y, we say that the function f : X — Y is U-measurable if f~*(U) € U for every open setU C Y.

Given metric spaces X and Y, the Baire hierarchy is defined as follows. A function f : X — Y is
of Baire class 1, written f € By, if it is EQ(X)-measurable. For1 < £ < wy,afunction f : X - Y
is of Baire class &, written f € B, if it is the pointwise limit of a sequence of functions f, in Be,, with
&, < €. The following theorem is well-known (see for example [KL87|] section 24) and provides a useful

link between the Borel and Baire hierarchies.

Theorem 2.3.2 (Lebesgue, Hausdorff, Banach). Let X,Y be metric spaces with Y separable and 1 <
& < wy. Then f € B if and only if it is EgH(X) measurable. Furthermore, if X is zero-dimensional
(Hausdorff with a basis of clopen (closed and open) sets) and f € B, then f is the pointwise limit of a

sequence of continuous functions.

I'The reader wishing to assimilate the bare minimum quickly will find Chapter 2 of [KL87] sufficient for this section.

14
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The assumption that X is zero-dimensional in the last statement is important. Without any assumptions,
the final statement of the theorem is false, as is easily seen by considering X = R. Examples of zero-
dimensional spaces include products of the discrete space {0, 1} or the Cantor space. Any such space is
necessarily totally disconnected, meaning that the connected components in the space are the one-point sets
(the converse is true for locally compact Hausdorff spaces). Our primary interest will be the cases when Y’

is equal to {0, 1} or [0, 1], both with their natural topologies.

2.3.2 Linking the SCI hierarchy to the Baire hierarchy in a special case

The following definition will be used as a sufficient criterion for a topology to exist on €2 such that A,

problems are precisely the continuous functions from €2 to M.

Definition 2.3.3. Given the triple {Q, M, A}, a class of algorithms A is closed under search with respect
to {Q, M, A} if whenever

1. T is an index set,

N

{n;}iez a family of natural numbers,

w

{Ti1: Q= M}iczi<n, CA

R

{Ui1}iez 1<n,; family of basic open sets in M with U;e1 Ni<np, F;;(Ui}l) = Q, where F;;(Ui,l) =
{r eQ:Ti(x) € Ui},

5. {citiez afamily of points in some arbitrary dense subset of M,

then there is some T’ € A such that for every x € () there exists some i € T with T'(x) = ¢; and for all
I <n;wehavel'; (z) € U; .

Proposition 2.3.4. Suppose that A is closed under search with respect to {2, M, A}, then there exists a
topology T on Q such that A{\ is precisely the set of continuous functions from (Q,T) to M.

Proof. Let T be the topology generated by {T~1(B) : I' € A, B C M basic open}. Now, clearly any
I' € A is continuous with respect to this topology. The fact that uniform limits of continuous functions into
metric spaces are also continuous shows that any function in A{‘ is continuous with respect to 7.

For the other direction, suppose that f : (€2, 7) — M is continuous. Choose {¢; };cz C M such that
M C UjezD(c;,27™). Continuity of f implies that f~!(D(c;,27™)) are open. This implies that there
is an index set 7, natural numbers {n; ;} c 7, a family {I'; ;1 }icz je7,1<n, ; (in A) and a family of basic
open sets {Uj ;1 }iez,jes,1<n; ; With the property that

f_l( (ci,2 U m F'le i.50)-
JET I<n,

It follows that

U ﬂ 1]1 a]7 = Q.

€L, JET I<n; ;

Since A is closed under search, there exists f,, € A such that for every x € () there exists some 7 € Z and

j € J with f,,(z) = ¢; and for all I < n; ;
x e T (Uig)-

But this implies that d(f,, (), f(x)) < 27". Since n was arbitrary, we have f € A, O

15



2.3. A Link with Descriptive Set Theory CHAPTER 2. The Solvability Complexity Index

The generated topology can be very perverse and not every class of algorithms is closed under search.
However, we do have the following useful theorem when €2 (and A) is a particularly simple discrete space,

which shows that the SCI corresponds to the Baire hierarchy index.

Theorem 2.3.5. Suppose that Q = {0, 1} = {{a;}ien : a; € {0,1}} with the set of evaluation functions
A equal to the set of pointwise evaluations {\;(a) := a; : j € N} and let M be an arbitrary separable
metric space with at least two separated points. Endow §) with the product topology, T, induced by the
discrete topology on {0,1} and consider the Baire hierarchy, {Be((Q,T), M) = B¢ }e<w,, of functions
f:Q — M. Then for any problem function 2 : Q@ — M and m € N,

E, QA A, S E€B,.
In other words, the SCI corresponds to the Baire hierarchy index.

Remark 2.3.6. The proof will make clear that we can replace 2 by {0, 1}"*N or any other such prod-
uct space (induced by discrete topology) of the form AP with A, B countable, with A the corresponding

component-wise evaluations, as long as M has at least | A| jointly separated points and is separable.

Proof. First we show that general algorithms are closed under search and that the topology 7 in Proposition
is equal to the product topology 7. Without loss of generality we can assume that Z is well-ordered
by <. Given z € (, let & € N be minimal such that there exists ¢ € Z with z € ﬂlgnil";ll(Ui,l)
and Ar, ,(z) C {\; : j < k} forl < n;. Let ig be the <-least index such that this holds for & and
define I'(z) = ¢;,. The well-ordering of Z implies that I is a general algorithm and it clearly satisfies the
requirements in the definition of closed under search. Note that this part of the proof only uses countability
of A.

To equate the topologies, suppose that I' € A§ is a general algorithm. For each a € €2, Ar(a) is finite
and we can assume without loss of generality that it is equal to {\; : 7 < I(a)} for some finite I(a). In
particular, there exists an open set U, such that any b € U, has \;(b) = A;(a) for j < I(a) and hence
I'(b) = T'(a). Then for any open set B C M

Ir'B)= |J U
a€l’'—1(B)

is open. Hence each I is continuous with respect to the product topology on €. It follows that 7 C 7.
To prove the converse, we must show that each projection map A; is continuous with respect to 7. Let
x1, T be separated points in M and consider f : {0,1} — M with f(0) = x; and f(1) = x2. Then the
composition f o A; is a general algorithm and hence continuous with respect to 7. But this implies that \;
is continuous. It follows from Propositionthat {E,Q,A} € Af if and only if = is continuous.

Now the space (€2, T) is zero-dimensional and M is separable, hence by Theorem [2.3.2] any element
of 31 is a limit of continuous functions. The converse holds in greater generality. It follows that = € B,,, if

and only if there are f,,, . n, € Af with

(1]

(@)= lim .. lim fo. n(a¢). 2.3.1)

T, —> 00 ni—o0

If this holds then there exists general algorithms I" .n, such that for all @ € Q,

T, ye-

AL, 1 (@), frp,. i (@) <27
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and hence

n}llr_rgoo n}gnoc Lpeooma (@) = E(a)

so that {Z,Q,A} € AG . Conversely if {_,Q A} € AG ., with tower of algorithms 'y, ., then
since each general algorithm is contlnuous, holds with fr,  n, (a) = | IS O

2.3.3 Combinatorial problems high up in the SCI hierarchy

We can now combine the results of the previous two subsections and obtain combinatorial array prob-
lems high up in the SCI hierarchy. Let k& € N>5 and let §2;, denote the collection of all infinite arrays
{@my,...mx fma,....myen With entries dao,, . m, € {0,1}. Asusual Ay, is the set of component-wise evalua-
tions/projections. Consider the formulas

, i3V I > FSt Gmy,mg_oni = 1

P(a,my,...;mp_2) = ,
0, otherwise

1, ifV®ViIn > jst amy,. my_omng =1
Q(aamh"wmk*?) = 3
0, otherwise
where V°° means ‘for all but a finite number of . In words, P decides whether the corresponding matrix has
a column with infinitely many 1’s, whereas () decides whether the matrix has only finitely many columns
with only finitely many 1’s. For R = P, ) consider the problem function for a € €y,
Imy Vmy ... Vmg_sR(a,mq,...,mg_s), if kiseven

Ekr(a) = ;
Ymy Ims ... Vmg_oR(a, my,...,mi_s), otherwise

that is, so that all quantifier types alternate.

Theorem 2.3.7. Let M be either {0, 1} with the discrete metric or [0, 1] with the usual metric and consider
the above problems {=Zy,, Q, M, Ay }. For k € N>o and R = P,Q,

AL F B U ML ALY € AL

In other words, we can solve the problem via a height k + 1 arithmetic tower but it is impossible to do so

with a height k general tower.

Proof. We will deal with the case of R = P since the case of R = () is completely analogous. It is easy to
see that {Zy p, Qk, M, A} € Ak“,‘+2. First consider the case k = 2 and set

ni

Fns,n27n1(a) HiaXX(ng 00) E a; ;|-
J= N
=1

This is the decision problem that decides whether there exists a column with index at most ng such that
there are at least no 1’s in the first ny rows. This is clearly an arithmetic tower and it is straightforward
to show that this converges to = p in M (in either of the {0,1} and [0, 1] cases). For k > 2 we simply

alternate taking products (which corresponds to minima in this case) and maxima. Explicitly, we set

max H H {maxx<n2,oo> (iaml ..... mk_Q,i,j>}7 if k is even

R, ma_a=1 i=1
_ k—2= =
Fnk+1,m,n1 (a) - MNk+41 T4
max ... H MAaX X (n,,00) E Ay, 2isj , otherwise.
ma<ng j<ns
mi=1 my_o=1
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Again, this is an arithmetic tower and it is straightforward to show that this converges to = p in M. It also
holds that {E, p, Qk, M, A} € B¢, if k is even and {Z,p, O, M, Ar} € TI7}, | if k is odd (not to be
confused with the notation for the Borel hierarchy).

Recall the topology 7 on € form Theorem For the lower bound we note that P is X9 complete
(in the literature it is known as the problem ‘S3’, see for example [KL87] section 23). This is terminology
from the Wadge hierarchy, but in our case since (2, 7) is zero-dimensional, a theorem of Wadge implies
that this means that P is the indicator function of a set, also denoted by P, which lies in $3(£2;) but not
I3 (Q). It also follows that Zj, p is X, (%) complete if & is even and II}, , ; () complete otherwise.
Now suppose for a contradiction that {Ex p, Q, M, AL} € Akc_H. But then Theorem implies that
Erp € Bi(Q, M) and hence by Theorem Ek.p is ng(Qk) measurable. Zj p is the indicator
function of set, also denoted by =, p, which is either X7 , | () or II{ , ; () complete depending on the
parity of k. But 0 and 1 are separated in M and hence since Z, p is 22 +1(Qk) measurable, =, p and its
complement both lie in X7 | (Q). It follows that Z; p € X9 (Qx) N 1LY (), contradicting the stated

completeness. O

Throughout this course, we will make use of these theorem and analogous results for similar decision

problems. In particular, we will use ) to denote €, and consider

[1]x
[1]:

—_
—

1=Z2,p, 2 = 22,0,

We now have the framework and tools to study a range of infinite-dimensional spectral problems.
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Chapter 3

Computing Spectra with Error Control

In this chapter, we consider the problem of computing the spectrum. This chapter is based on [CRHI19,
CHnsl]]. The algorithms we develop compute spectra of a wide class of operators defined on separable
Hilbert spaces. Moreover, the algorithms have the following desirable properties:

* They converge to the entire spectral set and avoid spectral pollution.

* They can be efficiently implemented.

* They are local and hence inherently parallelisable.

* They provide bounds on the error of the output, which converge to zero.

In the self-adjoint (or normal) case, they provide ‘approximate states’.

It has been a long-standing open problem to design such methods, even in the case of general one-
dimensional discrete self-adjoint Schrodinger operators. Previous methods aimed at tackling the general
problem either suffer from spectral pollution or do not converge to the full spectrum. Even in the cases
where the finite section method converges, it only gives a A, algorithm (no error control). The problem
of detecting spectral pollution is very difficult (see for classification in the SCI hierarchy). The
algorithms presented here are optimal in the sense of the SCI hierarchy described in Chapter 2] and can be
used directly in many models in the physical sciences [JCNT21, [CHTW2T].

The cases covered include unbounded operators on graphs and partial differential operators (PDOs),
where we consider the determination of the spectrum from the coefficients of the PDO. In the case that the
coefficients have locally bounded total variation on compact sets, we do this via point evaluations of the
coefficients. The main idea, as outlined in is to approximate the reciprocal of the resolvent norm,

|R(z, A)|| ", uniformly on compact subsets of C, and use a local search routine.

3.1 Main Results

The spectrum (and pseudospectrum) of unbounded operators are closed but not necessarily bounded. When
approximating the spectrum, we assume the operator has non-empty spectrum (for the SCI of testing if the
spectrum intersected with a compact set is empty, see Theorem [3.1.6) and hence non-empty pseudospectra.

Hence, we must introduce a metric on the set of non-empty closed subsets of C, denoted by CI1(C).
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Definition 3.1.1 (Attouch—Wets topology). The Attouch—Wets metric is defined by

daw (C1,C2) = 22*" min {1, sup |dist(x, Cy) — dist(m,02)|} ,
n=1

el <n
for C,Cy € CI(C)

Throughout this section we take our metric space (M, d) to be (C1(C), daw). One should view this
metric as a generalisation of the familiar Hausdorff metric on compact subsets defined in. We must be
careful when defining the pseudospectrum, since the resolvent norm of an unbounded operator can be

constant on open sets [Sha08]]. The following definition agrees with the usual one for bounded operators.

Definition 3.1.2. Let A be a closed and densely defined operator acting on a separable Hilbert space H
and € > 0. We define the (e— )pseudospectrum of A by

Sp,(A) = cl ({z €C:|R(zA) " < e}) :
the closure of the set of points with resolvent norm greater than 1/e.

The pseudospectrum Sp,_(A) [KSTV15] [TEO5] is a generalisation of the spectrum (and measure of its
stability), which is popular for non-Hermitian problems. The main results of this chapter, Theorems [3.1.4]
and[3.1.9]below, also hold true when restricting the classes of operators to Schrodinger operators (on lattice
systems in the discrete case and on L?(R?) or similar domains in the continuous case) and hence our results

have direct implications within the computational boundaries in quantum mechanics [CRH19].

3.1.1 Spectra of unbounded operators on graphs

Consider a possibly unbounded operator A with domain D(A) C 1?(N) and non-empty spectrum, and
E1(A) =Sp(4) and Z3(A) = Sp.(4).

We have to define the domain {2 and evaluation functions A. Let C(1?(N)) denote the set of closed, densely

defined operators on /2(N), and consider the following assumptions.
(1) The subspace span{e,, : n € N} forms a core for both A and A* ({e; };en is the canonical basis).

(2) Givenany f : N — N with f(n) > n define

Dyn(A) = max {[|(I = Py ) AP, |, [|(T = Pyny) A™ P

1, 3.1.1)

where P, is the projection onto the span of {e1,...,e,}. We say that an operator has bounded
dispersion with respect to f if lim,, o, Dy ,(A) = 0. We will assume knowledge of a sequence

{¢n}nen C Q that converges to zero with Dy ,(A) < ¢p.

(3) We assume knowledge of a sequence {g,, } of strictly increasing continuous functions g, : R>¢ —

R vanishing at 0 and with lim,_,+ g, () = oo such that
gm(dist(z,Sp(A))) < |R(z, A)|| 7", Vz € Bn(0). (3.1.2)

In this case we say that A has resolvent bounded by {g,, }. Note that this implicitly assumes that the
spectrum of A is non-empty (which always holds for bounded operators).

[DRAW PICTURE ON BOARD]

20



3.1. Main Results CHAPTER 3. Computing Spectra with Error Control

Bounded dispersion in (3.1.1)) generalises the notion of a banded or sparse matrix to knowledge of off-
diagonal decay. Given any operator with assumption (1), there exists an f such that lim, o, D¢ (A4) = 0.
The function f will be used to construct certain rectangular truncations of our operators (see §3.1.3)), which
is a key difference to previous methods that typically use square truncations.

To handle non-normal operators, we need to be able to control the resolvent as in (3.1.2). If A has
Sp(A) # 0, then a simple compactness argument implies the existence of such a sequence of continuous
functions. ' Exercise: Prove this! Suppose that A is bounded and we can take g = g,,, then we can view
the function g as a measure of stability of the spectrum of A through the formula

Sp.(A) = U Sp(A + B).
BeB(1?(N)), || B||<e
Hence, the functions {g,, } generalise the notion of condition number in the problem of computing Sp(A).
Note that if our operator is normal, we can simply choose the functions g,,(z) = g(x) = x through the
identity dist(z,Sp(A)) = ||R(z, A)||~!. |Exercise: Prove this! There are examples where such functions

are known for non-normal operators, such as perturbations of self-adjoint operators [Gil03]].

Defining 2 and A

Let f be as described in assumption (2) above, and {2 be the class of all A € C(I2(N)) such that (1) and (2)
hold and such that the spectrum is non-empty. Given a sequence as described in (3), let £, be the class of

all A € Q) such that 1} holds. We also let {2 denote the operators in Q) that are diagonal.

Operators on graphs: For operators on graphs, consider any connected, undirected graph G, such the set
of vertices V' = V/(G) is countably infinite. We consider operators on [*(V/) that are closed, densely defined

and of the form

A= Z a(v,w) |v) (w], (3.1.3)

v,weV
for some o : V' x V' — C. We have also used the classical Dirac notation in and identified any
v € V by the element in v, € [2(V), such that 1, (v) = 1 and 9, (w) = 0 for w # v. When writing this,
we assume that the linear span of such vectors forms a core of both A and its adjoint. We also assume that
for any v € V/, the set of vertices w with (v, w) # 0 or a(w, v) # 0 is finite. We then let Q9 be the class
of all such A with non-empty spectrum and Qg operators in 9 of known {g,,} such that holds. We
also assume that with respect to some given enumeration {ey, ez, ...} of V, we have access to a function

S : N — Nsuch that if m > S(n) then a(ey, €m) = alem, e,) = 0.

Remark 3.1.3 (Defining A). For operators on I?(N), A contains the collection of matrix value evaluation
functions, the functions describing the dispersion, and the family of the functions {g,} controlling the
growth of the resolvent. For operators on 12(V'), A contains the functions «, the function S and, in the case

of 09, the family gy, for m € N.

Theorem 3.1.4. Let Z; be the problem function Sp(-) and Zo be the problem function Sp_(-) for € > 0,

where these map into the metric space (C1(C), daw). Then

A? % {ElaQD} € 2114’ A? % {Elvgg} € Zfa A? % {Elvgg} € E1147
A #{E2,Qp} € 27, AT # (22,0} € B¢, A #{E, 0% e B

For 25, the constructed algorithm’s output is always a subset of the true pseudospectrum.
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Remark 3.1.5. If any of the information given through the functions f or {g,,} is missing, then the spectral
problem does not lie in A (i.e., it cannot be computed in one limit, regardless of the model of computa-
tion). Hence the above conditions give a characterisation of when the spectral problem can be solved
computationally in one limit. In other words, both types of information, the column decay structure and the

conditioning of the spectrum, are needed.

Finally, we consider two discrete problems which also include the case when the spectrum may be

empty. Let K be a non-empty compact set in C and denote the collection of such subsets by K(C). Consider

Z5: (A, K) = Is Sp(A) N K = 0?
Z4: (A, K) = IsSp,(A) N K = 0?

The information we consider available to the algorithms in the I2(N) (I?(V (G))) case is given by the matrix
elements of A (the functions «), the dispersion function f and dispersion bounds {c, } (the finite sets S,,),
and a sequence of finite sets K,, C Q + iQ, with the property that dy(K,, K) < 2-(+1)_ For these
problems, we take (M, d) to be {0, 1} with the discrete metric (recall that 1 is interpreted as ‘yes’ and 0 as
‘no’). Although the pseudospectrum is easier to compute as a whole, the following shows that this is not the

case for testing on a given set. Note that these discrete problems are harder than computing the spectrum.

Theorem 3.1.6. We have the following classifications for j = 3, 4:
AT F{E;,Ax K@)} elly, AF F{E;, 2 xK(C)} €13,
A§ # {2,909 x K(C)} € TTJ.

Furthermore, the proof will make clear that the lower bounds also hold when we restrict the allowed com-

pact sets to any fixed compact subset of R.

3.1.2 Spectra of partial differential operators

In this section, we provide classification results for general differential operators. Under very general
assumptions, we obtain X{' classifications for the spectrum. Moreover, the computational problem can
also be used for computer-assisted proofs. Finally, we establish how the problem makes a jump in the SCI
hierarchy. In particular, with slightly weaker assumptions, the spectral problem ¢ ¢ U 1§

For N € N, consider the operator formally defined on L?(R?) by

Tu(z) = Z ar(x)0%u(x), (3.1.4)
KEZL o[k <N
where we use multi-index notation with |k| = max{|k1|, ..., |kq|} and 8% = 0%19%2...0%¢. We will assume

that the coefficients ay,(z) are complex-valued measurable functions on R?. Suppose also that 7" can be
defined on an appropriate domain D(T") such that T is closed and has a non-empty spectrum. Our aim is to
compute the spectrum and pseudospectrum from the functions ay.

Let €2 consist of all such 7" such that the following assumptions hold:

(1) The set C5°(R?) of smooth, compactly supported functions forms a core of 7" and its adjoint T*.
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(2) The adjoint operator 7 can be initially defined on C§°(R%) via

Tru(e)= > d(x)du(z),

keZd o, |k|<N
where Gy, () are complex-valued measurable functions on R9.

(3) For each ay(z) and ay(z), there exists a positive constant Ay, and an integer By, such that
~ 2B,
jak(@)] [ (@)| < A (1+]2)),
almost everywhere on R<, that is, we have at most polynomial growth.

(4) Asin §3.1.1] we have access to functions {g,, } (see (3.1.2) and the assumptions on {g,, }) such that

gm(dist(z,Sp(T))) < ||R(z, T)||”", Vz € Bn(0).

(5) Sp(T) (and hence Sp,(T)) is non-empty.

Hence we consider the operator T defined as the closure of 7" acting on C§°(R?). The initial domain
C§°(R?) is commonly encountered in applications, and it is straightforward to adapt our methods to other

initial domains such as Schwartz space.

Remark 3.1.7 (The open problem of computing spectra of differential operators). There is no existing gen-
eral theory or method guaranteeing convergence for PDOs (3.1.4), even when each ay, is a polynomial. The
standard procedure is to discretise the differential operator via methods such as finite differences, truncate
and then handle the finite matrix with standard algorithms designed for finite-dimensional problems. Such
an approach does not always converge, and would at best give a A3 classification. Despite this, we prove

below that one can achieve X1 classification for a large class of operators.

In the numerical applications, we will demonstrate this on anharmonic oscillators of the form
d
H=-A+ Z(ajxj + bjx?) + Z cla)z”,
j=1 lee| <M

where a;,b;, c(«) € R (as well as more general Schrodinger operators). The multi-indices « are chosen
such that 37, s c(@)z® is bounded from below. To the best of our knowledge, this algorithm is the first
that computes the spectrum of such operators with error control in the sense of ¥4, This has a wide number
of applications and the problem has received a lot of attention [BO13|Wen96, BW7/3| EMT&9].

Remark 3.1.8. Throughout this section, the functions { g, } are not needed to compute the pseudospectrum.

We consider the computation of the spectra/pseudospectra of operators 7' € €2 from evaluations of the

functions ay, and ay. For dimension d and » > 0 consider the space
A ={f € M([=r,7]") | flloo + TV_pma(f) < 00},

where M ([—r,7]?) denotes the set of measurable functions on the hypercube [—r, 7] and TV_,.,ja the
total variation norm in the sense of Hardy and Krause (see [Nie92]). This space becomes a Banach algebra

when equipped with the norm

Hf”_AT = Hf“oo + UTV[—T,r]d(f)

23



3.1. Main Results CHAPTER 3. Computing Spectra with Error Control

with o = 3% + 1 (see [BT89]). We will assume that each of the (appropriate restrictions of) a;, and a, lie

in A, for all » > 0 and that we are given a sequence of positive numbers such that

lakll 4, llakll 4, < cn, cn>0,m €N, |k <N. (3.1.5)

The extra readable information is completely analogous to using bounded dispersion for matrix problems,

and we shall see that it cannot be omitted if one wishes to gain error control in the sense of ;. Let

Oy = {T € Q] such that (1) - (5) and (3.1.5) hold}.

In this case, A' contains functions that allow us to sample the functions {g,, }men,{ax, ap k<N and the
constants { A, Bi}|k|<n» {Cn}nen. Consider the weaker assumption on A that we can evaluate b, > 0
(and not the Ay, By, and the ¢,,) such that

max{||la a k| <N
Ul el K SN} _

neN b'rL

With a slight abuse of notation, we use 2., to denote the class of problems where we have this weaker

requirement. We can now define the mappings

Sp(T) € Maw, j=1
Spe<T) € MAW7 j =2

L
J

—
fu

=2 .0l 2
25 Qpy, Qpy 2T =

Theorem 3.1.9. Let E}, E?, QlTV and Q%V be as above. Then for j = 1,2

A? ¥ {Egva}I‘V} € 2{17

= UTIT # {25, 04y} € A7

3.1.3 Idea of the algorithms

To explain the idea of the algorithms, consider the case of computing the spectrum of a sparse self-adjoint
A € Qg, such that the function f, which bounds the dispersion, also describes the sparsity structure in the
sense that A; ; = 0if j > f(i) ori > f(j). Given z, we consider the rectangular matrix Pj(,)(A —
zI)P,. This was discussed in Section In the case of finite range lattice models in condensed matter
physics, which we can view as sparse matrices acting on [?(N), there is a nice physical interpretation. The
rectangular truncation Py (,,) AP, contains all of the interactions of the first n sites without needing to apply

boundary conditions. Using this, we approximate

E,(2) = oint(Prn) (A — 21)|p, a2(vy))-

This corresponds to an estimate of the distance of z to the spectrum and physically corresponds to approxi-
mating the square root of the ground state energy of the folded Hamiltonian P, (A — 2I)*(A — 2I)P,,. We
prove that our approximation converges uniformly to the resolvent norm ||R(z,T) H_l = dist(z,Sp(4)),
on compact subsets of the complex plane. The convergence is also from above, meaning that we gain the
rigorous error bound dist(z, Sp(A4)) < E,(z). It is precisely the use of the rectangular truncation that
leads to convergence from above, and, in general, taking a square truncation will not even converge. In the
non-normal case, we use the functions {g,, } to relate the approximation of | R(z,T)| " to dist(z, Sp(A)).

Given a region R C C of interest, the other ingredient of the algorithm is a search routine that seeks

to approximate the spectrum locally on R. We consider a grid of points G (n) of spacing d(n) — 0 as
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n — oo. The resolution 6(n)~! (which can be viewed as a discretisation parameter) can be changed to allow
one to vary the number of computed solutions. In our experiments, we chose §(n) to ensure approximately
n solutions for fair comparisons with other methods. The first step is to compute E,, (-) over Gz (n), which
can be done in parallel. Given z € Gg(n), we let I, be the points in Gz (n) at distance most E,,(z) away
from z. We then let M, be the minimisers of E,,(-) over the local set I.. Since E,,(-) bounds the distance to
the spectrum and converges to the true distance, M, approximates the spectrum near the point z. This is a
completely different approach to most previous methods, which typically seek to solve a finite-dimensional
(linear and, in some cases, nonlinear) eigenvalue problem approximating the operator.

When dealing with PDOs, we construct an appropriate matrix representation of the operator with respect
to a basis {¢,, } by sampling the coefficients. Our results rigorously indicate the sampling size and strategy

needed, using the theory of quasi-Monte Carlo integration. We approximate inner products of the form

(T = 21y, (T — 21)y)

directly, which allows us to compute a convergent upper bound of || R(z, T)||~!. Once this is obtained, we

can use a local search routine as before.

3.2 Proofs: Unbounded Operators on Graphs

We will now prove the theorems in §3.1.1] The following argument shows that it is sufficient to consider
the [?(N) case. Given the graph G and enumeration {e1, e, ...} of the vertices, consider the induced iso-
morphism [2(V(G)) =2 1?(N). This induces a corresponding operator on /2(N), where the functions e now
become matrix values. For the lower bounds, we can consider diagonal operators in 0¢ (thatis, (v, w) =0
if v # w) with the trivial choice of S(n) = n. Hence lower bounds for {2, translate to lower bounds for Q9
and Qg For the upper bounds, the construction of algorithms for /2(N) will make clear that given the above
isomorphism, we can compute a dispersion bounding function f for the induced operator on /2(N) simply
by taking f(n) = S(n). This has D¢ ,(A) = 0. Note that any of the functions in A for the relevant class of
operators on [?(N) can be computed via the above isomorphism using functions in A for the relevant class
of operators on [?(V (G)). For instance, to evaluate matrix elements, we use a(e;, €;).

There is a useful characterisation of the Attouch—Wets topology. For any closed non-empty sets C' and
C,, the convergence daw (C,, C') — 0 holds if and only if dx (C,,, C') — 0 for any compact K C C where
di (Cq,C2) = max { sup dist(a,Cs), sup dist(b, Cl)} ,

aceCiNK beCoNK
with the convention that the supremum over the empty set is 0. This occurs if and only if for any 6 > 0 and
K, there exists IV such thatif n > N then C,, N K C C' 4 Bs(0) and C N K C C,, + B;(0). Furthermore,
it is enough to consider K of the form B, (0), the closed ball of radius m about the origin for m € N, for

m large. Throughout this section we take our metric space (M, d) to be (C1(C), daw).

Remark 3.2.1 (A note on the empty set). There is a slight subtlety regarding the empty set. It could be
the case that the output of our algorithm is the empty set and hence I',,(A) does not map to the required
metric space. However, the proofs will make clear that for large n, T',(A) is non-empty and we gain
convergence (this is also very rarely a problem in practice for n 2 10). By successively computing T',,(A)
and outputting Iy, ,,) (A), where m(n) > n is minimal with T, (,,) (A) # (), we see that this does not matter

for the classification, but the algorithm in this case is adaptive.
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The following lemma is a useful criterion for determining ¥4 error control in the Attouch—-Wets topol-

ogy and will be used in the proofs without further comment.

Lemma 3.2.2. Suppose that = : Q — (CI(C),daw) is a problem function and Ty, is a sequence of

arithmetic algorithms with each output a finite set such that

lim daw(Tn(A),E(A)) =0, VA€ Q.

n—oo

Suppose also that there is a function E,, provided by T",, (and defined over the output of I';,), such that

lim sup E.(2)=0
n=00 2el', (A)NBm (0)

for all m € N and such that
dist(z,2(A)) < E,(z), VzeT,(A).

Then:

1. For each m € N and given I',,(A), we can compute in finitely many arithmetic operations and

comparisons a sequence of non-negative numbers a,' — 0 (as n — oo) such that

T,,(A) N B,y (0) C Z(A) + Bar (0).

2. GivenT,,(A), we can compute in finitely many arithmetic operations and comparisons a sequence of

non-negative numbers b,, — 0 such that
r.(A) c A,

for some A, € Cl(C) with daw (An,Z(A)) < bp.

Hence we can convert I',, to a Xi* tower using the sequence {b,} by taking subsequences if necessary.

Exercise: Prove Lemma

To build our algorithms, we need to characterise the reciprocal of the resolvent norm in terms of the

injection modulus. For A € C(I?(N)) define the injection modulus as
oint(A) = inf{||Az|| : = € D(A), ||z|| = 1}, (3.2.1)

and define the function

Y(z, A) = min{oi(A — 2I), o (A* — ZI)}.

Lemma 3.2.3. For A € C(I*(N)), v(z,A) = 1/||R(2, A)||, where R(z, A) denotes the resolvent (A —
2I)~1 and we adopt the convention that 1/ || R(z, A)|| = 0 if z € Sp(A).

Exercise: Prove Lemma

Suppose we have a sequence of functions ,(z, A) that converge uniformly to v(z, A) on compact
subsets of C. Define the grid
1
Grid(n) = —(Z +4Z) N B,(0). (3.2.2)
n

For a strictly increasing continuous function g : R>g — R, with g(0) = 0 and lim,_, «, g(z) = oo, for

n € Nand y € R>q define

CompInvg(n,y,g) =min{k/n: k€ N,g(k/n) > y}. (3.2.3)
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Note that CompInvg(n,y,g) can be computed from finitely many evaluations of the function g. We
now build the algorithm converging to the spectrum step by step using the functions in (3.1.2). For each
z € Grid(n), let

Tho= BCompInvg(nmL(z,A),gnzn)(Z) NGrid(n).
-1
If v, (2, A) > (|z|2 + 1) then set M, = (), otherwise set

M,={weT,,:wmw, A) = min v, (v,A)}.

vEY ..
Finally define I';,(A) = U.cgriqm)M:. It is clear that if 7, (z, A) can be computed in finitely many
arithmetic operations and comparisons from the relevant functions in A for each problem, then this defines
an arithmetic algorithm. If A € C(I?(N)) with non-empty spectrum then there exists z € B,,(0) with
v(z, A) < (m? +1)"1/2 and, for large n, z, € Grid(n) sufficiently close to z with y(z,, A) < (|z,|* +
1)~1. Hence, by computing successive I',,(A), we can assume that I',,(A) # () without loss of generality

(see Remark [3:2:7).

Proposition 3.2.4. Suppose A € C(I12(N)) with non-empty spectrum and we have a function v, (z, A) that
converges uniformly to v(z, A) on compact subsets of C. Suppose also that holds, namely

gm (dist(z,Sp(A))) < |R(z,A)| . ¥z € By(0).

Then T, (A) converges in the Attouch—Wets topology to Sp(A) (assuming T, (A) # 0 without loss of
generality).

Proof. We use the characterisation of the Attouch—Wets topology. Suppose that m € N is large such
that B,,(0) N Sp(A) # 0. We must show that given § > 0, there exists N such that if n > N then
I'n(4) N By, (0) C Sp(A) + Bs(0) and Sp(A) N B,,(0) C T',(A) + Bs(0). Throughout the rest of the
proof we fix such an m. Let €, = |[yn(, 4) = v(-, Al 5, , (0)» Where the notation means the supremum
norm over the set By, 11(0).

We deal with the second inclusion first. Suppose that z € Sp(A) N B,,(0), then there exists some
w € Grid(n) such that |w — z| < 1/n. It follows that

Yo (w, A) < y(w, A) + €, < dist(w, Sp(A4)) + €, < €, + 1/n.

By choosing n large, we can ensure that €,, < (2m?+2)~! and that 1/n < (2m?+2)~! so that v, (w, A) <
(Jw|® + 1)1, It follows that M,, is non-empty. If y € M,, then

ly— 2| < |w— 2|+ |y — w| < Un+ 1/n+ g (ya(w, 4)).
But the gi’s are non-increasing in k, strictly increasing continuous functions with g;(0) = 0. Since
Yn(w, A) < €, + 1/n, it follows that
ly — 2| < 2/n+ g,k (en +1/n). (3.2.4)

There exists N such that if n > N then (3.2.4) holds and 2/n + g, (e, + 1/n) < & and this gives the
second inclusion.

For the first inclusion, suppose for a contradiction that this is false. Then there exists n; — 00, § > 0
and z,; € L'y, (A)N B (0) such that dist(zy,,, Sp(A)) > 6. Then zy,; € My, for some wy, € Grid(n;).
Let

I(]) = BCompInvg(nj,’ynj (wnj ,A),gﬂwnj ) (wnj) n Grid(nj)7
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the set over which we compute minima of v,,. Let y,, € Sp(A) be of minimal distance to Wy, (such

a yn, exists since the spectrum restricted to any compact ball is compact). It follows that |y, — wp, ‘ <

9[_\111; A (v(wn;, A)). A simple geometrical argument (which also works when we restrict everything to the
i

real line for self-adjoint operators), shows that there must be a v,,; in I(j) so that

4
’U”j _y"j| < n7j+g[

W(V(U}njaA)) _gfl ](’Ynj (wnj7A))'

Wn

1
Wn

Since zy,, minimises 7, over I(j) and My, - is non-empty, it follows that

1
P ey (Unj s A) + €n,.

Wny;

V(zn, ;s A) < ny(2n,, A) +eny < min{

This implies that

1
d < dist(zn,,Sp(A)) < g;l min{ ——5——, Y, (Un,;, A) p +€n; |, (3.2.5)
where we recall that g;bl is continuous. It follows that the Wp,; must be bounded and hence so are the Unj -

Due to the local uniform convergence of ,, to v, it follows that

4 -1 -1
g T I, V000 A)) =7

(Y, (wy,, A)) = 0, asn; — oo.
n; []h

|“’".7’

But then
Y(Vn;, A) < dist(vn,, Sp(A)) < |vnj — ynj} — 0.

Again the local uniform convergence implies that ,,, (v, , A) — 0, which contradicts (3.2.5) and completes
the proof. O

Next, given such a sequence -,,, we would like to provide an algorithm for computing the pseudospec-
trum. However, care must be taken in the unbounded case since the resolvent norm can be constant on open

subsets of C [Sha08§]]. Simply taking
Grid(n)N{z:yu(z,A) <€}

is not guaranteed to converge, as can be seen in the case that -, is identically v and A is such that
|R(z, A)|| " = € has non-empty interior. To get around this, we will need an extra assumption on the

functions ~,,.

Lemma 3.2.5. Suppose A € C(12(N)) with non-empty spectrum and let ¢ > 0. Suppose we have a sequence

-1
I

of functions v, (z, A) that converge uniformly to | R(z, A) on compact subsets of C. Set

¢ (A) = Grid(n) N{z : (2, A) < €}.

For large n, T (A) # () so we can assume this without loss of generality. Suppose also AN € N (pos-
sibly dependent on A but independent of z) such that if n > N then v, (z, A) > ||R(z, A)||"". Then
daw (TS (A),Sp.(A)) = 0asn — oo

Proof. Since the pseudospectrum is non-empty, for large n, I'¢ (A) # () so by our usual argument of
computing successive I';, (see Remark [3.2.1) we may assume that this holds for all n without loss of
generality. We use the characterisation of the Attouch—Wets topology. Suppose that m is large such that
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B (0)N'Sp.(A) # 0. AN € N such that if n > N then v, (z, A) > |[R(z, A)|| " and hence T'¢, (4) N

B,,(0) C Sp.(A). Hence we must show that given 6 > 0, there exists /N7 such that if n > N; then
Sp.(4) N B,,(0) C T¢(A) + Bs(0). Suppose for a contradiction that this were false. Then there exists
Zn; € Sp(A) N B (0), 6 > 0and nj — oo such that dist(zy,,, 17, (A)) > é. Without loss of generality,
we can assume that z,, — z € Sp_(A4) N B,,(0). There exists some w with |R(w, A)|| " < € and
|z — w| < §/2. Assuming n; > m + 4, there exists y,, € Grid(n;) with |y,, — w| < 1/n;. It follows
that

’Ynj (ynj,A) S |’Y7lj (ynJ’A) ’-Y yﬂja | + |’Y w, A yﬂ,v | + ||R w A)H_

But v is continuous and +y,,; converges uniformly to v on compact subsets. Hence for large n;, it follows
that vy, (yn;, A) < eso thaty,,; € I'}, (A). But yn, — 2| < |z — w|+ |yn, — w| < 6/2+1/n;, which is

smaller than ¢ for large n;. This gives the required contradiction. [

Now suppose that A € Qandlet D rn(A) < ¢,. The following shows that we can construct the required
sequence 7y, (z, A), each function output requiring finitely many arithmetic operations and comparisons of

the corresponding input information.

Theorem 3.2.6. Let A € ) and define the function

’i/n(Z, A) = min{ainf(Pf(") (A — ZI)|p (12( N))) O'mf(Pf (A — ZI)

PL(12(N)}-

We can compute 7,, up to precision 1/n using finitely many arithmetic operations and comparisons. We

call this approximation 4,, and set
Yn(z, A) = Fn(z, A) + ¢ + 1/n.
Then v, (z, A) converges uniformly to v(z, A) on compact subsets of C and v, (z, A) > v(z, A).

Proof. We will first prove that oj,¢((A — 21)

po2))) 4 oint(A — zI) as n — oo. Itis trivial that
oinf((A = 2I)|p,i2v))) = Oinf(A — 21) and that oi,¢((A — 21)|p, 12())) is non-increasing in n. Using
Lemma[3.2.3] let ¢ > 0 and # € D(A) such that ||z|| = 1 and ||[(A — 2I)z| < oine(A — 2I) + €. Since
span{e, : n € N} forms a core of A, AP, ;x,, — Az and P,,z,, — x for some n; — oo and some

sequence of vectors x,,; that we can assume have norm 1. It follows that for large n;

H(A — )Py an, H
|| Py, |

ot ((A = 2D)|p, 2av)) < = [[(A = zD)z| < oine(A - 21) + e

Since € > 0 was arbitrary, this shows the convergence of oinf((A — 21)|p, 12(w))). The fact that span{e,, :
n € N} forms a core of A* can also be used to show that oyt ((A — 21)*|p, 12(n))) 4 O (A" — Z1).
Next we will use the assumption of bounded dispersion. For any bounded operators B, C, it holds that

|oing(A) — oint(B)| < ||A — B|| . The definition of bounded dispersion now implies that

Hn(z, A) — min{ainf((A — ZI)|P,,,(12(N))),Uinf((A — ZI)*‘P,Z(P(N)))}‘ < Cn.

The monotone convergence of min{oi,f((A — 2I)|p, 12v))), Tinf ((A — 2I)*|p, 12(vy)) }» together with
Dini’s theorem, imply that 7,,(z, A) converges uniformly to the continuous function 7(z, A) on compact

subsets of C with 4,,(z, A) + ¢, > v(z, A).
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The proof will be complete if we can show that we can compute 7, (z, A) to precision 1/n using finitely

many arithmetic operations and comparisons. To do this, consider the matrices
By (2) = Po(A = 21)" Py (A — 2I) P, Cn(z) = Po(A — 2I)Ppiny (A — 21)" P,.

By an interval search routine, we can determine the smallest / € N such that at least one of B,,(z) — (I/n)?I

or Cy,(2) — (I/n)?I has a negative eigenvalue. We then output //n to get the 1/n bound. O

Note that by taking successive minima, v, (2, A) = mini<;<y n(2, 4), we can obtain a sequence of
functions v,, that converge uniformly on compact subsets of C to v(z, A) monotonically from above. Hence

without loss of generality, we will always assume that v,, have this property.

Proof of Theorem[3.1.4] By considering bounded diagonal operators, it is straightforward to see that none
of the problems (spectra or pseudospectra) lie in A§'. We first deal with convergence of height one arith-
metical towers. For the spectrum, we use the function ,, described in Theorem [3.2.6]together with Propo-
sition and its described algorithm. For the pseudospectrum, we use the same function +,, described in
Theorem [3.2.6|and convergence follows from using the algorithm in Proposition

We are left with proving that our algorithms have ¥4* error control. For any A € Q, the output of
the algorithm in Proposition is contained in the true pseudospectrum since v, (z, A) > v(z, A) =
|R(z, A)||". Hence we need only show that the algorithm in Proposition provides ¥4! error control
for input A € ,. Denote the algorithm by I'), and set

E,(z) = CompInvg(n,yn(z, A),gﬂ;H)
on I',, (A) and zero on C\T',,(A). Since v, (z, A) > ||R(z, A)|| ", the assumptions on {g,, } imply that
dist(z,Sp(A4)) < E,(z), VzeTl,(A).

Suppose for a contradiction that E,, does not converge uniformly to zero on compact subsets of C. Then
there exists some compact set K, some € > 0, a sequence n; — oo and z,; € K such that F,, (Zn;) > e
It follows that z,,, € Iy, (A). Without loss of generality, z,,;, — z. By convergence of ', (A4), z € Sp(4)
and hence 7y, (2n;, A) — 7(2, A) = 0. Now choose M large such that ' C Bys(0). But then
_ 1
Enj (an) S g]\ll ('an (Z’I’Lj ) A)) + ni — 0,
J

the required contradiction. O

Remark 3.2.7. The above makes it clear that E,,(z) converges uniformly to the function gﬂZlH (v(z,A)) as

n — oo on compact subsets of C.
Finally, we consider the decision problems =3 and =.

Proof of Theorem It is clearly enough to prove the lower bounds for Qp x K(C) and the existence of
towers for { x K(C). The proof of lower bounds for Q, x K(C) can also be trivially adapted to the more
restrictive versions of the problem described in the theorem.

Step 1: {Z3,0p x K(C)} ¢ AS. Suppose this were false, and T',, is a height one tower solving the
problem. For every A and n there exists a finite number N(A4,n) € N such that the evaluations from

Ar,, (A) only take the matrix entries A;; = (Ae;,e;) with 4,7 < N(A,n) into account. Without loss of
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generality (by shifting our argument), we assume that K N [0, 1] = {0}. We will consider the operators
A, = diag{1,1/2,...,1/m} € C™*™, B, = diag{1,1,...,1} € C™*™ and C' = diag{1,1,...}. Set
A=, _, (B, ® Ay, ), where we choose an increasing sequence k,, inductively as follows.

Set k1 = 1 and suppose that k1, ..., k, have been chosen. Sp(By, ® Ak, ® ... ® By, ® Ag,, & C) =
{1,1/2,...,1/m} and hence

Z3(Bi, ® Ak, ® ... ® By, D A, ®C) =0,
so there exists some n,,, > m such that if n > n,,, then
I, (B, @ Ag, © ... By, @ Ay, ®C) =0.

Now let kpp+1 > max{N(By, ® Ax, ® ... ® By,, ® A,, ® C,np,), km + 1}. By assumption (iii) in
Definition it follows that Ar, (Bg, ® Ap, © ... ® By,, ® Ag,, ® C) = Ar, (A) and hence by
assumption (ii) in the same definition that T, (A) =T, (B, ® Ak, ® ... ® By, ® A, & C) = 0. But

m

m

0 € Sp(A) and so must have lim,,_, o I';,(A) = 1, a contradiction.
Step 2: {Z4,Qp} ¢ AS. The same proof as step 1, but replacing A by A + eI works in this case.
Step 3: {Z3,Q x K(C)} € II4. Recall that we can compute, with finitely many arithmetic operations
and comparisons, a function v, that converges monotonically down to || R(z, A)|| " uniformly on compacts.
Set
Iy, ny (A) = Does there exist some z € K,,, such that v,, (z, A) < 1/2"2?

It is clear that this is an arithmetic algorithm since each K, is finite and that
lim T, n, (A) = Does there exist some z € K,,, such that | R(z, A)|| ™" < 1/2"27 =: T',,, (A).

nig—>o0

If K NSp(A) = 0, then ||R(z, A)||”" is bounded below on the compact set K and hence for large no,
I'y, (A) = 0. However, if z € Sp(A) N K then let z,,, € K,,, minimise the distance to z. Then

1R (2, A)II ™ < dist(z0,. SP(A)) < 1/27

and hence T, (A) = 1 for all ny. This also shows the TT4' classification.
Step 4: {24, x K(C)} € IT4. Set

Ty, 0, (A) = Does there exist some z € K, such that v, (z, A) < 1/2"2 + €?,

then the same argument used in step 3 works in this case. O

3.3 Proofs: Partial Differential Operators

Here we shall prove Theorem The constructed algorithms involve technical error estimates with
parameters depending on these estimates. In the construction of the algorithms, our strategy will be to
reduce the problem to one handled by the proofs in §3.2] To do so, we must first select a suitable basis and

then compute matrix values.
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3.3.1 Construction of algorithms

We begin with the description for d = 1 and comment how this can easily be extended to arbitrary dimen-

sions. As an orthonormal basis of L?(R) we choose the Hermite functions
P (x) = (2mm!\/%)_1/26_1'2/2Hm(x),m € Z>o,

where H,, denotes the n-th Hermite polynomial defined by

d’l’b

Ha(z) = (—1)" exp(a?) - exp(—2?).
These obey the recurrence relations
1
Ui (%) = %wmfl(m)_ %wmﬂ(x) (3.3.1)
1
Pm(z) = %wm—l(:vH %wmﬂ(x). (3.3.2)

We let Cy(R) = span{t,, : m € Z>o}. Note that since the Hermite functions decay like e=**/2 (up to
polynomials) and the functions a; and a; can only grow polynomially, the formal differential operator T'
and its formal adjoint T* make sense as operators from Cz;(R) to L?(R). The next proposition says that

we can use the chosen basis.
Proposition 3.3.1. Consider an operator T' € Q. Then Cy(R) forms a core of both T and T*.

Exercise: Prove Proposition|3.3.1

The above analysis holds in higher dimensions by considering tensor products
Crr(RY) := span{thm, @ ... @ Yy, | M1, .y ma € Zso}

of Hermite functions. We will abuse notation and write ¢, = ¥y, ® ... ® ¥,,,. It will be clear from
the context when we are dealing with the multi-dimensional case. In order to build the required algorithms
with ¢! error control, we need to select an enumeration of Z%o in order to represent 1’ as an operator
acting on [?(N). A simple way to do this is to consider successive half spheres S,, = {m € Z‘éo :
|m| < n}. We list Sy as {eq,...,er, } and given an enumeration {eq, ..., e, } of Sy, we list Sp+1\Sn
as {€r, 41 ernﬂ}. We will then list our basis functions as e1, ez, ... with ¢, = ep(). In practice,
it is often more efficient (especially for large d) to consider other orderings such as the hyperbolic cross
[Lub08bl, or, in the semiclassical regime, to use Hagedorn functions [LL20]. Now that we have a suitable
basis, the next question to ask is how to recover the matrix elements of 7". In §3.2]the key construction is a
function, that can be computed from the information given to us, 7, (z, "), which also converges uniformly

from above to | R(z, T)]| ~! on compact subsets of C. Such a sequence of functions is given by

U, (2,T) := min{op: (T — 21)

P2())s Oint (T = Z1)|p, 2 (v))) }

as long as the linear span of the basis forms a core of 7" and 7*. In §3.2] we used the notion of bounded
dispersion to approximate this function. Here we have no such notion, but we can use the information given

to us to replace this. It turns out that to approximate v, (z, T'), it suffices to use the following.
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Lemma 3.3.2. Let ¢ > 0 and n € N, and suppose that we can compute, with finitely many arithmetic

operations and comparisons, the matrices
{Wa(2)}ig = (T = 2D)ej, (T — zD)eq) + Ejy (2)
{(Va(2)}is = (T = 21)"e;, (T = zI)*ei) + Ej;*(2)
for 1 < 4,5 < n where the entrywise errors El" 5—1 and El" 3—2 have magnitude at most €. Then
I\Ifn(z,T)2 — min{oi,s(Wh), O'inf(vn)}| < ne.

It follows that if € is known, we can compute W, (z, T)? to within 2ne. If € is unknown, then for any 6 > 0,
we can compute V,,(z,T)? to within ne + 8. (In each case with finitely many arithmetic operations and

comparisons.)

Proof. Given {W,(z)};;, note that ({W,,(2)}i; + {Wn(2)};i)/2 still has an entrywise absolute error
bounded by e. Hence without loss of generality we can assume that the approximations W,,(z) and V,,(2)

are self-adjoint. Call the matrices with no errors W, (z) and V},(z) then note that
min{oine (T = 21)|p, 2v))> Ot (T* = 21| p, 2w))) }> = min{oine (W), oine (V) }
and

‘min{ainf(wn)a o-inf(vn>} - min{ainf(Wn); Uinf(‘/n)}‘ < max {HWn - Wn Vn - Vn

} . (333)

)

But for a finite matrix M, we can bound ||M || by its Frobenius norm 4/ |M;; |°. Hence the right hand
side of (3.3.3) is at most ne. In order to use finitely many arithmetic operations and comparisons, we note
that given a self-adjoint positive semi-definite matrix M, we can compute oi,¢(M) to arbitrary precision
using finitely many arithmetic operations and comparisons via the argument in the proof of Theorem 3.2.6]

The lemma now follows. O

Finally, we will need some results from the subject of quasi-Monte Carlo numerical integration, which
we use to build the algorithm. Note that with either no prior information concerning the coefficients or for
large d, this is the type of approach one would use in practice. We start with some definitions and theorems

which we include here for completeness. An excellent reference for these results is [Nie92].

Definition 3.3.3. Let {t1,...,t;} be a sequence in [0,1]% and let K denote all subsets of [0,1]? of the form
szl [0, yx) for yi € (0,1]. Then we define the star discrepancy of {t1, ..., t;} to be
J

1
Di({t1, .. t;}) = sup |~ Y xk(tj) — K|
I ’ Kek |J ; !

)

where X i denotes the characteristic function of K.

Definition 3.3.4 ([Hal60l). For any integer b > 2, the radical-inverse function  is defined on Z>q by
m(n) = a;(m)p=7 7",
§=0

where n = Z;io a; (n)b? is the (necessarily terminating) digit expansion of n. Given integers by, ..., bs >

2, the Halton sequence {xy, }nen C [0,1]® in the bases by, ..., bs is defined by
Tn = (M, (R = 1), 1m0, (n = 1), ...,mp, (0 — 1)).
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Theorem 3.3.5 ([Hal60]). If {t.}ren is the Halton sequence in [0,1]% in the pairwise relatively prime

bases q1, ..., qq, then

* . Qk+1
Di({t1, ... t;} < L H(Qloqu 0g(j) + )

Note that given d (and suitable ¢1,..., g4), We can easily compute in finitely many arithmetic operations

and comparisons a constant C'(d) such that the above implies

D:({t.nt;}) < c(d)w.

(3.34)

The following theorem says why this is useful.

Theorem 3.3.6 (Koksma-Hlawka inequality [Nie92l). If f has bounded variation TV g 1ja (f) on the hy-
percube [0, 1] then for any t1, ..., t; in [0, 1]¢

1 J
‘j > st - /[] f(x)da

By re-scaling, if f has bounded variation TV |_,. ,ja(f) and sy = 2rty, — (r,7, ..., )T then we obtain

d J
Sk) — z)dx
R L

< TVioaa(f)D; ({t1, s t5})-

< 2r)* TV, e (F)D; ({1, s t5}).

Finally, in order to deal with our choice of basis, we need the following.

Lemma 3.3.7. Consider the tensor product V¥, (x) 1= P, (21) - ... - Ym, (zq) in d dimensions and let
r > 0. Then

d
i () < (1 + 2r/2(m] + 1)) -~
Exercise: Prove Lemma

Proposition 3.3.8. Given T € QL; and € > 0, we can approximate the matrix values

<(T_Zj)wm7(T_ZI)wn> and <( _ZI) "/}mv( _ZI)*¢n>

to within € using finitely many arithmetical operations and comparisons of the relevant information (cap-

tured by E; Lin § given to us in each class.

Proof. LetT € QL and € > 0. Recall that
T= Z ap(z)ok, T* = Z ap(z)0",
|k|<N k| <N

so by expanding out the inner products and also considering the case aj = 1, it is sufficient to approximate
(010" pm, a;07p,)  and  (@x0*, a;070,)

for all relevant k, j,m and n. Due to the symmetry in the assumptions of 7" and 7™, we only need to
show that one can compute the first inner product, the proof for the second one is identical. Note that
by the specific choice of the basis functions 1),,, it follows that O%4p,,, can be written as a finite linear
combination of tensor products of Hermite functions using the recurrence relations (the coefficients in the

linear combinations are thus recursively defined as a function of k). Hence, in the inner product, we can
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assume that there are no partial derivatives. In doing this, we have assumed that we can compute square
roots of integers (which occur in the coefficients) to arbitrary precision (recall we want an arithmetic tower)
which can be achieved by a simple interval bisection routine. It follows that we only need to consider
approximations of inner products of the form (ax¥.,, a;jvy).

To do so let R > 1 then, by Holder’s inequality and the assumption of polynomially bounded growth

on the coefficients aj, we have

/ kT3] [t e
|zi|>R

1/2
< A, ( /|R (1412P%)" (1 + |37|23j)2¢m(m)2dx> ( /|m.>R¢”(“)2dI>

The first integral on the right hand side can be bounded by

1/2

16/ |x|23 Y (2)?da < 16/ (ch 4+ .+ 1:3)]3 Y () d,
Rd Rd

for B = 4(By, + By), since we restrict to |z;| > R with R > 1 and |z| < ||z||,. B is even so we can
expand out the product (x? + ... + x2)B/24),,, using the recurrence relations for the Hermite functions. In

one dimension this gives

m m—+1

TP (T) = 5wm71(x)+ T’lpm+l($)v

- % ( m2— 1¢m72($) + ﬁlﬂm(u’c)) + \/m;-l <\/m;1¢m(fﬂ) - m;2¢m+2(3«")> ;

and so on. We can do the same for tensor products of Hermite functions. In particular, multiplying a tensor

product of Hermite functions, t,,, by (23 + ...+ 22) induces a linear combination of at most 4d such tensor
products, each with a coefficient of magnitude at most (|m| + 2)? and index with [°° norm bounded by
|m| + 2 (allowing repetitions). It follows that (27 + ... + 22)5/2¢),,, can be written as a linear combination
of at most (4d)?/? such tensor products, each with a coefficient of magnitude at most (|m|+ B)?. Squaring
this and integrating, the orthogonality and normalisation of the tensor product of Hermite functions implies
that

16 /Rd(a:% + oo+ 22 By, (2)2dx < 16(4d)B2(|m| + B)?E =: py(jm)).

For the other integral, define p>(|n|) := 4d(|n| + 2)*. We then have

1 42 p2(|n)
Vide < — x| p2de < L
/Ii>R R4 Rd ‘ | R4

by using the same argument as above but with B = 2.

So given 6 > 0 and n,m, B, Ay, A;, (and d) we can choose r € N large such that

(Im)"2p2(In|)*/2
r2

/| ol v s < A, <é
x;|>r

We now have to consider the cases T’ € Q% or T' € Q}  separately, noting that it is sufficient to approxi-

a0;YmPndx to any given precision. For notational convenience, let

L.(m) = {1 to ((1 +2r\/m)d - 1)}

mate the integral f‘l I<r
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so that with o = 3% + 1 as in the definition of |- | 4, » we have via Lemma that [t | 4, < Lr(m).

Given k, j,m,n,d and r € N as above, choose M large such that

d
C(d)(log}\(/[M) +1) - L.(m) - Ly(n) < 5/2, 3.3.5)

(27’)d .

where C(d) is as and ¢, controls the total variation as in (3.1.5). Again, note that such an M can
be chosen in finitely many arithmetic operations and comparisons with the given data and assuming that
logarithms and square roots can be computed to arbitrary precision (say by a power series representation
and bound on the remainder). Using the fact that A, is a Banach algebra (in particular we can bound the

norms of product of functions by the product of their norms) and Theorem it follows that

2r)d
A Ll mnovnton) - [ aiminds| <572

where s; = 2rt; — (r,7,...,7)T

are the rescaled Halton points. Hence it is enough to show that each
product ay(s;)a;(s1)1m (s1)1n(s;) can be computed to a given accuracy using finitely many arithmetic
operations and comparisons. Since each s; € Q¢ we can evaluate a(s;)a;(s;). Note that we can compute
exp(—2?%/2) to arbitrary precision with finitely many arithmetic operations and comparisons (again say by
a power series representation and bound on the remainder) and that we can compute the coefficients of the
polynomials Q,,, with ¥,,,(x) = Q. () exp(—22/2), using the recursion formulae to any given precision,
it follows that we can compute ¥, ()%, (s;) to a given accuracy using finitely many arithmetic operations

and comparisons. Using the bounds on the a; and @; and Cramér’s inequality, we can bound the error in

the product and hence the result follows. O
We can now prove the positive parts of Theorem

Proof of inclusions in Theorem[3.1.9) Step 1: {Z}, QL } € XL. The proof of this simply strings together
the above results. The linear span of {e;, e3, ...} (the reordered Hermite functions) is a core of 7" and T
by Proposition By Proposition [3.3.8] we can compute the inner products (7" — zI)e;, (T — z1)e;)
and (T — zI)*ej, (T — zI)*e;) up to arbitrary precision with finitely many arithmetic operations and
comparisons. Using Lemma(3.3.2] given z € C, we can compute some approximation v, (z, T') in finitely
many arithmetic operations and comparisons such that
. . 1

|vn(2,T)? = min{owme (T — 21)| p, i2))» Oine (T = Z1) | p, 2 ))) | < ol

We now set
(2, T) =v,(2,T) + 1/n. (3.3.6)

Then 7, satisfies the hypotheses of Proposition [3.2.4] The proof of Theorem [3.1.4]also makes clear that we
have error control since v, (z,T') > ||R(z,T)| "
Step 2: {Z1,QL,} € 2. Consider the sequence of functions -, defined by equation (3.3.6). These
|_1

converge uniformly to |[R(z, T)|| " on compact subsets of C and satisfy v,,(z, T) > ||R(z,T)|~". We can

now apply Proposition[3.2.3]
Step 3: {Z2,0%},{23,0%,} € A4. Let T € Q2. Our strategy will be to compute the inner
products ((T" — zI)e;, (T — zI)e;) and ((T — zI)*e;j, (T — zI)*e;) to an error which decays rapidly
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enough as we let the cut-off parameter r tend to co. We follow the proof of Proposition[3.3.8|closely. Recall
that given n, m, we can choose 7 € N large such that

(Im])?p2(In))*/2
r2

)

/ > |akm| |wm¢n‘ dx < AkAjpl

with the crucial difference that now we do not assume we can compute Ay, A;,p1 or py. It follows that
there exists some polynomial ps3, with coefficients not necessarily computable from the given information,
such that

_ p3( mi,|n
/I ‘ ‘akajl |wm1/}n| dr < Wa
zi|>r

for all |j|,|k|] < N. Now we use the sequence b, to bound the error in the integral over the compact
cube asymptotically. We assume without loss of generality that b, is increasing monotonically to oo with
r. Using Halton sequences and the same argument in the proof of Proposition [3.3.8] we can approximate
jlm’ <r a0 YmPndx, with an error that, asymptotically up to some unknown constant, is bounded by

. (log(M) + 1)d

rd. — ~b$ - L,(m) - L,(n), (3.3.7)

where M is the number of Halton points. We can let M depend on 7, nn and m such that is bounded
by a constant times 1/r2. It follows that we can bound the total error in approximating (¥, a;t,,) for
any j, k by p3(|m/|, |n|)/r?, by making the coefficients of p3 larger if necessary. We argue similarly for the
adjoint and note that (T — zI)t,, (T — 21)v,) and (T — zI)*ty,, (T — 21)*4,, are both approximated

to within
P(|m/, |n|)
2 b
r

(L+ 2%
for some unknown polynomial P. Hence we can apply Lemma (the form where we do not know
the error in inner product estimates), changing the polynomial P to take into account the basis mapping
from Z%o to N to some polynomial (), to gain some approximation v,,(z,7") in finitely many arithmetic
operations and comparisons such that

2
n(1+|:")QMm) | 1

[on (2, T)? = min{owns (T — 2I)| p, 2 () Oins (T = Z1) | p, 2 )) | < (n2)?

3

(3.3.8)
We now choose 7 (z, n) larger if necessary such that 7(z,n) > (1 + |2|*) exp(n). We now set v, (z, T) =
vn(2,T) + 1/n. Then =, satisfies the hypotheses of Proposition and Proposition since the
error in decays faster than 1/n2. We can use these propositions to build the required arithmetical

algorithm. O

3.3.2 Proofs of impossibility results

Recall the maps

1 Sp(T) e Maw  j=1
:},:?:Q%V,Q%VBTH .
Sp(T) € Maw j =2,

We split up the arguments to deal with Q% and then Q%;.

Proof that {2, Q% } ¢ A§. Suppose first for a contradiction that a height one tower, I',,, exists for the

problem {=1, QL,} such that daw (T',(T'), Z1(T)) < 27™. We will deal with the one-dimensional case and
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higher dimensions are similar. Let p(x) be any smooth bump function with maximum value 1, minimum
value 0 and support [0, 1]. Let p,, denote the translation of p to have support [n, n + 1]. We will consider

the two (self-adjoint and bounded) operators
(Tou)(z) =0,  (Tmu)(z) = pm(z)u(z),

which have spectra {0} and [0, 1] respectively. For these we can take the polynomial bound (the { A} and
{Bx}) to be 1 and the total variation bound to be ¢, = 1+0T Vg 11(p). When we compute I'y(Tp), we only
use finitely many evaluations of the coefficient function aq(x) = 0 (as well as the other given information).
We can then choose m large such that the support of p,, does not intersect the points of evaluation. By
assumptions (ii) and (iii) in Deﬁnition I'5(Ty,) = I'y(To). But this contradicts the triangle inequality
since daw ({0}, [0,1]) > 1

To argue for the pseudospectrum let € > 0 and note that 2¢ ¢ Sp_(Tp) but 2¢ € Sp_(€T;,). We now
alter the given ¢, to €(1 4+ 0TV[g1j(p)) and the polynomial bound to €. The argument is now exactly as

before. Namely, we choose n large such that
dAw(Fn(To), [76, 26}) > 27"
then choose m large such that T, (Ty) = T\, (¢T,)- O

Exercise: Prove that {Z;, Q% } ¢ ¢ UTI}.

3.4 Numerical Examples and Applications

We now demonstrate the broad applicability of the algorithm(s) of this chapter by a few test examples.
Examples of discrete operators are given first, including quasicrystals, the NSA Anderson model and open

systems in optics. We end with a selection of examples of PDOs.

3.4.1 Quasicrystals

We first revisit the quasicrystal example from Chapter|[I] The free Hamiltonian H, (Laplacian) is given by

(How)i = > (15 — i), (3.4.1)

i~
with the notation ¢ ~ j meaning sites ¢ and j are connected by an edge and hence summation is over nearest
neighbour sites (vertices). Previous numerical methods study the eigenvalues of the Hamiltonian restricted
to a finite portion of the tiling with a choice of boundary conditions at the edges (finite section method).
However, this causes additional eigenvalues (spectral pollution or ‘edge states’) to appear, which are not in
the spectrum of Hj acting on the infinite tiling. We will compare our method to finite section with open
boundary conditions (truncating the tile and the corresponding matrix without applying additional boundary
conditions), and the method of approximating an aperiodic tiling by periodic approximants [TFUTO1].
Figure (left) shows the output of the algorithm of this chapter for n = 10° and the two finite section
methods, with n the number of vertices used in the computation. It is important to note that the new
algorithm uses the same number of vertices of the tile as the finite section method for a given n. The error

estimate, computed for both the new algorithm as well as the finite section methods using the method in
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Figure 3.1: Left: Large scale experiment with n = 10° for the algorithm of this chapter and finite section
with open boundary conditions and periodic approximants, applied to the operator Hy in (3.4.1). The top
row shows a magnified section of the approximation provided by the new algorithm and the high resolution
obtained. The approximation computed with the finite section methods produces spurious points in band
gaps with large errors ~ 0.2. Right: The maximum errors as well as time of outputs for the algorithm of

this chapter (blue) and finite section methods (red for open BCs, green for periodic).

the proof of Theorem [3.2.6] is also shown. This error estimate converges uniformly to the true error on
compact subsets of R. Finite section methods produce spurious points in the gaps of the spectrum, and the
frequency of spectral pollution is lower for the periodic approximants. The hat shape of the error function
in the figure also suggests that our error estimate has converged in the gaps of the spectrum.

The time taken for our algorithm and for the finite section methods to reach the final output (shown in
Figure[3.1)) suggests a speed-up of about 20 times. Moreover, the time for the finite section method appears
to grow ~ O(n*?), O(n>?) for open and periodic boundary conditions respectively, whereas the time for
our algorithm grows ~ O(n?!). This predicts even larger differences in computation time for larger n, and

meant we were able to compute the spectrum for very large n only using the new algorithm.

3.4.2 Superconductors and the non-Hermitian Anderson model

Hatano and Nelson initiated the study of the non-Hermitian Anderson model in the context of vortex pinning
in type-1I superconductors [HN96]. Their model showed that an imaginary gauge field in a disordered one-
dimensional lattice can induce a delocalisation transition. While synthesising such an imaginary vector
potential is a challenge in condensed-matter physics, this phenomenon has been investigated in the field
of optics [LGDV15]. From a computational point of view, non-Hermitian Hamiltonians pose a serious
challenge, as no previous algorithm converges to the pseudospectra of infinite-dimensional non-Hermitian

operators nor provides error boundsﬂ The operator on [?(Z) can be written as
(Hz), =¢e¢ "zp_1+ e Tpy1 + Voxn,

where 7 > 0 and V' is a random potential.

IComputations of spectra of non-normal operators are also well-known to suffer from numerical instability, even in finite dimen-
sions. For finite section computations, we checked answers using extended precision. This was not an issue for our pseudospectra
calculations which are stable (pseudospectra also behave continuously under perturbations).
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Figure 3.2: Pseudospectra of the finite section method with non-periodic boundary conditions shown as
contours of the resolvent norm || (H,, — zI)~!|| for n = 105. Similar plots for periodic boundary conditions,
the new algorithm with and without varying p. Bounds on the spectrum are shown in green and the set
E + M inred.

Spectral computations of H are delicate. Once truncated to a finite lattice of size n, the spectrum and
pseudospectrum of the finite section H,, depend on the boundary conditions imposed. Non-periodic bound-
ary conditions (standard finite section) yield an entirely real spectrum, completely ignoring the instability
of the model and utterly different from the complex spectrum of H. Hatano and Nelson argued that a more
physical model would be periodic boundary conditions. In our case, periodic boundary conditions lead to
spectra that converge to a curve in the complex plane strictly contained in the spectrum [GKO8].

If (V;,)nez are ii.d. random variables, then Sp(H ) and Sp.(H) only depend on the support of the
potential, M, almost surely. We consider the Bernoulli case M = {£1} where V;, = 1 with probability
p € (0,1). This choice ensures the spectrum has a hole in it by a standard series argument. Defining the
ellipse £ = {e™1% 47771 : § € [0,27)}, we also have E + 1 C Sp(H) which is contained in the
convex hull of £+ [—1,1]. Figureshows the result of the finite section, i.e. the pseudospectra of H,, for
n = 10° (corresponding to a matrix size of 2n + 1) and the new algorithm with 7 = 1/2 and p = 1/2. The
spectra of finite sections with non-periodic boundary conditions give the wrong set in the limit n — oo,
filling the hole in the spectrum and converging to the interval [—3, 3] (this can be proven). Pseudospectra
for periodic boundary conditions fare much better, as proven for a large class of operators in .

We can take advantage of the fact that, ignoring round-off errors, our algorithm has zero error in its
output and that the pseudospectrum is invariant under changes in p € (0, 1). Thus, we have also shown the

output over a union of varying p. This gives an excellent estimate of the spectrum and the pseudospectrum.

3.4.3 Open systems in optics

Open systems typically yield non-Hermitian Hamiltonians as there is no guaranteed energy preservation.
However, non-Hermitian Hamiltonians can posses real spectra when they respect parity—time (P7") symme-
try [BB98,[KGMOS8| Ben07]. A Hamiltonian H = p?/2+ V() is said to be PT-symmetric if it commutes
with the action of the operator PT" where P is the parity operator £ — — Z,p — — p and 7' the time
operator p — — p,i — — ¢. Many PT-symmetric Hamiltonians possess the remarkable property that their
spectra are real for small enough Im (V') but that the spectrum becomes complex above a certain threshold.
This phase transition is known as symmetry breaking.

Detecting when symmetry breaking occurs poses a substantial challenge since it is very sensitive to

surface/edge states arising from standard truncations. We discuss PT-symmetry breaking for the case of an
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Figure 3.3: Left: Pseudospectra of H computed with the new algorithm and finite sections with different
BCs (in magenta). We can easily detect edge modes with the new algorithm, whereas the finite section
approach produces incorrect solutions (edge modes). In the periodic case we have no edge, and rather these
modes are due to the jump in the potential between the two end sites. Right: Fragile PT-symmetric phase
as we increase the system size due to edge states with complex eigenvalues, which verifies the failure of

finite sections.

aperiodic potential on a discrete lattice:
(Hx)n = Tp—1 + Tnt1 + Voo,

acting on [?(Z) where V,, = cos(n) + iysin(n) and v > 0. Here the aperiodicity occurs due to the
incommensurability of the potential and lattice. We stress that the new algorithm can handle any type of
potential (such as additional defects modelled by random potentials).

In the limit of increasing system size, the critical parameter vpr depends on the boundary conditions
imposed, often decreasing as the number of sites increases with a fragile PT-symmetric phase. This limit
can differ from the value vp7 on the infinite lattice due to surface/edge states [BFKSQ9]. Using our algo-
rithm gives an estimate for yp7 in the infinite lattice case avoiding this fragility, suggesting that symmetry
breaking occurs at ypr =~ 1 &£ 0.05. This allows us to detect edge states rigorously (spectral pollution)
and the corresponding edge modes. Figure [3.3]shows pseudospectral plots generated by our algorithm for
~v = 1,2 as well as the plots for finite chains of length 2001 for open and periodic boundary conditions. We
can easily use the new algorithm to separate bulk states from edge states. We have also shown the values of

~vpr for the finite chains showing the fragility of the P7T-symmetric phase.

3.4.4 Partial differential operators

We demonstrate the algorithms of this chapter on PDOs on L?(R9). For the examples with polynomial
coefficients in this section, all error bounds and results were verified rigorously with interval arithmetic.

We also consider non-polynomial coefficients in §3.4.4]
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Anharmonic oscillators
First, consider operators of the form
d
H=-A+V(z)=-A+ Z(ajxj + bjx?) + Z cla)z®,
Jj=1 a€Zl, lal<M

where a;,bj,c(o) € R and the multi-indices o are chosen such that } -, <5, ¢(a)z® is bounded from
below. The Faris—Lavine theorem [RS75, Theorem X.28] shows that such operators are self-adjoint.

We begin with comparisons to some known results in one dimension:

Vi(z) = 2% — 4a* 4 2° Ey=-2
Vao(z) = 42 — 62* + 2° Ei=-9
Vs(x) = (105/64)x% — (43/8)x* + 28 — 28 + 21° Ey =3/8
Vi(x) = (169/64)x2 — (59/8)x* + 28 — 28 + 21° E, =9/8.

These examples have discrete spectra and, following the physicists’ convention, we list the energy levels as
FEy < E1 < Ey < ... We found that the grid resolution of the search routine and the search accuracy for
the smallest singular values, not the matrix size, were the main deciding factors in the error bound. Clearly,
once we know roughly where the eigenvalues are, we can speed up computations using the fact that the
algorithm is local. Furthermore, the search routine’s computational time only grows logarithmically in its
precision. Hence we set the grid spacing and the spacing of the search routine to be 10°n. Table shows

the results and all values were computed rapidly using a local search grid.

Potential || Exact n = 500 n = 1000
Vi -2 —2+2x10°8 241078
Va -9 —94+2x10"8 —94108
V3 0.375 | 0.3754+1.6192 x 10~* | 0.375+1 x 1077
Vi 1.125 | 1.125+£6.013 x 107* | 1.125 £2.4 x 10~ 7

Table 3.1: Test run of algorithm on some potentials with known eigenvalues. Note that we quickly converge

to the eigenvalue with error bounds computed by the algorithm and using interval arithmetic.

Next, we consider the operator

Hy = —A + 2222,

on L?(R?), which is a classic example of a potential that does not blow up at oo in every direction, yet still
induces an operator with compact resolvent and hence discrete spectrum [Sim83]. Figure [3.4] shows the
convergence of the estimate of ||R(z, Hy)|| ™" from above as well as finite section estimates. As expected
from variational methods, the finite section method produces eigenvalues converging to the true eigenvalues
from above (there is no essential spectrum and the operator is positive). Furthermore, the areas where
DistSpec has converged correspond to areas where finite section has converged. One expects that the time
taken for finite section grows somewhere between quadratically and cubically, whereas the new algorithm

grows at most O(n?7°)

up to logarithmic factors (if one does not take advantage of previous estimates
and compact resolvent to reduce the interval length of searches). This is also shown in Figure [3.4] where

we found that the finite section method grew roughly cubically whereas our algorithm grew roughly as
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Figure 3.4: Two-dimensional example. Left: The convergence of our algorithm (shown as DistSpec)
and finite section to the true eigenvalues on the interval [0, 10]. Note that points with reliable finite section
eigenvalues correspond to points where the estimate of the resolvent norm is well-resolved. Right: Time
taken (when not using interval arithmetic) for both methods over a range of n (100 cores) showing near
cubic growth for finite section and O(n?-2%) growth for our algorithm (reference lines).

2.75)

O(n?25) (both shown as reference lines). The speed-up for our algorithm, compared with O(n , was

due to the AMD basis ordering used.

Schrodinger operator with constant magnetic field

In this example, we demonstrate that the algorithm of this chapter for computing the spectrum does not
suffer from spectral pollution, which is often found in other methods used for self-adjoint operators when
there is a gap in the essential spectrum. We will demonstrate this on the Schrodinger operator with constant
magnetic field (B € R, B # 0) in R?,

Bzs )\ 2 Bz \?2

which is essentially self-adjoint [RS75] and plays an important role in superconductivity theory [FH10]. It

can be shown via unitary transformations that
Sp(Hp) = {(2k — 1) B| : k € N},

(see [Hell3]) with each element of the spectrum being an eigenvalue of infinite multiplicity (so that the
above agrees with the essential spectrum). Figure [3.3] (left) shows the output of finite section over a range
of n and B = 1. As expected, there is no spectral pollution below the essential spectrum, but there is heavy
spectral pollution in the gaps of the essential spectrum. Figure[3.5](right) shows the output of our algorithm.
This avoids spectral pollution whilst converging to the true spectrum.

This is a simple example since one can analytically diagonalise the operator. However, given an oper-
ator, it can be hard to choose an appropriate basis such that finite section avoids spectral pollution (in fact
this is, in general, impossible in a precise sense - see and the above example demonstrates that we
do not have to worry about this when using our algorithm. This will also be revisited for Dirac operators

[STYT04] in where we compute highly oscillatory bounded modes.
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Figure 3.5: Left: Finite section for various n. Note the extremely heavy spectral pollution, although eigen-
values do appear to cluster around the true spectrum. Right: The estimates provided by DistSpec. The
estimate converges quickly to the true value from above. The output of our algorithm can be spotted by eye

and corresponds to the local minima of the curves below the cut-off 0.5 in this case.

Potential V' Ey Eq Es Es Ey
cos(x) 1.7561051579 | 3.3447026910 | 5.0606547136 | 6.8649969390 | 8.7353069954
tanh(z) 0.8703478514 | 2.9666370800 | 4.9825969775 | 6.9898951678 | 8.9931317537
exp(—2?) 1.6882809272 | 3.3395578680 | 5.2703748823 | 7.2225903394 | 9.1953373991
(1+2%)71 || 1.7468178026 | 3.4757613534 | 5.4115076464 | 7.3503220313 | 9.3168983920

Table 3.2: Computed eigenvalues for different potentials (first five shown). Each eigenvalue E,,, computed

with an error bound at most 10~? via Dist Spec, is a shift of the harmonic oscillator eigenvalue 2n + 1

General coefficients: perturbed harmonic oscillator

As a simple set of examples, we consider
T=—-A+22+V(x),

on L?(R), where V is a bounded potential (for more examples with general coefficients, see [CHns]). Such
operators have discrete spectra, however, the perturbation V' causes the eigenvalues to shift relative to the
classical harmonic oscillator (whose spectrum is the set of odd positive integers). Table [3.2] shows the first

five eigenvalues for a range of potentials, computed with an error bound at most 10~°.

Pseudospectra and P7T-symmetry

We now turn to the pseudospectrum and consider PT-symmetric non-self-adjoint operators 1. The first

example is the imaginary cubic oscillator defined formally (in one dimension) by
Hy = —d?/da® + iz®.

This operator is the most studied example of a PT-symmetric operator (a concept met previously in §3.4.3)
BBJ02], as well as appearing in statistical physics and quantum field theory [Fis78]]. It is known
that the resolvent is compact with all eigenvalues simple and residing in R>( [DDTOI [TaiO6].
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Figure 3.6: Left: Calculated pseudospectrum for the imaginary cubic oscillator. Note the clear presence of
eigenvalues. Right: Calculated pseudospectrum for imaginary Airy operator. Both figures were produced
with n = 1000.

The eigenvectors are complete but do not form a Riesz basis [SK12]. Figure[3.6]shows the pseudospectrum
computed using n = 1000. This demonstrates the instability of the spectrum of the operator.

Next, we consider the imaginary Airy operator
Hy = —d*/d2? + iz,

since this is known to have empty spectrum [Hell3]], demonstrating that the algorithm is effective in this
case. Note that any finite section method will overestimate the pseudospectrum due to the presence of
false eigenvalues. Hj is PT-symmetric and has compact resolvent. The resolvent norm || R(z, H3)|| only
depends on the real part of z and blows up exponentially as Re(z) — -+o0o. We have shown the computed

pseudospectrum for n = 1000 in Figure 3.6]
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Chapter 4

Computing Spectral Measures

Any normal operator A has an associated projection-valued measure, £, whose existence is guaranteed by
the spectral theorem and whose support is Sp(A) [KR97a, [KR97bl RS80]. This allows the representation

of the operator A as an integral over Sp(A), analogous to the finite-dimensional case of diagonalisation:

Az :/ MEA(N)z, Vx € D(A),
Sp(A)

where D(A) denotes the domain of A. For example, if A is compact, then E4 corresponds to projections
onto eigenspaces, familiar from the finite-dimensional setting. However, in general, the situation is more
complicated with different types of spectra. The computation of £, along with its various decompositions
and their supports, is of great applicative and theoretical interest. For example, spectral measures are
related to the autocorrelation function in signal processing, resonance phenomena in scattering theory, and
stability analysis for fluids and many other quantities [KM71, IGS03| [Ros91}, [ELOBO7, [ELO94, [ELS19}
BP84, [HHK72| [LSY 16, WC15| IKS03), [DN86, [DS06a, TOD12]. Moreover, the computation of EA allows
computation of additional objects, such as the functional calculus and the Radon—Nikodym derivative of
the absolutely continuous component.

In this chapter, based on [[Col21l I(CHT?21]], we provide algorithms for the computation of spectral mea-
sures for a large class of self-adjoint operators. We classify the computation of measures, measure de-
compositions, functional calculus and Radon—Nikodym derivatives in the SCI hierarchy. The central in-
gredient is the computation of the resolvent operator with error control. We also discuss how to improve
the convergence rates by using rational convolution kernels. For a given desired accuracy, one may eval-
uate the resolvent at a much larger distance from the spectrum than in the case of a first-order method.
The examples highlight that the new algorithms can easily be used in tandem with any numerical pro-
cedure that computes the action of the resolvent with asymptotic error control. This gives great flexibil-
ity to the methods. The reader is encouraged to explore the software package SpecSolve: |https:
//github.com/SpecSolve/SpecSolve, which supports general ODEs, PDEs, integral operators
and lattice operators. Further examples of the use of these algorithms can be found in [JCNT 21, [CHTW21]).

4.1 Background and Summary

We consider the canonical separable Hilbert space H = 12(N), the set of square summable sequences with

canonical basis {e,}ncn. By a choice of basis our results extend to any separable Hilbert space. For
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example, we can handle partial differential operators through spectral methods. The algorithms can be
made to work with any method that computes the resolvent with an asymptotic form of error control - a
matrix representation is not needed. Let C(I?(N)) be the set of closed densely defined linear operators A
such that span{e,, : n € N} forms a core of A and A*. The point spectrum (the set of eigenvalues) will be
denoted by Sp,(A). We will focus on the subclass Qx C C(I?(N)) of normal operators, those for which
D(A) = D(A*) and ||Az|| = ||A*z|| for all z € D(A). The subclass C Q of self-adjoint (again allowing
unbounded operators) operators will be denoted by Qg4 . Recall that for A € Qga, Sp(4) C R.

Given A € Qy and a Borel set B, E7 will denote the projection E4(B). Given x,y € [2(N), we can

define a bounded (complex-valued) measure pﬁ,y via the formula

pay(B) = (Egz,y).

Via the Lebesgue decomposition theorem [Hal50], ﬂ?’y can be decomposed into three parts

A _ A A A
MI’Z/ - Mx’y,ac + /‘z,yysc + “w,y,pp’

the absolutely continuous part of the measure (with respect to the Lebesgue measure), the singular con-
tinuous part (singular with respect to the Lebesgue measure and atomless) and the pure point part. When

considering {25, we will consider Lebesgue measure on R and let

du,
A z,y,ac
A) =

pz,y( ) dm

(A), “.1.1)

the Radon—Nikodym derivative of u;“’ y,ac Withrespect to Lebesgue measure. Of course this can be extended
to the unitary (and, more generally, normal) case. This naturally gives a decomposition of the Hilbert space
H = I?(N). For Z = ac,sc and pp, we let Hz consist of vectors z whose measure ,u_ij’x is absolutely

continuous, singular continuous and pure point respectively. This gives rise to the orthogonal decomposition
H=Hac ® Hsc ® Hpp 4.1.2)

whose associated projections will be denoted by P

ac?

P2 and P} respectively. These projections commute
with A and the projections obtained through the projection-valued measure. Of particular interest is the
spectrum of A restricted to each Hz, which will be denoted by Sp7(A). These different sets and subspaces
often, but not always, characterise different physical properties in quantum mechanics (such as the famous
RAGE theorem [Rue69, [AG74, [Ens78]]), where a system is modelled by some Hamiltonian A € Qga
[CEKSS87, ICom93l [IGKPI1, [Las96]. For example, pure point spectrum implies the absence of ballistic

motion for many Schrédinger operators [Sim90].
4.1.1 Algorithmic set-up

Given an operator A € C(I?(N)), we can view it as an infinite matrix

a1l aiz ais
21 Q22 (23

asyp asz a3z

through the inner products a;; = (Ae;, ;). To be precise about the information needed to compute spectral

properties, we define the class of evaluation functions A = {(Ae;,e;) : ¢, € N}. For discrete operators,

47



4.1. Background and Summary CHAPTER 4. Computing Spectral Measures

this information is often given to us, for example, in tight-binding models in physics, and hence it is natural
to seek to compute spectral properties from matrix values. For partial differential operators, such informa-
tion is often given through inner products with a suitable basis, and, in this case, the inexact input model is
needed due to approximating the integrals.

We will be concerned with operators whose matrix representation has a known asymptotic rate of
column/off-diagonal decay. Namely, let f : N — N with f(n) > n and let &« = {ap }nen, 8 = {Bn tnen
be null sequence{] of non-negative real numbers. We then define

Qrap=1{A€Qsa: [(Prany — DAP,| = O(an), asn — oo}

4.1.3)
X {I € ZQ(N) : ||Png3 - £ZZH = O(ﬂn)v asn — 00}7

where P, denotes the orthogonal projection onto span{ey, ..., e, }. We will also use
Qf,a = {A S QSA : ||(Pf(n) — I)APnH = O(Ozn), asn — OO}

The collection of vectors in [?(N) satisfying || P,z — z|| = O(/3,) will be denoted by V. Finally, when

an, = 0, we will abuse notation slightly in requiring the stronger condition
”(Pf(n) - I)APnH =0.

Thus €2 ¢ is the class of self-adjoint operators whose matrix sparsity structure is captured by the function f.
For example, if f(n) = n+1 we recover the class of self-adjoint tridiagonal matrices, the most studied class
of operators. When discussing classes that include vectors = € [?(N), we extend A; to include pointwise

evaluations of the coefficients of x.

4.1.2 A motivating example

Consider a Jacobi operator with matrix

ap by a

a2 bg

where a;,b; € R and a; > 0. An enormous amount of work exists on the study of these operators, and the
correspondence between bounded Jacobi matrices and probability measures with compact support [Tes00,
De199]. The entries in the matrix provide the coefficients in the recurrence relation for the corresponding
orthonormal polynomials. To study the canonical measure (7, one usually considers the principal resolvent
function defined on C\Sp(J) via

dpg(N)

G(z) = (R(z,J)er,e1) = Rt

and then takes z close to the real axis. The function G is also known in the differential equations and
Schrodinger communities as the Weyl m-function [Tes00, (GS97al] and one can develop the discrete ana-

logue of what is known as Weyl-Titchmarsh—Kodaira theory for Sturm—Liouville operators. Going back

'We use the term ‘null sequence’ for a sequence converging to zero.
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Figure 4.1: Smoothed approximations of the Radon—Nikodym derivative for the Jacobi operator associated
to Jacobi polynomials with & = 1, 8 = 1/2. Here the measure is absolutely continuous and supported on
[—1,1]. Left: Convolutions K (u + ie€; J, e1) for different e using the methods of this chapter. Right: The
associated Poisson kernel m~'e/(€? + x?) which approaches a Dirac delta distribution as € | 0.

to the work of Stieltjes [Sti94] (see also [Akh65) [Wal48]]), there is a representation of G as a continued

fraction:

G(z) == 1 . 4.1.4)

a?
-z + bl - —2z+bo—...

One can also approximate G via finite truncated matrices [Tes00].

However, there are two obstacles to overcome when using (@[) and its variants as a means to com-
pute measures. First, this representation of the principal resolvent function is structurally dependent. For
example, [@.1.4) is valid for the restricted case of Jacobi operators and hence one is led to seek different
methods for different operators (such as tight-binding Hamiltonians on two-dimensional lattices, which
have a growing bandwidth when represented as an infinite matrix). Second, this would seem to give the
wrong classification of the difficulty of the problem in the SCI hierarchy, giving rise to a tower of algorithms
with two limits. One first takes a truncation parameter n to infinity to compute G(z) for Im(z) > 0, and
then a second limit as z approaches the real axis. One of the main messages of this chapter is that both of
these issues can be overcome. Measures can be computed in one limit via an algorithm I';,, and for a large
class of operators. The only restriction is a known asymptotic decay rate of the off-diagonal entries.

Consider the Poisson kernel for the half-plane defined respectively by

1y

P s - —_—— —
() a2+ y?’

where (x,y) denote the usual Cartesian coordinates. Let A be a normal operator, then for z ¢ Sp(A), we

have from the functional calculus that

1
RZ,A:/ dEA ().
(2, 4) o) N2 (A)

For self-adjoint A, z = u + iv € C\R (u,v € R) and = € [?(N) we define

Ky(z;Ajx) 1 = ﬁ[R(Z,A) — R(z,A)lx
- 2%” —OO [A i 2 A iz} B (e = /_"" Py (u = X, v)dE* ().
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We see that the computation of the resolvent with error control allows the computation of G(z) with
error control through taking inner products. By considering G(z) — G(Z), this allows the computation of
the convolution of the measure p ; with the Poisson kernel Py;. In other words, we can compute a smoothed
version of the measure p; with error control. Figure demonstrates this for a typical example. We will

see also in §4.3] that kernels different to the Poisson kernel allow improved rates of convergence.

4.2 Approximating the Resolvent

The algorithms built in this chapter rely on the ability to compute the action of the resolvent operator
R(z,A) = (A — z)~! for z ¢ Sp(A) with error control.

Proposition 4.2.1. Let A € Qu, z € C\Sp(A) and x € I?>(N). Suppose that the following hold for
constants C and Cy (that may depend on A and x and may be unknown), together with null sequences

{an }nen and { By }nen independent of A and x:
1. For f:N = Nwith f(n) >n, ||[(I = Pfm))AP,| < Crom,
2. ||Poz — z|| < Cofn,
3. For 6 > 0, dist(z,Sp(A4)) > 4.

Then there exists a sequence of arithmetic algorithms T,,(A, x, z) mapping into 12(N), each of which use
the evaluation functions in A1, such that each vector T, (A, x, 2) has finite support with respect to the
canonical basis for eachn and I',,(A, z, z) — R(z, A)x. Moreover, the following error bound holds

Ogﬁf(n) + C’lanHFn(A, x, Z)H + ”Pf(n) (A — ZI)Fn(A,JL‘, Z) — Pf(n)l‘”

T4y, 2) = R(z, Ay < -

4.2.1)
If a bound on Cy and Cy are known, this error bound can be computed to arbitrary accuracy using finitely
many arithmetic operations and comparisons. In the more general case for a fixed {aw, }, {Bn} and f, this

gives an asymptotic error bound holding for all A, x and z which satisfy the above assumptions.

Proof. We have that n = rank(P,) = rank((A — 21)P,) = rank(Pj,)(A — zI)P,) for large n since
Oint(A — 2I) > 0and ||(I — Pfen))(A — 2)P,|| < Cra, — 0. Hence we can define

0, if oinf (P (A* = ZI) Ppny (A — 21)

~ < 1
Pn(A,(E,Z) = P’L(lQ(N))) "

[P (A* = ZI)Pp(ny(A — 2I) P, 7' Py (A* — 2I) Py, otherwise.

Suppose that n is large enough so that o, (P, (A* —Z1) Py(y) (A—2I)| p, 12v))) > 1/n. Then T, (A, z,2)
is a (least-squares) solution of the optimisation problem argmin, || Pf(,,)(A—21) P,y —z||. The linear space
span{e,, : n € N} forms a core of A and hence of A — zI. It follows by invertibility of A — 2T that given
any ¢ > 0, there exists an m = m/(e) and a y = y(e) with P,,y = y such that

[(A—=zDy -zl <e
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It follows that for all n > m,

(A = 2D)T(A, 2, 2) — x| < | Pyny(A — 2D)To(A, 2, 2) — 2| + Cran|Tu(A, z, 2)
< 1Ppny (A = 2Dy — 2| + Cran [T (A, 2, 2)|
< [Py(ny (A = 2Dy = Pymyzll + CoBy(ny + Cram|Tn(A, 2, 2)]|
< €+ Cafs(n) + Crom|Tn(A, 2, 2)]].

This implies that
ITn(A, 2, 2) — R(z, A)z|| < |R(z, A[[(A = 2I)Tw(A, 2, 2) — 2|
< IR(z A (€ + Cayiny + Cram|IFa(A,2,2)]))

In particular, since a, and f3,, are null, this implies that ||, (A, z, 2)|| is uniformly bounded in n. Since
€ > 0 was arbitrary, we also see that I',, (A4, z, z) converges to R(z, A)z.

Define the matrices
B, = Pn(A* — EI)Pf(n) (A - ZI)Pn, C, = Pn(A* - ZI)Pf(n).

Given the evaluation functions in Ay, we can compute the entries of these matrices to any given accuracy
and hence also to arbitrary accuracy in the operator norm (say using the Frobenius norm to bound the
operator norm), using finitely many arithmetic operations and comparisons. Denote the approximations of

B,, and C, by En and 5,, respectively and assume that
||Bn_§n|| < Uy, ch_énH < Uy,

for null sequences {u,, }, {v,}. Note that E; ! can be computed using finitely many arithmetic operations
and comparisons. So long as u,, is small enough, the resolvent identity implies that
1B, [P

IB;' =Bl < —— 1" __.
! ! 1 —un|| B

n-.

By taking u,, and v,, smaller if necessary (so that the algorithm is adaptive and it is straightforward to
bound the norm of a finite matrix from above), we can ensure that || B;; *||v,, < n~* and (||C || 4 vn)wn <
n~!. We can compute oin(Py(A* — ZI) Py (A — 2I)|p, 12(vy)) to arbitrary accuracy using finitely
many arithmetic operations and comparisons. Suppose this is done to an accuracy 1/n? and denote the
approximation via 7,,. We then define

0, if ,, < %
Lo(A z,2) =

s .
B, Cyz,, otherwise,

where Z,, = Py (). It follows that T',, (A, z, 2) can be computed using finitely many arithmetic operations

and, for large n,
ITn(4,,2) = (A2, 2 < (185 low + (ICall + va)uwn) ll2l] = 0,

so that I',, (A, x, z) converges to R(z, A)z.

Furthermore, the following error bound holds (which also holds if 7, < 1/n)
ITn(A, z,2) — R(z, A)z|| < [|R(z, A[[[(A — 2)Ty (A, 2, 2) — 2|

< O2Bs) + Cran||Tn(A, 2, 2)|| + ([P (n) (A = 2D)T'(A, 2, 2) — Prwyz||
- dist(z, Sp(4)) ’
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since A is normal so that || R(z, A)|| = dist(z, Sp(A)) . This bound converges to 0 as n — oo. If the C;
and C'y are known it can be approximated to arbitrary accuracy using finitely many arithmetic operations

and comparisons. O

Note that if A is banded with bandwidth m, then we can take f(n) = n+m and the above computation

can be done in O(nm?) operations [GVLI3].
Corollary 4.2.2. There exists a sequence of arithmetic algorithms
Iy Qfaps x C\R — *(N)
with the following properties:
1. Forall (A,z) € Q45 and z € C\R, I'y (A, z,2) converges to R(z, A)x in I*(N) as n — oc.
2. Forany (A, z) € Qy .3, there exists a constant C(A, x) such that for all z € C\R,
C(A, x)

||F7L(A7 €, Z) - R(Zv A)ZC” < m [0471, + /Bn] .

Exercise: Prove Corollary using Proposition

Finally, we will need Stone’s famous formula.

Proposition 4.2.3 (Stone’s formula [Sto90])). Recalling the definition of Ky in Let A € Qga. Then
forany —o0o < a < b < ooandx € I?(N),

b
1
. . A A
lelﬁ)l/a Ky(u+ie; A, x)du = E{,nz+ §E{a7b}x.

Exercise: Prove Stone’s formula using the dominated convergence theorem.

4.3 Computation of Measures

We start by considering the computation of Eﬁx where U C R is a non-trivial open set. The collection of
these subsets will be denoted by /. To be precise, we assume that we have access to a finite or countable

collection a,, (U), by, (U) € RU {£o0} such that U can be written as a disjoint union

U =J(@m(U),bm(1)) . 4.3.1)

With an abuse of notation, we add this information as evaluation functions to A; to form /N\l.

Theorem 4.3.1 (Computation of measures on open sets). Given the above set-up, consider the map

Emeas : Lf.ap x U — 1*(N)

(A,2,U) — Efz.

Then {Emeas, 2 fa,8 XU, A} e Ag‘. In other words, we can construct a convergent sequence of arithmetic

algorithms for the problem.
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Proof. Let A € Qga and z1, zo € C\R. By the resolvent identity and self-adjointness of A,
1R (=1, 4) = R(z1, A)| < [Im(z0)| " [Im(z)| " |21 = 2]

Hence, for z = u+ie with € > 0, the vector-valued function K i (u+1i€; A, ) (considered with argument w)
is Lipschitz continuous with Lipschitz constant bounded by € ~2||z|| /7. Now consider the class Q¢ 5 x U
andlet (A, z,U) € Qf o g xU. From Corollary[4.2.2] we can construct a sequence of arithmetic algorithms,

~

T',,, such that

C(A,x)

T (A, u, 2) — Kpr(u+ie; A, )| < (n + B)

for all (A,z) € Q¢4 . It follows from standard quadrature rules and taking subsequences if necessary

(using that {«,, } and {f3,,} are null), that for —co < a < b < oo, the integral

b .
/ Ky <u+l;A,x>du
a n

can be approximated to an accuracy C (A, x)/n using finitely many arithmetic operations and comparisons
and the relevant set of evaluation functions 1~\1 (the constant C' now becomes C due to not knowing the
exact value of ||z]]).
Recall that we assumed the disjoint union
U= U(am, bim)
m
where a,,, b, € RU {+£o0} and the union is at most countable. Without loss of generality, we assume that
the union is over m € N. We then let @, p, b, € Q be such that ay, ., | ar, and by, 5, T by, as 1 — 00

With ay, n < by, and hence (@, n, bmn) C (@m, b). Let

Un = Ql(am,ny bm,n)v

then the proof of Stone’s formula in Proposition [4.2.3] (essentially an application of the dominated conver-

gence theorem) can be easily adapted to show that

n—oo

lim Ky (u+Z;A,x> du:Eﬁx.
U n

n

Note that we do not have to worry about contributions from endpoints of the intervals (a,,, b,,) since we

approximate strictly from within. To finish the proof, we simply let I',,(A, z,U) be an approximation of

/ Ky <u+Z;A,J:) du
Un n

to within accuracy C (A, z)/n (which by the above remarks can be computed using finitely many arithmetic

the integral

operations and comparisons and the relevant set of evaluation functions 7\1). O

Recall from that P#* denotes the orthogonal projection onto the space H4, where Z denotes a
generic type (ac, sc, pp, ¢ or s). We have included the continuous and singular parts denoted by c or s which

correspond to H . @ Hse and He. D Hpp, respectively. These are often encountered in mathematical physics.
Theorem 4.3.2. Given the above set-up, consider the map

EIZQf’aﬁ XVB xU — C
(A, 2,y,U) = (Pf Egu.y) = up, z(U),
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for T = ac,sc, pp, c ors. Then
Ag % {EI;Qf,(x,B X V[g X U,Kl} S Ag‘

To prove this theorem, it is enough, by the polarisation identity, to consider x = y (note that all the

projections commute). We will split the proof into two parts - the A{? inclusion and the AS exclusion.

Proof of inclusion in Theorem [4.3.2]

Since Pi =1 — P, Pt =1 — P and P2 = P2 — P2} itis enough to consider only Z = cand 7 = s.
Step 1: We first deal with Z = ¢, where we shall use a similar argument to the proof of Theorem
@] (which is more general than what we need). We recall the RAGE theorem [Rue69l IAG74, [Ens78|
as follows. Let @,, denote the orthogonal projection onto vectors in [?(N) with support outside the subset
{1,...,n} C N. Then for any z € [*(N),
<PCAE§95, z) = |PAE{z||?> = lim lim - / HQ” _ZASEAxH ds

n—oot—oo {

n—oot—oo {

= lim lim f/ ||Qne*iASXU(A)x|| ds.
0

The proof of Theorem is easily adapted to show that there exists arithmetic algorithms fn,m using Ay

such that
C(A,z,U)

||Qne_iASXU(A)m - fn,m(Av z,U, S)H < m

for all (A,z,U,s) € Qfqp x U x R. Note that this bound can be made independent of s (as we have
written above) by sufficiently approximating the function exp(—its)xy (¢) (it has known total variation for

a given s and uniform bound). We now define

2

Lo(A,2,U) = — ZHFM (4,2, U, j/m)|>.
Jj=1

Using the fact that for a, b € [?(N),
(@, a) — (b, b)| < lla — bl (2llall + [la —bll), “4.3.2)
it follows that

iAs ~ C(Ax,U C(Ax,U
\IIQne A xu(A)z]* = [Tnm(A, z, U,s)||2] < % <2||:17|| + (m)> :

Hence we have shown that

1 22 0(A,2,U) C(A,z,U)
R e & AT
— m?2 = m ( Il + m

Ty (A, 2, U)——/ Q@ue 4 xur (A ds

1
+m—Zgn9/m m/ gn(s)ds|,
=1
where g,,(s) = ||Qne **xu (A)z||?. Clearly the first term converges to 0 as m — 0o so we only need to

consider the second. Using (#.3.2),, it follows that for any ¢ > 0 that

19(5) = gn(s + )| < 4| Que™ (™ — Dxv (A)z|lz]| < 4llzllll (e — Dxv (A)z].
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But e~%4¢ — [ converges strongly to 0 as ¢ | 0 and hence the quantity

— 0

an(ifm) = m [ gu(s)ds

as m — oo uniformly in j. It follows that
: 1 —iAs A _||?
W%gr})o Tpm(A 2, U) :tlggog ; ||Qne EUJ:H ds

and hence

lim lim T, (A4, 2,U) = (PAEjz, ).

n—oo m—oQ

Step 2: Next we deal with the case Z = s. Note that for z € C\R, (R(z, A)z, z) is simply the Stieltjes

transform (also called the Borel transform) of the positive measure /L?yz

1
(Bl o) = [ dud O,
R A—z ’
The Hilbert transform of ,uf’w is given by the limit
1
H,a (t)=— hﬁ]l Re ((R(t + i€, A)z, x)),

T T €

with the limit existing (Lebesgue) almost everywhere. This object was studied in [PSZ10, [Pol96], where

we shall use the result (since the measure is positive) that for any bounded continuous function f E]

lim 7/]0 X{w \HA ( )‘>S} dt /f duwws() (433)

s—o0 2

Now let (A, z,U) € Q4,5 X U with

U U am7 7n
m

where a,,,b,, € R U {£o0} and the disjoint union is at most countable as in . Without loss of
generality, we assume that the union is over m € N. Due to the possibility of point spectra at the endpoints
A, b, We cannot simply replace f by x in the above limit (4.3.3). However, this can be overcome in the
following manner.

Let QU denote the boundary of U defined by U'\U and let v denote the measure u;"x |ou- Let f, denote
a pointwise increasing sequence of continuous functions, converging everywhere up to X7, such that the

support of each f; is contained in

[s]
[=s.s]() | U (am + 1/v5, by — 1//5)

Such a sequence exists (and can easily be explicitly constructed) precisely because U is open. We first

claim that
hm —_— fé X{w \H A (w)\>s}( )dt uLl S(U) (434)

5—00 2 .....
To see this note that for any u € R, the following inequalities hold

hmmf* fs )X {urlH, 4 ()25} (¢ )dt>hm1ﬂf* fu )X {urlH,, ()25} (E)dE

S§—00 S§—00

- / Fult)du, (1),
R

2Note that this is stronger than weak™ convergence which in this case means restricting to continuous functions vanishing at infinity.
That the result holds for arbitrary bounded continuous functions is due to the tightness condition that the result holds for the function
identically equal to 1.
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Taking u — oo gives that

hmmf—/fS )X {w: L (w)|>g}( )dt>pzzS(U) (4.3.5)

§—00

so we are left with proving a similar bound for the limit supremum. Note that any point in the support of

[ is of distance at least 1/4/s from OU. It follows that there exists a constant C' independent of ¢ such that

for any ¢ € supp(fs),

|H,(t)] < CV's
Now let € € (0,1). Then, for large s, s — C'y/s > (1 — ¢)s and hence
supp(fs) N{w : |HM?L(w)\ > s} Csupp(fs) N{w: |Hu£,z—u(w)‘ > (1—e)s}. (4.3.6)

Now let f be any bounded continuous function such that f > x;. Then using (#.3.6),

mmw—/ﬂ WX{uwiH,a_(w)|2s} ()t

55— 00

. m(l— e
< limsup - /fS(t)X{w:\H A _,,(w)IZ(l—é)S}(t)dt
S§— 00 - x
1 w(1—¢)
< limsup / FOXqwi i, 4 71I(w)|2(176)s}(t)dt
S— 00 x

1—6/f ([, = V1))

Now we let f | 77, with pointwise convergence everywhere. This is possible since the complement of U
is open. By the dominated convergence theorem, and since € was arbitrary, this yields
thllp 7/ fs X{w \H A, (w)\>9}( )dt < [Mm x V]S(U) = /‘L?,I,S(U)7
S§— 00
where the last equality follows from the definition of v. The claim (4.3:4) now follows.
Let x,, be a sequence of non-negative continuous piecewise affine functions on R, bounded by 1 and

such that x,,(t) = 0ift <n — 1 and x,,(t) = 1 if t > n + 1. Consider the integrals

I(n,m) = %Af7z(t)X7t(‘F77L(t)‘)dt

where F,,(t) is an approximation of

e ({n (e 4))

to pointwise accuracy O(m ') over t € [—n, n]. Note that a suitable piecewise linear function f,, can be
constructed using A1, as can suitable Xn» and a suitable approximation function F},, can be pointwise eval-
uated using /~X1 (again by Corollary . It follows that there exists arithmetic algorithms T, ,, (A, z, U)
using A1 such that

C(A,z,U
[I(n,m) — Tp(A,2,0)] < S 20
m
The dominated convergence theorem implies that
lim Iy (A, 2, U) = lim I(n,m) /fn Yxn(|Hya (2)])dt.

Note that continuity of x,, is needed to gain convergence almost everywhere and prevent possible oscilla-

tions about the level set { {4 (t) = n}. We also have

X{w:\Hu?z(w)\ZnJrl}( ) < Xn([Hpa (1)]) < X{w:\Hﬂgz(w)\anl}(t)
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The same arguments used to prove (#.3.4), therefore show that

. 7™
i, 5 [ 0 (Hy, () = i (0.
n o0 R ’
Hence,
HILH;O n}gnoo me(A, €L, U) = :u";‘,gc,s(U)v
completing the proof of inclusion in Theorem 4.3.2] O

Proof of exclusion in Theorem [4.3.2]

To prove the exclusion, we need two results which will also be used in Chapter[5] Namely, a result connected
to Anderson localisation (Theorem [5.2.1)) and a result concerning sparse potentials of discrete Schrodinger
operators (Theorem[5.3.3)). We also introduce some notation which will also be used in Chapter[5] Consider
a connected, undirected graph G, such that the degree of each vertex is bounded by some constant C'¢ and
such that the set of vertices V(&) is countably infinite. We also assume that there exists at most one edge
between two vertices and no edges from a vertex to itself. We use the abuse of notation by identifying each
x € V with its canonical vector in I?(V(G)) = [?(N). The notation = ~ y means there is an edge in G
connecting vertices = and y. We will use |z — y| to denote the length of a shortest path between vertices
x,y (which always exists since the graph is connected), and (z) to denote the valence of z. An arbitrary
base vertex z is chosen and we define |x| = |z — xo.
The (negative) discrete Laplacian or free Hamiltonian Hy acts on v € [2(V(QG)) via
{Hop}(z) = = > [(y) — v()).
y~a

Since the vertex degree is bounded, H is a bounded operator. We define a Schrodinger operator on G to
be an operator of the form

H, = Hoy + v,

where v is a bounded (real-valued) multiplication operator

{vy}(2) = v(@)Y(2).

Proof of exclusion in Theorem@3.2) Since Pay = I — P4, Pit = 1 — P/ and P22 = P — P2, itis
enough, by Theorem [4.3.1] to consider Z = pp, ac and sc. We restrict the proof to considering bounded
Schrédinger operators H, acting on [?(N), which are clearly a subclass of Q¢ o for f(n) = n + 1. In this

distinguished case, we truncate the operator naturally defined on [?(Z) and define

We also set © = e;, with the crucial properties that this vector is cyclic and hence Mgfel has the same
support as Sp(H, ), and that = € Vj. Throughout, we also take U = (0, 4).
Step 1: We begin with P{f}). Suppose for a contradiction that there does exist a sequence of general
algorithms I',, such that
lim I',(H,) = (P

H
v er,er).
n—oo pp (0,4) L 1>
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We take a general algorithm, denoted fn from Theorem which has

lim fn(Hv) = Ugtel ((0,4)).

n—roo

Since ey is cyclic, this limit is non-zero if (0,4) N Sp(H,) # 0. We therefore define

_ 0 if[,(H,) =0
r.(H,) =
m otherwise.

We will use Theorem and the following well-known facts:

Ly (Hy)

1. If for any [ € N there exists m; such that v(m; + 1) = v(m; +2) = ... = v(my; +1) = 0, then
(0,4) C Sp(H.).

2. If there exists N € N such that v(n) is 0 for n > N, then Sp, (H,) N (0,4) = 0 [Rem98], but
[0,4] C Sp(H,) (the potential acts as a compact perturbation so the essential spectrum is [0, 4]).

3. If we are in the setting of Theorem then the spectrum of H,  + A is pure point almost surely.
Moreover, if p = x|, ¢/(2¢) for some constant c, then [—~c, 4 +c] C Sp,,,(H,,, + A) almost surely.

The strategy will be to construct a potential v such that (0,4) C Sp(H,), yet I',, (H,,) does not converge.
This is a contradiction since by our assumptions, for such a v we must have
~ <PI£-I{>U E(Ig?;)ela €1>

F'IL H?)
) = =m0 (0.1)

To do this, choose p = x[_c,¢/(2c) for some constant c such that the conditions of Theorem hold and

define the potential v inductively as follows.

Let v; be a potential of the form v,, (with the density p) such that Sp(H,, ) is pure point. Such a v, exists
by Theoremmand we have (P;f)“l E(Ié;”i)el, e1) = ufl’jél ((0,4)). Hence for large enough 7 it must hold
that I',,(H,,) > 3/4. Fix n = ny such that this holds. Then T',,, (H,, ) only depends on {v1(j) : j < Ny}
for some integer Ny by (i) of Deﬁnition Define the potential vo by v2(j) = v1(j) forall j < N; and
v2(j) = 0 otherwise. Then by fact (2) above, <P£,“2 ngj)el, e1) = 0 but ,ufl”él ((0,4)) # 0, and hence
I (Hy,) < 1/4 for large n, say for n = ny > ny. But then I',,, (H,,) only depends on {v2(j) : j < Na}
for some integer No.

We repeat this process inductively switching between potentials which induce T, o (Hy,) < 1/4 for k
even and potentials which induce fnk (Hy,,) > 3/4 for k odd. Explicitly, if & is even then define a potential
Vg+1 bY vpa1(j) = vi(j) for all j < Ny and vky1(j) = v, (j) (with the density p) otherwise such that
the spectrum of H,, is pure point. Such a w exists from Theorem [5.2.1] applied with the perturbation A to
match the potential for j < Ni. If k is odd then we define vg+1 by vgy1(j) = vk (j) for all j < N and
vg+1(j) = 0 otherwise. We can then choose 11 such that the above inequalities hold and Ny such that

T, (H

Vk+1

S ) only depends on {vi4+1(j) : j < Ni41}. We also ensure that Ny 1 > Ny, + k.

Finally set v(j) = v (j) for j < Ny. Itis clear from (iii) of Definition[2.1.1} that T',,, (H,) = T’ (H,,)
and this implies that fnk(Hv) cannot converge. However, since Niy1 > Ni + k, for any k odd we
have v(Nj, + 1) = v(Np+2) = ... = v(N, + k) = 0. Fact (1) implies that (0,4) C Sp(H,), hence
gty ((0,4)) # 0 and therefore I',,(H,) converges. This provides the required contradiction.

Step 2: Next we deal with Z = ac. To prove that one limit will not suffice, our strategy will be to

reduce a certain decision problem to the computation of =,.. Let (M’, d’) be the discrete space {0, 1}, let
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Y denote the collection of all infinite sequence {a;};en with entries a; € {0, 1} and consider the problem
function

='({a;}) : Does {a;} have infinitely many non-zero entries?

In [Colns], it was shown that SCI(Z', Q)¢ = 2 (where the evaluation functions consist in component-
wise evaluation of the array {a;}). Suppose for a contradiction that I',, is a height one tower of general
algorithms such that

lim T, (H,) = (P E(")en,en).

n—roo
We will gain a contradiction by using the supposed tower to solve {Z', Q'}.

Given {a;} € ', consider the operator H,, where the potential is of the following form:
m) = ardmp- 4.3.7)

Then by Theorem 3, (PH E(Ig )€1, €1) = plte, ((0,4))if 37, ap < oo (thatis, if Z’({a;}) = 0) and
(PH E(0 ype1;e1) = 0 otherwise. Note that in either case we have kv, ((0,4)) # 0. We follow Step 1
and take a general algorithm, denoted T,,, from Theorem which has

lim T, (H,) = Mgfel((o"l))-

n—oQ

Since e is cyclic, this limit is non-zero for H,, where v is of the form [#.3.7). We therefore define

_ 0 ifT,(H,) =0
iy - {© T
fw (H:) otherwise.
It follows that
- 1 ifZ2{a;})=0
lim T (H,) = ({a})
n— 00

0 otherwise.

Given N we can evaluate any matrix value of H using only finitely many evaluations of {a;} and hence
the evaluation functions A; can be computed using component-wise evaluations of the sequence {a;}. We

now set

_ 0 ifT,(H,) > 1
Fo({as}) = (o) =

1 otherwise.

The above comments show that each of these is a general algorithm and it is clear that it converges to
Z'({a;}) as n — oo, the required contradiction.
Step 3: Finally, we must deal with Z = sc. The argument is the same as Step 2, but now with replacing

(PHepH o) e)) with (PHvEH 1 ¢;) and the resulting T',, (H,) with 1 — T',,(H,,). O

(0.4) (0.4)

4.4 Two Important Applications

Theorem [4.3.T] can be extended to computing the functional calculus. Recall that given a (possibly un-

bounded complex-valued) Borel function ', defined on C, and A € Q, F(A) is defined by

F(A) = / F(\)AEA(N).
Sp(4)
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F(A) is a densely defined closed normal operator with dense domain given by

D(F(A)) = {m e I*(N) : /S " IFOV? du ,(N) < oo}.

For simplicity, we will only deal with the case that F' is a bounded continuous function on R, that is,
F € Cy(R). In this case D(F(A)) is the whole of 1*(N) (the measures s , are finite) and we can use
standard properties of the Poisson kernel. We assume that given F' € Cj,(R) we have access to piecewise
constant functions F), supported in [—n,n] such that [|F — F}, || ((—nn) < n~'. Clearly other suitable

data also suffices and as usual we abuse notation slightly by adding this information to A; to define Ar.

Theorem 4.4.1 (Computation of the functional calculus). Consider the map

Efun : Qﬁa_ﬂ X Cb(R) — ZQ(N)
(A,z, F) — F(A)x.

Then {Efun, Qf,aﬁ X Cb(R),Kl} S A’Qq

Proof. Let (A,z,F) € Q4,8 X Cp(R) then by Fubini’s theorem,

n oo n

Ky(u+i/n; A x)Fy(u)du = / Py(u— X\ 1/n)F,(u)du dEA(\)z.
_n —00 J—n
The inner integral is bounded since F' is bounded and the Poisson kernel integrates to 1 along the real line.
It also converges to F'(\) everywhere. Hence by the dominated convergence theorem

n

lim Ky(u+i/n; A x)F,(u)du = F(A)x.
n—oo J_

We now use the same arguments used to prove Theorem {.3.1] Using Corollary F.2.2] together with
| Km(u+i/n; A, z)|/jer) < nCi and the fact that Kz (u + i/n; A, x) is Lipschitz continuous with Lip-
schitz constant n2C5 for some (possibly unknown) constants C; and Cs, we can approximate this integral

with an error that vanishes in the limit n — oco. ]

Recall the definition of the Radon—Nikodym derivative in and note that pf, , € L'(R) for A €
Qsa. We consider its computation in L' sense in the following theorem, where, as before, we assume
(#.3.1), adding the approximations of U to our evaluation set along with component-wise evaluations of a
given vector y to form Kl. However, we must consider the computation away from the singular part of the
spectrum - this is also reflected in the results of

Theorem 4.4.2 (Computation of the Radon—Nikodym derivative). Consider the map
ErN : Qfa,8 X P(N) xU — L*(R)
(A,2,9,U) = pgylu-

We restrict this map to the quadruples (A, x,y,U) such that U is strictly separated from supp(,ufyyysc) U
supp(uf’y,pp) and denote this subclass by fvlf,a,/g. Then {Egn, (le’a”& Kl} € AZ. Furthermore, each
output T, (A, z,y, U) consists of a piecewise linear function, supported in U with rational knots and taking

(complex) rational values at these knots.
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Proof. Let (A,x,y,U) € fNZfﬁaﬁ. For u € U we decompose as follows

- _1 ¢ A
<KH(U+’L€,A7-'L')ay> _7'(' /]R (Aiu)2+€2px7y()\)d)\
. . (4.4.1)

— s A A
* ™ /R\U (A —u)? + e {duw%“(/\) T du%%pp(/\)} :

The first term converges to p7 [ in L'(U) as € | 0 since p3' |y € L'(U). Since we assumed that U is
separated from supp(uf, yse) U supp(uf, y.pp)> it follows that the second term of lb converges to 0 in
LY (U) as € | 0. Hence we are done if we can approximate (K g (u + i/n; A, z),y) in L' (U) with an error
converging to zero as n — oQ.

Recall that K7 (u + i/n; A, x) is Lipschitz continuous with Lipschitz constant at most n?||x|| /7. By
assumption, and using Corollary we can approximate Ky (u + i/n; A, x) to asymptotic precision

with vectors of finite support. Hence the inner product
folu) == (Kg(u+i/n; A x),y)

can be approximated to asymptotic precision (now with a possibly unknown constant also depending on
lly||) and f,, is Lipschitz continuous with Lipshitz constant at most n?||z||||y|| /7.

Recall that U can be written as the disjoint union
U = J(@mbm)
m

where ap,, b, € R U {£oo} and the union is at most countable. Without loss of generality, we as-

sume that the union is over m € N. Given an interval (G, by,), let a, < Zmin < Zman < . <

1 3 2

Zmrmon < Dm be such that we have z,, j, € Q and |2, 0 — Zmj+1.0] < (b — @)~ 'n"°m™2 and

»|bmfzm,rm,n| § nil-

|@m — Zm1n We also let f,, , be a piecewise affine interpolant with knots
Zm1,ns o Zmro,n SUpported on (2m 1,n; Zm,r,,,n) With the property that | fo, n(2m,jn) — fro(Zmjn)| <
C(by — @) "*n~tm~2. Here C is some unknown constant which occurs from the asymptotic approxima-
tion of f,, that arises from Corollaryand we can always compute such f,, ,, in finitely many arithmetic
operations and comparisons.

LetT',,(A, z,y, U) be the function that agrees with f,,, ,, on (am, by,) for m < n and is zero elsewhere.
Clearly the nodes of ', (A, z,y,U) can be computed using finitely many arithmetic operations and com-

parisons and the relevant set of evaluation functions A A simple application of the triangle inequality

implies that

[ 1A v ) w) = o2 ] du < 3 o2, (u)| du

m>n (amabm)

+ Z / ’pﬁy(u)] du

m<n (“m7bm)\(2m,lmrvzmmmm

C(x,y, A
* Z/ o2t (1) = fo(u)| du+ % ; #

m<n ? (Fm,1,n,Zm,rm n

where the last term is due to the piecewise linear interpolant. The bound converges to zero as required. [

4.5 High-order Kernels

61



4.5. High-order Kernels CHAPTER 4. Computing Spectral Measures

4.5.1 Motivation

As an example, consider L?([—1, 1]) and the operator defined by

1
Lq(z) = zq(z) + / e gy dy,  we [-1,1]. 4.5.1)
-1

The operator £ in has continuous spectrum in [—1, 1], due to the multiplicative x¢(z) term, and
discrete spectrum in R \ [—1, 1] from the integral that acts as a compact perturbation. We discretise £ with
an N x N matrix corresponding to an adaptive Chebyshev collocation scheme. For efficient storage and
computation of the resolvent, we exploit low numerical rank structure in the discretisation of the smooth
kernel [I'T13]. We apply a Clenshaw—Curtis quadrature rule to compute the inner products [[Tre19|] required
to sample the scalar spectral measures.

There are two limits to take: N — oo and € | 0. These two limits must be taken with considerable
care [Col21]). If N is kept fixed as one takes € | 0, then the computed samples get polluted by the discrete
spectrum of the discretisation. Instead, as one takes ¢ | 0, one must appropriately increase N too. In
practice, we increase N by selecting it adaptively to ensure that we adequately approximate the resolvent.
Proposition[d.2.T] gives us a handle on how to choose N adaptively as € | 0. However, there is a numerical
trade-off. Ideally, we would like to take e small to recover a more accurate approximation of the spectral
measure. On the other hand, we wish to evaluate the resolvent as far away from the spectrum as possible
since, typically, evaluating nearer the spectrum requires larger discretisation sizesﬂ

For example, Figure(left) shows the discretisation sizes, IV, needed to evaluate the Radon—Nikodym
derivative of the spectral measure convolved with the Poisson kernel accurately. Here, we evaluate at
xo = 1/2 € [—1, 1] and consider ,uﬁf with f(x) = \/3/2x. For the operator in and € = 0.05, 0.01,
and 0.005, we need N = 400, 1700, and 3100, respectively. We have also shown (Figure@] (right)) the
error in the convolution approximation of the Radon-Nikodym derivative, which is of order O(elog(e~1))
(see Theorem[@]below) for the Poisson kernel (m = 1). Unfortunately, to obtain samples of the spectral
measure that have two digits of relative accuracy, we require that ¢ ~ 0.01. Since we require N ~ 20/¢
for small € > 0, it is computationally infeasible to obtain more than five or six digits of accuracy with the
Poisson kernel. We have also shown the relative errors when using the high-order kernels developed in this
section. The order is denoted by m, and the plot corresponds to O(¢™ log(e 1)) when m is odd and a O (™)
when m is even. A sixth-order kernel enables us to achieve about 11 digits of accuracy without decreasing
e below 0.01. Although using a sixth-order kernel requires six times as many resolvent evaluations as that
of the Poisson kernel (see below), this is typically favourable because the cost of evaluating the resolvent

near the continuous spectrum of £ increases as € |, 0.

4.5.2 High-order kernels, high-order convergence and error control

It is well-known in signal processing and statistics that the convergence rate of convolutions is determined

by the number of vanishing moments of the kernel. We therefore make the following definition:

Definition 4.5.1 (mth order kernel). Let m be a positive integer and K € L*(R). We say that K is an mth

order kernel if it has the following three properties:

3Two reasons for this, explored in more detail in [CHT21], are the formation of interior layers and oscillatory behaviour of the
solutions of the corresponding linear systems. This problem of needing large discretisations is distinct from, though related to, the
problem of conditioning. If o € Sp(A), then ||R(zo + i€, A)|| = e~ ! and the shifted linear systems become increasingly ill-
conditioned as € | 0. This can limit the attainable accuracy and is also important if one solves the shifted linear systems using iterative
methods (more iterations may be required).
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Figure 4.2: Left: The smoothed approximation [K uf}, f] (K. denotes the rescaled Poisson kernel) for the
integral operator in (4.5.1)) and different e. The discretisation sizes for solving the shifted linear systems are

adaptively selected. Right: The same computation except with a fixed discretisation size of N = 500.

|15 n (o) — [Ke* pf f1(wo)| /[ Ke * pF ] (o)
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Figure 4.3: Left: The relative error in the numerical approximation, denoted by p y, corresponding to
discretisation size N, of the smoothed measure [K * ,uﬁ f](xo) (K. denotes the rescaled Poisson kernel)
for the operator in (£.5.1) with ¢ = 0.05, ¢ = 0.01, and ¢ = 0.005. Right: The pointwise relative error in

smoothed measures of the operator in (#.5.1) computed using the high-order kernels with poles in [#.5.21)
for 1 < m < 6 (K, denotes the rescaled kernels). The relative errors are computed by comparing with

numerical solutions that are resolved to machine precision.
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(i) Normalised: [, K(x)dx = 1.
(ii) Zero moments: K (x)x? is integrable and [, K (z)a’dx = 0 for 0 < j < m.

(iii) Decay at £00: There is a constant C';, independent of x, such that

|K ()| < (1_‘_6;5)7”“, r eR. (4.5.2)

We denote the rescaled kernel e ' K (e~!-) by K. For example, the Poisson kernel used previously in
this chapter is a first-order kernel and is not a second-order kernel. In contrast, the Gaussian kernel, h(z) =
(27r)_1/ 2¢—2”/ 2 is a second-order kernel which plays an important role in density of states calculations
[LSY16] and kernel density estimation [Sil18]. However, it is not particularly useful in our setting since
it is not clear how to approximate the convolutions h. * pf,y. We will see in that rational kernels
are much more useful in this regard since we can compute the convolution by computing the action of the
resolvent with error control, just like we did for the Poisson kernel.

The results of this subsection are stated in terms of convergence of convolutions for probability mea-
sures. However, by rescaling and the polar identity, corresponding results for the spectral measures ,u_fi y
can easily be obtained. We let C*<(I) denote the Holder space of functions that are k times continuously
differentiable on an interval I with an a-Hélder continuous kth derivative [EvalQ]. For hy € C%<(I) and
hy € C*<(I) we set

[ (z) = ha(y)|

| a

(4
2

1| oy = sup oo

h v = h(k) e’ h
By S P s Mh2llereqy = [hy o (1) + max I

<j<k
The following theorem describes the pointwise convergence rates.

Theorem 4.5.2. Let K be an mth order kernel, |1 denote a probability measure on R and let €, > 0.
Suppose that x € R is such that p is absolutely continuous on the interval I = [z — n,x + n] with
C™%(I) Radon-Nikodym derivative p|; (with respect to Lebesgue measure), where n € N>g, o € [0,1)
andn + o > 0. Then

(i) If n + a < m, then, for a constant C(n, @) depending only on n and «,

CK E’H'L

lplr(z) — Ke* p(x)| < W

+C(n,a)llpli]

cw(z)/RlK(y)||y|”+a dy (1+n7"7) et

(ii) If n + o > m, then, for a constant C(m) depending only on m,

n

CKGTYL I
5 oy T Cmleldlena (CK +/ ]
2 2

Ipl1(2) — K. p(a)] < K<y>||y|’"dy) (L4 e

Here, C' denotes the constant in ({.3.2).

Remark 4.5.3. If we fix 1) and consider small ¢, then we obtain rates O(e"**) and O(e™log(e™1)) in
cases (i) and (ii) respectively. One can show that these rates are, in general, sharp. Note that the error

bound deteriorates when 1 becomes small (as expected).

Proof. We first decompose

plr = g1 + g2,

64



4.5. High-order Kernels CHAPTER 4. Computing Spectral Measures

where g1,go € C™T(I) are both non-negative, g; is compactly supported in (z — 7,z + n) and go is
identically zero on (x — n/2, x + 1/2). Moreover, we can select g; so that in case (i) of the theorem,

()

o < C(n,a)llplrllemem L+,

Co (1)

for some universal constant C'(n, ) that only depends on n and «, whereas in case (ii),

2e||gt™|| _ < Cmllplillomn (1+07"),

for some universal constant C'(m) that only depends on m. Existence of such decompositions follows from
standard arguments with cut-off functions.
First we deal with case (i) and assume that o > 0. The case of o = 0 is almost identical with some

changes of indices. We use the following form of Taylor’s theorem,

gV " n ( ) (n)
gz +y) — Z J+/ / / Yty + ) — gy (x)] dty...dt,.

Jj=1

For notational convenience, let

(z,y;91) / / / Mt + ) — ggn)(x)} dty...dtp,.

Substituting this into the convolution equation yields

n_ () N _
Kex gi(z) — g1(x) =Zglﬂ(w)6_1/RK<€y> y]dy+6‘1/RK(f)Mn(%y;gl)dy- 45.3)

Using the Holder condition and direct integration, we have that

Jy|" T

(a+1)---(a+mn)

| M, (z,y;01)| < ’ )

coe(ry’

Hence, by a change of variables y — —y, the last integral in (#.5.3) is bounded by

(n)

n+aoa
€ 91 - € .

Coa(I)

/’ ly|" dy < Je IE@)] |y|" dy’ (n)
coa (1) a+1)---(a+n) - n!

Since n < m (recall that & > 0 in the case we are dealing with), it follows that (again by a change of

variables y — —y) all the other integrals in (#.5.3) vanish and hence we have

fR |K(y ||y"+ady‘ (n)
n!

et (4.5.4)

[Kex g1(x) — g1(z)] < o

Due to the fact that g; and go are non-negative, it follows that the measure ;1 — g1dz is non-negative,
supported on the closure of (z — 7/2, x 4+ 7/2)¢ and has total variation at most 1. Linearity of convolutions

now implies that

CKGm

lpli(z) — K+ p(z)] < (et Iymit +[Ke * g1(z) — g1(2)].
2

Together with #.5.4), this yields the result.

For case (ii), we use Taylor’s theorem to obtain

m

m—1 1
—~ ¢ ()

5| < g™ e Iyl

gi(r +y) — I < ol

Jj=0
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We then split the range of integration, noting that g, (z + y) = 0 if |y| > 7, to obtain

K gi(z) — g1(2)] < |gr(z)| e

vy o | ™ s Y\ m
K (f) ydy| + ~2 ' 671/ ’K <7>‘ ly|™ dy.
|<n € m: lyl<n €

Due to the vanishing moments condition and decay @#.5.2), if 1 < j < m then

. _ 2 . m—j
[y =t | @ < 2250 (5)
lyl<n € lyl>n € m-=1] n

where the last equahty follows by a change of variables. We can write out g(] )( ) as an iterated integral of

ly

-1

€ -1

=€

g{™ . 10 obtain [¢\ (z)] < 7™9(|g{™||se. Tt follows that

lgt™ | ’ U ‘ 2C m=j
91 m m K ; €

|K€*gl(x)_gl(x)‘ < L2 / | ||y‘ dy+ E 7_ - el ()
ly|<? J n

m!

m)

193 oo m

< L2, K ()] ly]™ dy + 2eCr||g\™ [|oe™.
m! ly|<Z

We now argue as before to finish the proof. O

As well as pointwise error estimates, we can obtain LP estimates which are useful when the Radon—
Nikodym derivative has integrable singularities or in applications where the spectral measure is a probability
measure (and hence L' convergence is natural). The convergence in LP is most easily studied through the

Fourier transform of the kernel, which in this section we define as
K(w) = /K(x) exp(2mizw)de.

Lemma 4.5.4. Let K be an mth order kernel. Then K is m — 1 times continuously differentiable, ([A( @)
is bounded for j = 0,...,m — 1, and (IA()(j)(O) =0forj=1,...,m — 1. Furthermore, for any o € (0, 1),
K e cmLo(R).

Exercise: Prove Lemma
For an mth order kernel K, we define the function
_— K(w)—1
Gm ="
K (W) (2miw)™
Lemma shows that G{m\K € L*(R) and we denote its inverse Fourier transform by G, . The

following theorem gives the convergence rates of our smoothed approximation in the L? sense.

Theorem 4.5.5. Let K be an mth order kernel, |1 denote a probability measure on R and let €,1 > 0. Then

G, i is bounded and satisfies
Ck

|Gm,K($)| < m

4.5.5)

Let 1 < p < oo and suppose that p is absolutely continuous on the interval I = (a — n,b+n) forn > 0

and some a < b. Let p denote the Radon—Nikodym derivative of the absolutely continuous component of i,
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and suppose that p; := p|; € W™P(I). Then

Cx(b—a)/r
lor = [Ke* plll o (o 1) SWE

((b—a)+2n)/e€
+ C(m) / G (@) dz - (1 0~™) - [prllwmn sy - €™
—((b—a)+2n)/e

(4.5.6)

where C'(m) denotes a constant depending only on m. In particular, as € | 0
lor = [Ke* plll 1o [ 5) = O™ log(1/e€)). 4.5.7)

If there exists § > 0 such that |K (x)(1 + |z|)™* 2| is bounded, then |G, rc(z)(1 + |x|)1*9] is also
bounded and
o1 = (Ko illl o gy = O(™): (45.8)

Proof of Theorem#.3.3] We first argue for convolutions with smooth compactly supported functions and
then take a limit. Let g € C§°, the space of smooth compactly supported functions on R, and let L denote

the diameter of the support of g. For a function F' € L*(R), define the function

5 F@ydt — [ F(t)dt, if x>0,
¢r(z)=1{"
. F(t)dt, otherwise,

which induces a map ¢ : ' — ¢p. Note that ¢ is bounded and decays at infinity. We let ¢,, r denote
the n-fold iteration of ¢ applied to F' (assuming that all of F', ¢p,....¢n—1.F € Lt (R)). The purpose of this

map is that, in the sense of distributions, we have

F—/RF(t)dt-éo = ¢

and hence
[F + g)(a) - / F(t)dt - g(z) = [~¢r * ¢)(2).

Applying this to F' = K, we see that

[Kexgl(x) — g(x) = [~ox. * ¢](z)

Note that if
C
Flo) < ——— 459
for some constant C, then
C
< — 4.5.10
Hence if m > 1, ¢k, € L'(R) and we can apply the map again to obtain
(Ko (e) = 9(a) = o »9')o) = [ x (0t - o/ (2).
Inductively, we can apply the above argument to obtain the expression
m—1 . )
[Ke# g)(2) = g(w) = (=1)" (b, % g"™](2) + Y (=1) / j.xc. (D)dt - g (). (4.5.11)
j=1 R
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Note that since K is an mth order kernel, ¢,,, . is bounded by a constant multiple of (1+|z|)~! and hence

®m. k. € L*>(R). We can apply the convolution theorem, taking Fourier transforms, to obtain

m—1
(Ke(w) = DG(w) = (=1)" G, (w)[~2miw] "G(w) + Z(—l)j/R%,Kf(t)df[—%iw]j@(W) (4.5.12)
j=1

Since g € C§°(R) was arbitrary (and we can take g(w) # 0), it follows that

oy = Eew) = 1) K= by (Bt
( 1) (bm,Ke( )_ (727Tiw)m ; 1( 1) (*QWiw)m*j.

3

Since ¢ i, € L2(R), it follows that ¢, . € L2(R). However, by Lemmal.5.4] asw — 0, |K. (w)—1| =
O(w™= ) for any o € (0, 1). It follows that

[ érsc it =0
R

for j = 1,..,m — 1. Hence we have ¢, x, = ¢m.x = Gm k. lterating @5.9) and @.5.10) implies
@5.3).
Now suppose that z lies in the support of g, then we can replace ¢, k., (%) by X[—r,1)(Z)Pm. k. ()

in (4.5.11), where xy denotes the indicator function of a set U. By Holder’s inequality, X[—1,11Pm k. €

L'(R) and hence, by Young’s convolution inequality, it follows that

1K 9= 9l o supptay < |12 210mc] <9 (45.13)
L

< / | xc. () dzz - || g™ || Lo (4.5.14)
—L

Furthermore, we have by a simple change of variables that
ok, (2) =€ (e 'pr (e '2)).

Iterating, we see that ¢, i (z) = € 1y k(e 1x) = €"71G,, k(e7 ). By a change of variables in
the integral expression in (#.5.14), it follows that

Lje
[ Ke*g— gHLP,supp(g) <™ / L |G i (2)] daz - ”g(m)HLp' (4.5.15)

We can pass to a limit of approximating functions to see that the bound in (#5.13) also holds for any
g € W™P(R) of compact support, where L denotes the diameter of the support.

Let I' = (a — n/2,b+ n/2). Since p; € W"P(I), we can decompose p; = g1 + go such that g; is
non-negative, supported in I with Hglm) ey < C(m)lpr|lwm.»y(1+n~™) for some constant C(m)
(that depends only on m) and g, is non-negative with support contained in R \ I’. Therefore, p; = g1 on

(a,b) and for almost any = € (a, b)

S K@)~ (o).

|pr(x) = [Ke* p(2)] < G’IW

By the triangle inequality, this implies that

Cig(b—a 1/p ((b—a)+2n)/€ N
e / |G, i ()] e+ g™ || o - €7, (4.5.16)

lor = Ke* plll 1o fap) < 7o 7ovmiT€
Lrlabl = (e 4 p/2)mt ~((b—a)+2n)/¢

since
Ck

6_1 _ CK(b_ a)l/p m
(1 + %)m«kl

= €
Lo fap (€ 0/2)mH

68



4.5. High-order Kernels CHAPTER 4. Computing Spectral Measures

The bound (#.5.16) then implies {.5.6).
Finally, follows from ({@.5.5) and ({@.5.6) through bounding the integral
/((b‘“)+2n)/e |G, ()] d < /((b‘“)“’”/e K = O(log(1/0))
(b)) T J((—a)t2n) e ML+ [2])
If | K ()| (1+|z|)™*1*? is bounded for § > 0, then the same argument used for (4.5.9) and (4.5.10) implies
that |G,k (z)(1 + |z])1 9] is also bounded and hence G, x € L*(R). The rate follows since
((b—a)+2n)/e
lim/ |Gk (z)] do < 00
0 J—((b—a)+2m) /e

and the other terms are O (™). O

As well as increasing the rate of convergence for computing Radon—Nikodym derivatives, high-order
kernels increase the rate of convergence for computing the functional calculus. However, no regularity
assumptions on y are needed. Instead, one can apply Fubini’s theorem and (strictly speaking the proofs
of) Theorems [4.5.2] and [4.5.5] to obtain high-order convergence through regularity of the function F'. For
example, if K is an mth order kernel and F' € C™*(R), then for any probability measure i, regardless of

the regularity of y, we have

\ [ F@yinte) — [ F@E - @)] = 0 ) + 0 og(c ™).

As expected, when F’ is analytic, we can do even better.

4.5.3 Constructing rational kernels

Theorems and [4.5.3] show that the convolution with the Poisson kernel has a pointwise and L? local
rate of convergence of O(elog(e~1)) for regular enough measures. In designing a kernel suitable for numer-
ical computations, we note that the results of allow the computation of R(z, A)z with error control for
any z ¢ Rand (A, z) € Qy s assuming that we have explicit bounds on ||(I — P,,) AP, || and || P,z — x||.
To avoid compounding errors (and requiring larger n to solve the relevant systems), it is beneficial to avoid
evaluating squares and higher powers of the resolvent. This leads us to kernels of the form

I & qj 1 & B
K(u) = — _ 4.5.17
(u) 27rij§::1u—aj 27‘(’2] u—b ( )

where a1, ..., a,, are distinct points in the upper half-plane and b4, ..., b, are distinct points in the lower

1

half-plane. We can then compute the convolution M:iy * K. with error control through the formula

ux’y =5 Z a;(R(u—eaj, A)x,y) — g Bi(R(u — €bj, A)z,y) | . (4.5.18)

By considering the Fourier transform of K at zero frequency and matching the left and right derivatives
of the Fourier transform, a straightforward calculation shows that the first m — 1 moments of K exist and

are zero (excluding the Oth order which must be 1 to achieve convergence), if and only if

(65} 1
al as ‘e anl
2 2 2 a2 0
o2 g o al e (4.5.19)
m—1 m—1 . m—1 Qny 0
aq ag Qn,y
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m —_
m | wK(u) [} (v — aj)(u—aj) {ar, .. ammya}
20 1430
: 9 (50)
5 65 -
3 _Zu2+ﬁ {—2+’L,5}
3536,2 , 21216 —39-65i 17485i

4 625 Y 1 3135 22 o 8 }

130, 4 _ 12350, 2 , 70720 15-10i —39+13i 65
5 31 720 U~ G561 { z 0 2 2
G | 12876004 34336000, 2 | 667835200 T25+10150 —27T5_64TSI 10T347511i)

117649 823543 40353607 192 102 ) 96

Table 4.1: The numerators and residues of the first six rational kernels with equispaced poles (see ).
We give the first [1m/2] residues because the others follow by the symmetry g, 11—; = @;.

with a similar system holding for the 3; and b;. By considering the 2nd to (n1 + 1)th rows, this (transposed)
Vandermonde system cannot have a solution if n; < m. We therefore set n; = ny = m. In the case that

x = y, a further numerical saving can be made by letting b; = @; and noting that in this case

1 m
A WK (u)=—1 (R(u—ea;, A 4.5.20
/J’w,x * (’LL) T m ; a]< (u Ea]’ )!L‘7.T> 1) ( )

meaning that we only need m resolvent evaluations per point of evaluation.
The location of the poles in the upper half-plane is entirely flexible. As a natural extension of the
Poisson kernel, whose two poles are at i, we consider the family of mth order kernels with equispaced

poles in the upper and lower half-planes given by
a; = ———1+1, b; =aj, 1<j5<m. (4.5.21)

Empirically, the choice in performed slightly better than other natural choices such as Chebyshev
points with an offset + or rotated roots of unity. The ill-conditioning of the Vandermonde system does not
play a role for the values of m used (typically at most m = 10). Moreover, equispaced poles are particularly
useful when one wishes to sample the smoothed measure K, * ui , over an interval, since samples of the
resolvent can be reused for different points in the interval. The first ten kernels are plotted in Figure {.4]

(left) and the first six are explicitly written down in Table 1]

4.5.4 Jacobi operator examples

Let J be a Jacobi matrix
ap by as

a2 bg

with a;, b; € Rand a; > 0. Under suitable conditions, the probability measure 117 := ., -, 1s exactly the

probability measure associated with the orthonormal polynomials defined by

P_1(x)=0, Py(z)=1, zPi(z)=ar+1Prs1(z)+ bry1Pr(x) + arPr_1(x).
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Figure 4.5: Left: Pointwise errors for A\ = —1,0,1 for m = 1 and o = 0.7, 8 = 0.3. Right: Pointwise
errors for A = —0.99,0,1 form = 10 and a = 0.7, 5 = —0.3.

As a simple example,consider a; = \/m and b, = 0, corresponding to the famous measure dp; =
exp(—A?)/y/md\, which induces the Hermite polynomials. We have shown the convergence (measured via
the L' error over [—1, 1]) of our method using §4.2} for different values of m in terms of the distance of
the poles to the real line (= ¢) in Figure 4.4{(right). We can clearly see the convergence rates O(e") (up to

logarithmic factors)| from Theorems and[4.5.5]

As a second example, consider the Jacobi polynomials defined for o, 5 > —1 which have

W o k(k+a)(k+ B)(k+a+pB) b B2 — a2
PN @kt a+B-D)2k+a+B22k+a+B+1) ¢ (k+a+B)2k—2+a+pB)

and measure on the interval [—1, 1] given by

(1= A\)*(1+\)F
N(e, B)

where N (a, 8) is a normalising constant, ensuring the measure is a probability measure. Figure (left)

duy = dA = fa,8(A)dA,

shows the pointwise convergence at A\ = —1,0,1 form = 1 and a = 0.7, 8 = 0.3. The approximation
converges at the expected rates (corresponding to the relevant Holder regularity) from Theorem[#.5.2] Fig-

ure [£.3] (right) shows a similar plot for A = —0.99,0, 1 for m = 10 and @ = 0.7, 8 = —0.3. The rate of

4There are no logarithmic factors when m is even. However, an extra log(e~1) factor appears when m is odd (owing to the
non-integrability of ™ K (u)). More generally, by analysing the solution of the system (4.5.19), the logarithmic factors disappear

precisely when [ 72 a; = [T, b;.
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Figure 4.6: Left: Honeycomb structure of graphene as a bipartite graph. The spinor structure is shown via
circled lattice vertices. The arrow shows the perpendicular magnetic field B. Right: Sparsity structure of

the first 103 x 102 block of the infinite matrix, and the corresponding growing local bandwidth.

convergence is increased to order 10 for A = —0.99 and A = 0 where the measure is locally smooth, but
remains order o at A = 1. The error at A = —0.99 is larger than at A\ = 0 due to being much nearer the

singularity at —1, which corresponds to a smaller 7) in Theorem[4.5.2]

4.6 Numerical Examples

4.6.1 Magneto-graphene Schrodinger operator

We apply the method to a magnetic tight-binding model of graphene, which involves a discrete graph
operator [AEG14]. Graphene is a two-dimensional material with carbon atoms situated at the vertices
of a honeycomb lattice (Figure {.6), whose unusual properties are studied in condensed-matter physics
INGPT09, [NovIT]]. Magnetic properties of graphene are well-studied and include experimental observa-
tions of the quantum Hall effect and Hofstadter’s butterfly [PGY 13|}, and twistronics [Chal9,[LSY™19].
A honeycomb lattice can be decomposed into two bipartite sub-lattices (shown via the red and green

dots in Figure [4.6](left)) and thus the wave function of an electron can be modelled as the spinor [AEG14]

Y = WL PR T €C? Y= (Wmn) € 12(Z%C?) = 2(N).

Here, (m,n) € Z? labels a position on the sub-lattices and £2(Z?; C?) denotes the space of square summable
C2-valued sequences indexed by Z2. To define the Hamiltonian, consider the following three magnetic
hopping operators Ty, Ty, T3 : ¢%(Z%;C?) — ¢%(Z*;C?) for a given magnetic flux per unit cell ® (in

dimensionless units):

[2] 1/)[2]+1 e—27r1'<1>m,¢[2] .
_ m,n _ m+1,n 1 — m,n
(T14))mn= 1/)[1] o (T)mn= 1] » (T59)mn e27ri<1>mw[1]
m,n m—1,n m,n—1

After a suitable gauge transformation, the free Hamiltonian can be expressed as Hy = 11 + 15 + 15 and
has Sp(Hy) C [—3, 3]. A suitable ordering of lattice points leads to a sparse discretisation of Hy, where the
kth row contains (’)(\/E) non-zero entries (see Figure (right)). Therefore, for an approximation using
N basis sites, the action of the resolvent can be computed in O(N?3/2) operations [TBI97].

Figure {4.7) shows how the spectral measure of Hj, taken with respect to the vector e; (the labelling

does not matter due to the translational invariance of the lattice), varies with &. For & € Q, the spectrum
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Figure 4.7: Radon—-Nikodym derivative pgfjel (1ogl0 scale) of the measure for various magnetic field
strengths ®. The axis label E (energy) stands for the spectral parameter. The Radon—-Nikodym derivative is
computed to high precision using ¢ = 0.01 and a fourth-order kernel with poles corresponding to (4.5.21).
The spectrum is fractal for irrational ®, which is approximated by rational ®. The small gaps in the spectrum

are clearly visible (corresponding to the blue shaded regions) and the logarithmic scale shows the sharpness

Ho

of the approximation to p,.°,

(which vanishes in these gaps).

Ho

is absolutely continuous, and hence we have plotted the Radon—-Nikodym derivative of the measure ¢ °,, .

The calculations, performed with a fourth-order kernel and e = 0.01, show a sharp Hofstadter-type butterfly,
but now with the additional information of the spectral measure.

Figure (left) shows an approximation of pg(je . when ® = 1/4 using a fourth-order kernel and
e = 0.01. We also show, as shaded vertical strips, the output of the algorithm in Chapter 3] [CRHI9]] which
computes the spectrum with error control (we used an error bound of 10~3) and without spectral pollutionﬂ
The support of K * ugfel is the whole real line due to the non-compact support of the kernel K. However,
if A & Sp(Hy), then [[K, * pto, ()] < Cxe™ (e + dist(A, Sp(Hy)))~™*+Y), where C is the constant

in (4.5.2) and m is the order of the kernel, so [[K, % o, J(\)| decays rapidly off of the spectrum. We also

€1,€1

consider a multiplication operator (potential) perturbation, modeling a defect, of the form

cos([x[2m)

V)= Ul + D2

4.6.1)

where x denotes the position of a vertex normalised so each edge has length 1. The perturbed operator is
then Hy+V . Since the perturbation is trace class, the absolutely continuous part of the spectrum remains the

same (though the measure changes) and the potential induces additional eigenvalues (see Figure[d.8] (right)).

Ho+V
€1,€1

Again, we see that |[K, * p J(\)| decays rapidly off of the spectrum. In particular, the measure is not

corrupted by spikes in the gaps in the essential spectrum or similar artefacts caused by spectral pollution.

4.6.2 Hunting eigenvalues of the Dirac operator

In this example, we show how the results of this chapter can be used as an effective tool to find eigenvalues
in gaps of the essential spectrum, whilst avoiding spectral pollution. This example also demonstrates that

the methods of this chapter apply to partial differential operators.

SWith a non-periodic potential (4.6.1), this is a highly non-trivial problem since finite truncation methods typically suffer from
spectral pollution inside the convex hull in the essential spectrum.
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Figure 4.8: Left: Smoothed measure with no potential. We show the algorithm from Chapter as shaded
strips (green) for comparison. Right: The same computation but with the added potential in (#.6.1). The
additional eigenvalues correspond to spikes in the smoothed measure.

We consider the Dirac operator (defined below) which often has discrete spectrum in the interval
(—1,1). This interval forms a gap of the essential spectrum. It follows that standard finite section meth-
ods used to compute the discrete spectrum will suffer from spectral pollution within the gap (—1,1) - i.e.
there exist accumulation points of the approximations which do not belong to the spectrum. There is a
rich literature on how to avoid this [LS14]. The majority of exist-
ing approaches work for certain classes of potentials and avoid spectral pollution on particular subsets of
(=1,1). Even for simple Coulomb-type potentials, spectral pollution can be a difficult issue to overcome,
and computations typically achieve a few digits of precision for the ground state and a handful of the first
few excited states. A popular approach is the so-called kinetic balance condition, which does not always
work for Coulomb potentials [LS09]). Our approach does not suffer from spectral pollution
and can compute the first thousand eigenvalues to near machine precision accuracy. The problem of spectral
pollution is discussed further in §7.1and Chapter|[7]

The Dirac operator acts on L?(R3; C*) as Dy = —i Zizl a0k + B, where

0 o Ic2 0 0 1 0 —i 1 0

a5 = ’ B = y 01 = y 02 = i , 03 =
gj 0 0 —Ic2 1 0 2 0 0 —1

are the so-called Pauli matrices [Tha92]. For simplicity we have chosen units corresponding to m =
¢ = h = 1. The spectrum of Dy is equal to (—oo, —1] U [1,00) and an important problem in quantum

chemistry/physics is the computation of the spectrum of
Dy := Do +V,

where V' is some (real-valued) potential. The addition of the potential can cause the appearance of eigen-
values in the gap (—1, 1), where, roughly speaking, positive eigenvalues correspond to bound states of a
relativistic quantum electron in the external field V' and negative eigenvalues correspond to bound states of
a positron, the anti-particle of the electron. If V' satisfies suitable conditions (precisely which conditions is
a broad topic - see for many potentials of physical interest), then Dy is self-adjoint with essential
spectrum Sp(Dg) = (—o0, —1] U [1, 00).

We consider radially symmetric potentials V' = V' (r)Ica. In this case, we can decompose our Hilbert

space as a sum of two-dimensional angular momentum subspaces H,, k; form; € {—j,....j}
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and k; € {£(j+1/2)} forj € {(20+1)/2:1 € Zx0}. The operator Dy |cee (0,00) @, ;. 1S then unitarily
- 777

equivalent to

oo [TV !
v 4ih 4V

Again, under suitable conditions on the potential V', we have that Df} |cg° (0,00)2 are essentially self-adjoint

and the full spectrum and discrete spectrum can be recovered from

Sp(Dy) = cl (U Sp (D@J‘)) . Spa(Dv) = JSpy (D@j).

We treat the case of k; = —1 for simplicity and, with an abuse of notation, write Df} as simply Dy .

To compute the spectral measure of Dy, we must be able to compute the resolvent and the corre-
sponding inner products to compute the scalar measures u?) o - This involves solving near singular PDEs
corresponding to the computation of the resolvent near the real axis. Letting r denote the variable on the
half-line, we first map to the interval (—1,1) via

r—1L 1+xz
r=—, r=1L .
r+L 1—=z

The resolvent then gives rise to a singular variable coefficient ODE via the relations

d (1-z?%*d 1 1l1-x

dr 2L dr’ r Ll+z

To solve these ODEs, we use the ultraspherical method [[OT13]], which is based on representations of the
solution in different ultraspherical polynomial bases. A full discussion of the ultraspherical method is
beyond the scope of this course. For us, the key point is that the ultraspherical method leads to a sparse
and well-conditioned linear system that can be solved in linear time up to log factors (and will compute the
correct solution bounded at infinity and zero). To compute inner products, we map the inner product over
the half-line to the interval (with a suitable Jacobian weight) and then use Clenshaw—Curtis quadrature. In
the method, L is a scaling parameter, which for our experiments we set to L = 10.

As mentioned above, the Dirac operator poses a serious challenge in terms of spectral computations,
owing to the gap in the essential spectrum. Let f € L*(0,00) @ L*(0, 00) and define v/§(\) := em (K g (A +
ie; Dy f), f). Then, denoting the orthogonal projection onto the eigenspace corresponding to eigenvalue
E; by PEj, we haveﬂ

gy = { 1B A

el0 0, otherwise

If f is not orthogonal to any of the eigenspaces, we expect the positions of the peaks of v§ to correspond to

the eigenvalues. To test this, we consider the case of the Coulombic potential
Viry=-=, —V3/2<v<0

for which the eigenvalues are known analytically and given by

—1/2

,YZ
Ei=|14+—"—7— ,  J € ZLxp.

(1+ Vi)

6One can show that if there is no singular continuous spectra in a neighbourhood of \ and if A is not an accumulation point of the
point spectrum then the difference between the values for positive € and the limit are O(e).
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Absolute Error
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Figure 4.9: Left: The function v/% (z) for A near 1. We have plotted the function against 1 — A to aid visability
of the accumulation at A = 1. The sloped dashed line shows the algebraic decay of || Pg, f||* (O(j*)).
The magnified region shows the extreme clustering, where the vertical dashed line corresponding to E'¢qp.
Right: The absolute error in the computed eigenvalues E; for j = 0, 5,10, 100, 500, 1000 as € | 0.

The eigenvalues accumulate at 1, meaning that, even ignoring the problem of spectral pollution, they are
very hard to compute for large j.

Figure (left) shows v§ with e = 107'%, f(r) = (v/2re™",v/2re™"), and v = —0.8. One can
robustly compute v for a fixed € > 0 by using the ultraspherical method and adaptively selecting the
discretisation size. For ¢ = 1019, we can accurately compute Fy, . .., F1ggo by the location of the local
maxima of 5. We can obtain a coarse estimate first using a few A values and then refine our search as
we converge to an eigenvalue. Moreover, the size of the peaks correspond to || Pg, flI?, and the figure
shows that these decrease at an algebraic rate as j — co. If one is not satisfied with the accuracy of the
computed eigenvalues, then one can decrease ¢ at the expense of an increased computational cost. In Figure
@l (right), we show the absolute error in the computed eigenvalues F; as € | 0. We can resolve hundreds

of eigenvalues, even when highly clustered, to an accuracy of essentially machine precision.

4.6.3 Matlab demo for radial Schrodinger operator

Consider the radial Schrodinger operator with a Hellmann potential and angular momentum ¢,

Cu(r) = _ d*u(r) n (€(€+ 1) I }(e—r _ 1)) u(r), r> 0. (4.6.2)

dr? r2 T

The spectral properties of £ are of interest in quantum chemistry, where the Hellman potential models
atomic and molecular ionisation processes. Ionisation rates and related transition probabilities are usually
studied by computing bound and resonant states of £; however, we compute this information directly from
the spectral measure.

For example, if f(r) = Ce=(r=70)* (where C is chosen so that |lfllz2(r,y = 1) is the radial component
of the wave function of an electron interacting with an atomic core via the Hellmann potential in (4.6.2)),
then we can calculate the probability that the electron escapes from the atomic core with energy E € [a, b]

(with 0 < a < b) via

b
P(a < E <b) = pf ;([a,b]) ~ / [Kex pflly)dy,  e<1. (4.6.3)
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Figure 4.10: Left: The smoothed approximation to the density on the absolutely continuous spectrum of £
in .6.2), with f,, (r) = C,.Oe_(r_“’)z, forrg = 2, 79 = 3, and ro = 4 (C, is a normalisation constant
so that || fu || L2(r, ) = 1). The shaded area under each curve corresponds to P(1/2 < E < 2) in (#.6.3) for
the particle with wave function f.(r). Right: The L!((1/2,2)) relative error in smoothed measures for

the radial Schrodinger operator in (#.6.2). The relative error is computed by comparing with a numerical
solution that is resolved to machine precision.

The error in this approximation is bounded via

b
,u]‘%f([a,b]) —/ (K. *fo](y) dy

a

b
< / 105 1) — Ko % i Al dy = 105 5 — Ko 5 15 41111 (-

We can compute P(1/2 < E < 2) for £ = 1 with a few lines of code calling Specfun:

normf = sqrt (pi/8)* (2-igamma (1/2,8)/gamma(1/2));

o\

Normalisation

f = @(r) exp(-(r-2)."2)/sqgrt (normf) ;

o\

Measure wrt f(r)
v = {Q@(r) 3, @(r) (exp(-r)-1), @(r) O};
[xi, wi] = chebpts (50, [1/2 2]);

o

Radial potential

o\

Quadrature rule

smooth_meas = rsMeas (v, f, xi, 0.01)

o\

Smoothed measure

ion_prob = wi * smooth_meas;

o\

Ionisation prob

This makes it easy to explore how the probability of ionisation changes as we adjust the problem parameters.
We can explore the effect of changing the angular momentum number, /, or the initial wave function, f (see
Figure (left)). The L' convergence for the approximation to the probabilities in (#6.3) is shown in
Figure 10| (right), which agrees with the asymptotic rates implied by Theorem [.5.5]
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Chapter 5

Computing Spectral Type

This chapter, based on [Col21]l, complements Chapter[4]and classifies the computation of Sp,.(A), Sp,.(A)
and Sp,,(A) in the SCI hierarchy. These different sets often characterise different physical properties
in quantum mechanics (such as the famous RAGE theorem [Rue69l |IAG74, [Ens78]]), where a system is
modelled by some Hamiltonian A € Qga [CFKS87, [Com93], IGKPI1l [Las96]]. For example, pure point

spectrum implies the absence of ballistic motion for many Schrodinger operators [Sim90].

5.1 Computing Spectral Types as Sets - the Main Result

Define the problem functions Z5(A) = Spz(A) for T = ac,sc or pp. Note also that Sp,,(4) =

cl(Sp,(A)), the closure of the set of eigenvalues. Since we are dealing with unbounded operators, we

use the Attouch—Wets metric, which we recall for the benefit of the reader,

daw(Cy,Cy) = Z min{l, sup |dist(z, Cy) —dist(a:,C’g)|},

lz|<n

for C1,Cy € CI(C), where C1(C) denotes the set of closed non-empty subsets of C. When considering
bounded A, we let (M, d) be the set of all non-empty compact subsets of C provided with the Hausdorff
metric d = dg:

du(X,Y) = Inax{sup inf d(z,y), sup inf d(z, y)}
zeX YEY yey T€X

where d(z,y) = |x—yl| is the usual Euclidean distance. Recall that for compact sets, the topological notions
of convergence according to dy and daw coincide. To allow the possibility that the spectral sets are empty,
we add the empty set to our metric space as a separated point (the space remains metrisable). This simply
means that F,, — () if and only if F}, = () eventually.

The main theorem of this chapter is the following:
Theorem 5.1.1. Given the above set-up (see also §4.1)), it holds that

Aaﬁ{:ameﬂ?[\l}ezx;a Acﬁ{:scvﬂfﬂ"/\l}ezév AG;{: nyavAl}ezé'

pp’

If f(n) —n > V2n + 1, then the sharp lower bound {=S., Qs 0, A1} & A also holds.
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5.2 Anderson Localisation and the Fractional Moment Method

One of the tools we will use to prove the lower bounds in Theorem [5.1.1]is the Anderson model. We refer
the reader to [CL90, ICEKS87, IKirQ7] for broader surveys of Anderson localisation.

We consider a connected, undirected graph G, such that the degree of each vertex is bounded by some
constant C and such that the set of vertices V(G) is countably infinite. We assume that v = v,, is a
random potential, where w = {v;},cv () is a collection of independent identically distributed random
variables and the single-site probability distribution has a density p € L!(R) with ||p||; = 1 (with respect
to the standard Lebesgue measure). For such a potential, a measure of disorder is given by the quantity
llpll=t. The following theorem, proven in [Col20all, generalises the results of [Gra94] to certain finite rank

perturbations and more general graphs, and is used in the proof of Theorem[5.1.1]

Theorem 5.2.1 (Anderson Localisation for Perturbed Operator). There exists a constant 6(Cg) > 0 such
that if ||pllec < 8(Cq) and p has compact support, then the operator H, + W has only pure point spectrum
with probability 1 for any fixed self-adjoint operator W of the form

M
W =3 aj|em,) (zn,]- (5.2.1)
j=1

5.3 Proof of Theorem 5.1.1]

5.3.1 Point spectra

Proof that {Egp, Qra, M} ¢ AS . To prove this, it is enough to consider bounded Schrodinger operators
acting on [?(N), which are clearly a subclass of Q¢ for f(n) = n + 1. Suppose for a contradiction that
there does exist a sequence of general algorithms, I',,, with

lim T, (H,) = ¢ (H,).

n— 00 T TP
We will construct a potential v such that T',,(H,) does not converge. To do this, choose p = X[_c,/(2¢)

for some constant ¢ such that the conditions of Theorem [5.2.1] hold. We will use Theorem [3.2.1] and the

following well-known facts:

1. If v has compact support then Sp,,(H,) N (0,4) = @ [Rem98], but [0,4] C Sp(H,) (the potential

acts as a compact perturbation so the essential spectrum is [0, 4]).

2. If we are in the setting of Theorem with W = 0 then Sp(H,,) = [—c¢,4 + ¢] almost surely (see
for example [KM82]). If W # 0 then since compact perturbations preserve the essential spectrum,

we still have [—¢, 4 + ¢] C Sp(H, + W) almost surely.

We will define the potential v inductively as follows. Let v; be a potential of the form v,, (with density
p) such that [—¢, 4 + ¢] C Sp(H,, ) and Sp(H,, ) is pure point. Such a vy exists by Theorem [5.2.1]and fact
(2) above. Then for large enough n there exists z, € I',,(H,, ) such that |z, — 2| < 1. Fix ny such that this
holds. Then I',,, (H,,) only depends on {v;(j) : j < N} for some integer Ny by (i) of Definition [2.1.1]
Define the potential vy by va(j) = v1(j) for all j < Ny and v(j) = 0 otherwise. Then by fact (1) above
' (Hy,) N[1/2,7/2]) = 0 for large n, say for ny. But then Iy, (H,,) only depends on {v2(j) : 7 < Na}

for some integer No.
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We repeat this process inductively switching between potentials which induce Ty, (H,, ) N[1/2,7/2] =
() for k even and potentials which induce T,,, (H,, ) N[1, 3] # @ for k odd. Explicitly, if k is even then define
a potential vg 11 by vk1(j) = vg(j) for all j < Nj and vi41(j) = v, (j) (with the density p) otherwise
such that [—c,4 + ¢] C Sp(H,,.,) and Sp(H,,_,) is pure point. Such a w exists from Theorem and
fact (2) above applied with the perturbation W to match the potential for j < Nj. If £ is odd then we define
Vg1 bY vp+1(4) = vi(j) for all j < Nj and vi41(j) = 0 otherwise. We can then choose ny1 such that
the above intersections hold and Ny such that I',,, . (H,,,,) only depends on {vp41(j) : j < Nigg1}.
Finally set v(j) = vi(j) for j < N. Itis clear from (iii) of Deﬁnition that Ty, (Hy) = Ty, (Hy,)-

But then this implies that I';,, (H,,) cannot converge, the required contradiction. O

Remark 5.3.1. The result can be extended to Schrodinger operators on 7% or much more general lattices.
It can also be extended to Schridinger operators acting on L*(R?) via Kato’s famous theorem regarding
potentials decaying faster than O(1/ |z|) (see for example [RS78|]) and recent results on Anderson locali-

sation for Bernoulli random variables [BK0JS]].

We now shift our attention to proving that Egp can be computed using a ¥:4' tower. The first step is the

following technical lemma, whose proof will also be used later when considering =ZC..
Lemma 5.3.2. Let a < bwith a,b € R and consider the decision problem
Ea,b,pp : Qf,a — {0, ].}

1, ifSpy,(A)Na,b] #0

0, otherwise.

A—

Then there exists a height two arithmetical tower Iy, ., (with evaluation functions A1) for Zqp pp. Fur-

thermore, the final limit is from below in the sense that Ty, (A) :=limy, o0 Ty ony (A) < Eg b pp(A4).

Proof. Step 1 of the proof of Theorem yields a height two arithmetical tower filz " (A) for the com-
putation of ufj «;.c((a,D)). Note that the final limit is from above and using the fact that u?j e;c{a;0}) =0
we obtain a height two tower for u;f‘j7e7,7c([a, b]). We can then use the height one tower for ufj e, ([a,b]),

denoted by I}, (A), and define

@jinany (A) = T0, (A) = T, ., (A).

nz,ni

This provides a height two arithmetical tower for 2 op([@, b]) with the final limit from below. Without
71€5,
loss of generality (by taking successive maxima) we can assume that these towers are non-decreasing in n.
Now set
Tﬂz;nl (A) = max a;jn,n, (A>

1<j<ne
Then it is clear that the limit lim,,, o0 Thyn, (A) = Th,(A) exists. Furthermore, the monotonicity of

@ sy (A) in ny implies that

lim Ty, (A) = sup g, o, op[a:]),

ng—00 neN

with monotonic convergence from below. This limiting value is zero if =, 5 ,p(A) = 0, otherwise it is a

positive finite number.
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To convert this to a height two tower for the decision problem Z, 3 o, that maps to the discrete space
{0,1}, we use the following trick. Consider the intervals J;'* = [0,1/ng], and J3* = [2/ng,00). Let
k(n2,n1) < my be maximal such that Y,,, ,, (4) € J7'? U J32. If no such k exists or T, x(A) € Ji™
then set Iy, ,(A) = 0. Otherwise set I',,, ,,, (A) = 1. These can be computed using finitely many
arithmetic operations and comparisons using A;. The point of the intervals J{'* and .J3? is that we can
show limy,, yo0 Ty ony (A) = T, (A) exists. This is because limy,, o0 Ty on, (A) = Th, (A) exists and
hence we cannot oscillate infinitely often between the separated intervals Ji"> and J32. Now suppose that
Eabpp(4) = 0, then lim,, o f"%nl (A) = 0 and hence lim,,, o0 I'n, n, (A) = 0 for all ny. Now
suppose that =, ; ,,(A) = 1, then for large enough n, we must have that Y,,,(A) > 2/ny and hence
'y, (A) = 1. Together, these prove the convergence and that I',,, (4) < 2, 5 pp(A). O

Proof that {Egp, Qo M1} € ¥4, Step 1: Construction of height two tower. To construct a height two

arithmetical tower for Egp we will use Lemma repeatedly. Let fnz,nl (-, I) denote the height two
tower constructed in the proof of Lemma for the closed interval I (I = [a, b]), where without loss of
generality by taking successive maxima in ng, we can assume that this tower is non-decreasing in no (this
is where we use convergence from below in the final limit in the statement of the lemma). For a given ny
and ng, we construct I',,,, ,,, (4) as follows (we will use some basic terminology from graph theory).

Define the intervals I°

manij = W»J + 1] for j = —ng,....,na — 1 so that these form a cover of

the interval [—ng,ns]. Now suppose that I,’f%nl,j are defined for j = 1,...,74(n2,n1, A). Compute

each Ty, (A, IF ) and if this is 1, bisect I*

Ay ma g na.mi,; Vid its midpoint into two equal halves consist-

ing of closed intervals. We then take all these bisected intervals and label them as Iff:}lh ; for j =

1,...,7g+1(n2,n1, k, A). This is repeated until we have no further bisections or the intervals I:;; . have

been computed. By adding the interval [—n2, 1] as a root with children 7°

na.ni ;o this creates a finite binary

tree structure where a non-root interval [ is a parent of two intervals precisely if those two intervals are
formed from its bisection and fn%nl (A, I) = 1. We then prune this tree by discarding all leaves I which
have fnzml (A,I) = 0 to form the tree Ty, », (A). Finally, we let I',,, ,,, (4) be the union of all the leaves
of Ty ny (A). Clearly this can be computed using finitely many arithmetic operations and comparisons
using A1. The construction is shown visually in Figure[5.1]

In the above construction, the number of intervals considered (including those not in the tree 7,,, n, (4))
for a fixed ny is n22"27! + 1 and hence independent of n;. It follows that 7y, n, (A) and T, ,, (A) are
constant for large 71 (due to the convergence of the fnz,nl (A, T)in {0, 1}). We denote these limiting values
by T, (A) and T',,, (A) respectively and also denote the corresponding intervals in the construction at the

m—th level of this limit by I} . Note also that if 25 (A) = () then T',,, (A) = 0.

—=C

Now suppose that z € =,

(A), then there exists a sequence of nested intervals I, = Iy} ,  contain-

n2,am,
ing z for m = 0, ..., no (where the notation means that these intervals are independent of ny). Fix m, then
for large ny we must have that fm, (A, I;) =1forj =1,...,m. It follows that I,,, has a descendent interval
I, m contained in I',, (A) and hence we must have dist(z,I',,(A4)) < 27™. Since m was arbitrary it
follows that dist(z, I',,, (A)) converges to 0 as ny — 0.

Conversely, suppose that z,,,, € I'y,; (A) with m; — oo, then we must show that all limit points of

C
pp

that 2,,,, — 2 and dist(zy,,, E(gp(A)) > ¢ for some 6 > 0. We claim that it is sufficient to prove that the

{zm,; } lie in Z; (A). Suppose this were false, then by taking a subsequence if necessary, we can assume

maximum length of the leaves of 7,,,(A) intersecting a fixed compact subset of R, converges to zero as
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nz — o0o. Suppose this has been shown, then z,,; € I,,,; for some leaf I,,; of ij (A). It follows that
I, NES,(A) # 0 and |I,,,,| — 0. But this contradicts z,,, being positively separated from =5 (A).

To prove convergence, we are thus left with proving the claim regarding the lengths of leaves. Suppose
this were false, then there exists a compact set K C IR and leaves I; in 7Ty, (A) such that the lengths of I;
do not converge to zero and I; intersect K. By taking subsequences if necessary, we can assume that the
lengths of each I; are constant. Then by the compactness of K and taking subsequences if necessary again,
we can assume that each of the I; are equal to a common interval /. It follows that fbj (A,I) = 1 but that
fbj (A L) = IA“;,] (A, I,) = Osince I is a leaf, where I; and I, form the bisection of I. Taking b; — oo,
this implies that I N 25 (A) # 0 but 1 N E§,(A) = I, N Z5,(A) = ) which is absurd. Hence we have

shown the required contradiction, and proven convergence.

Step 2: Adaptation to achieve a 2‘24 tower. Let

fnz,nl (A) = Sppp (A) U Fnz,’rn (A)) f’nz (A) = hm fnz,nl (A))

ni—00

where we remark that the limit is guaranteed to exist. For m = 1,...,no we define (§m(n17 ng) via the
following procedure. If T, ., (A) N By, (0) # 0, then we let 4, (n1,n2) < 1 be the length of the longest
leaf in 7, », (A) that intersects Ba,, (0). If 'y, 1, (A) N By, (0) = 0, then we let 3,,”(711, ng) = 1. We then
set d,, (N1, ng) = min{gk(nl,ng) :m <k <no}and, if 'y, ,, (4) # 0, define

En27n1 (A) =2""+ Z 27 6m(n1; Tl2).

m=1
Otherwise we set E,,, ,,, (A) = 0. Note that this can be computed using finitely many arithmetic operations

and comparisons. We also define

OIm(n2) = lim &, (n1,n2), En,(A)= lim E,,, (4),

n1—00 n1—o0
where, again, both limits exist (in fact the sequences are eventually constant) since the finite number of
decision problems deciding I'y,, ,,, (A) and T, », (A) are eventually constant.

Ifm € {1,2,...,ny} and z € B,,(0), then the closest point to z that lies in I',,,(A) either lies in
Sp,,p(A), in which case the inclusion Sp,,,(A) C T, (A) implies that

min {1, ‘dist(:zc,fn2 (A4)) — dist(z, Sppp(A))’} =0 < dpm(na),

oritliesin T, (A). In the latter case, if I',,, (A) N By, (0) # (0 then the closest point must also lie in Ba,y, (0)
and hence
min { 1,

dist (2, T, (A)) — dist(z, sppp(A))l} < bm(na),

since the final limit of the algorithm from Lemma[5.3.2]is from below. This implies that

|z|<m

min {1, sup |dist(x, T, (A)) — dist(x,Sppp(A))‘}

< min 1, sup
msksnz (0 jz|<k

dist(z, T, (A)) — dist(z, Sppp(A))‘} < m(n2).

It follows that we must have

daw (T, (A),Sp,,(A)) < En,(A), (5.3.1)

with this bound being trivial in the case that I',,, (A) = 0. Now if m is such that I',,, (4) N B,,,(0) # O for

large no, then since the maximum length of the leaves of 7,,,(A) over any compact set converges to zero,
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Figure 5.1: Example of tree structure used to compute the point spectrum for ny = 3. Each tested interval
is shown in green (an,m (A, 1) = 1) orred (fnz,nl (A, I) = 0). The arrows show the bisections and the

final output is shown in blue.

we must have that lim,,, o Sm(ng) = 0. It follows that if Sppp(A) # () then lim,,, o 6 (n2) = 0O for
each m and hence lim,,, oo En,(A) = 0. Clearly this convergence also holds if Sp,,(A) = () since, in
this case, 'y, (A) = 0 for large ns.

To construct a X4' tower, it is enough (by taking subsequences) to show that given ¢ € Q~, we can

choose ny(€,n1) > € ! such that lim,,, oo na(e,n1) = n§ € N exists and

daw (g (A), Sppp(4)) < e.

To do this, fix € and consider S(e,n1) = NN [e7!, ). If ny < e ! then set na(e,n1) = [e!]. Oth-
erwise, let S’(e,ny) be the set of all k& € S(e,n1) such Ey p, (A) < e. If S’(e,n1) = 0 then we set
na(e,ny) = [e_lw, otherwise we set na(e,n1) to be the minimal element of S’(e, ny). For large n, since
each E,,, ,,, (A) is eventually constant and the E,,,(A) converge to 0, we must have that S’(e, n1) # 0. In
fact, we have that

ns = lim no(e,ny) = min{k: k > I—e_l-l ,ErL(A) < e}

ni—00

The bound (5.3.1)) now finishes the proof. O

5.3.2 Absolutely continuous spectra

We will first prove the lower bound and recall the following result which will be crucial for the proof.

Theorem 5.3.3 (Krutikov and Remling [KRO1l|). Consider discrete Schridinger operators acting on 1?(N).
Let v be a (real-valued and bounded) potential of the following form:

oo
’I’L) = Zgjdn,mj, mj_l/mj — 0.
j=1

Then [0,4] C Sp.(Ho + v) and the following dichotomy holds:
(@) If > en g3 < oo then Hy + v is purely absolutely continuous on (0, 4).
() If>en g? = oo then Hy + v is purely singular continuous on (0, 4).

To prove the lower bound (that one limit will not suffice) our strategy will be to reduce a certain decision
problem to the computation of Z5.. Let (M, d’) be the discrete space {0, 1}, let Q" denote the collection

of all infinite sequence {a, } jen with entries a; € {0, 1} and consider the problem function

Z'({a;}) : Does {a;} have infinitely many non-zero entries?
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In [Colnsl], it was shown that SCI(Z', Q)¢ = 2 (where the evaluation functions consist in component-wise

evaluation of the array {a; }).

Proof that {5, Q. o, A1} ¢ AS. We are done if we prove the result for f(n) = n+1and @ = 0. Suppose

ac’

for a contradiction that I',, is a height one tower of general algorithms solving {Z5., Q7 0, A1}. We will

gain a contradiction by using the supposed tower to solve {=', Q'}.

Given {a;} € €, consider the operator H = H\, + v where the potential is of the following form:

v(m) = Z aOm, k-
k=1

Then by Theorem[5.3.3] [0,4] C Sp,.(H) if )_, ax < oo (thatis, if Z/({a;}) = 0) and Sp,.(H) N (0,4) =
() otherwise. Given N we can evaluate any matrix value of H using only finitely many evaluations of {a;}
and hence the evaluation functions A; can be computed using component-wise evaluations of the sequence
{a;}. We now set

0, ifdist(2,T,(H)) <1

Tu({a;}) =

1, otherwise.

)
The above comments show that each of these is a general algorithm and it is clear that it converges to

Z'({a;}) as n — oo, the required contradiction. O
To construct the ¥4 tower for ZC, we will need the following lemma.
Lemma 5.3.4. Let a < bwith a,b € R and consider the decision problem
Ea,b,ac : Qﬁa — {O, 1}
1, ifSp..(A)Nla,b] #0
A—
0, otherwise.

Then there exists a height two arithmetical tower 'y, . (with evaluation functions A1) for Zq p ac. Fur-

thermore, the final limit is from below in the sense that Ty, (A) := limy, 00 Tnyony (A) < Egpac(A4).

Proof. Fix such an a and b and let x,, be a sequence of non-negative, continuous piecewise linear functions
on R, bounded by 1 and of compact support such that y,, converge pointwise monotonically up to the

constant function 1. Define also the function
Umon(u, A) = (Kg(u+i/n, A en), em)
and set

b
%mmmz/wwwwmmmemm

Since each y, is continuous and has compact support, and since v, »(u, A) converges almost everywhere
to p;f‘m)em (u) (the Radon—Nikodym derivative of the absolutely continuous part of the measure ug‘mem), it

follows by the dominated convergence theorem that

b
mnwmmm:%WMFjﬁ;%wmm;%wmh

niy—»oo

We now use the fact that the Y, are increasing and the dominated convergence theorem again to deduce that

lim Am, no (A) 2 ([CL, b])’

gy 00 = He,, em,ac
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with monotonic convergence from below.

Using Corollary #.2.2] (and the now standard argument of Lipschitz continuity of the resolvent), we
can compute approximations of @y, ., n, (A) to accuracy 1/n4 in finitely many arithmetic operations and
comparisons. Call these approximations ay, »,.», (4) and set

Tnz,nl(A) = max a]'7n2,7l1(‘4)'

1<j<n2

The proof now follows that of Lemma|[5.3.2]exactly. O

Proof that {25, Q¢ .o, A1} € X4 This is exactly the same construction as in the above proof of the inclu-
sion {Z5 0/ 4, A1} € 24 We simply replace the tower constructed in the proof of Lemma by the

PP’
tower constructed in the proof of Lemma[5.3.4] O

5.3.3 Singular continuous spectra

We will first prove the lower bound for the singular continuous spectrum via Theorem [5.3.3] Note that
C

sc?

the impossibility result {5, Qyq, A1} ¢ A§ follows from the same argument that was used to show

{EC.,Q¢.4,A1} ¢ AS. To show that two limits will not suffice for f(n) — n > /2n + 1/2, our strategy
will be to reduce a certain decision problem to the computation of Z&.. Let (M’, d’) be the space [0, 1] with
the usual topology and Q denote the collection of all infinite matrices {a; ; }; jen with entries a; ; € {0,1}

and consider the problem function
=1({ai;}) : Does {a; ;} have a column containing infinitely many non-zero entries?

Recall that it was shown in Theorem in Chapter that SCI(Z1,Q)¢ = 3 (where the evaluation
functions consist in component-wise evaluation of the array {a; ;}). We will gain a contradiction by using

the supposed height two tower to solve {Z;, 2}.

Proof that {Z5,, Qs o, A1} ¢ AS if f(n) —n > +/2n + 1/2. Assume that the function f satisfies f(n) —

scC?
n > \/2n + 1/2. The proof will use a direct sum construction. Given {a; ;} € €, consider the operators

Hj; = Hy + v(;y where the potential is of the following form:

v(j)(n) = Z (lkJ(sn,k!.
k=1

Using Theorem|5.3.3} [0,4] C Sp,.(H;)if Y, ar,; = oo (that s, if the j-th column has infinitely many 1s)
and Sp.(H;) N (0,4) = () otherwise. Now consider an effective bijection (with effective inverse) between
the canonical bases of /*(N) and ©32,1*(N):

¢:{en:neN} = {e: ke NV |k[o=1}.

Set H({a; ;}) = @j, Hj. Then through ¢, we view H = H({a; ;}) as a self-adjoint operator acting on

12(N). Explicitly, we consider the matrix

Hun = (Heg(n)s €pm))-

We choose the following bijection (where m lists the canonical basis in each Hilbert space):
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A straightforward computation shows that H € Q o. We also observe that if =; ({a; ;j}) = 1 then [0,4] C
Spe.(H), otherwise Sp..(H) N (0,4) = (.

Suppose for a contradiction that I',,, ,,, is a height two tower of general algorithms solving the problem
{ZC .0 #,0, A1}. We will gain a contradiction by using the supposed height two tower to solve {él, Q} We

now set
Tz ({a,5}) = 1 = min{1, dist(3, T ny (A({as 1)),

where we use the convention dist(3,0) = 1. The comments above show that each of these is a general

algorithm. Furthermore, the convergence of I',,, ,,, implies that

lim  lim Ty, ({ai;}) = 1 — min{1, dist(3, Spe.(H ({ai; 1))} = E1({ai}).

N2 —00 N1 —>00

Hence fnz,m is a height two tower of general algorithms solving {él, Q}, a contradiction. O

Finally, we will use the following lemma to prove that the singular continuous spectrum can be com-

puted in three limits.

Lemma 5.3.5. Let a < bwith a,b € R and consider the decision problem
Ea,b,sc : Qf’a — {0, 1}

L, ifSpyc(A)Na, b] # 0
A—

0, otherwise.

Then there exists a height three arithmetical tower L'y, 5, n, (With evaluation functions A1) for Zg p sc.
Furthermore, the final limit is from below in the sense that Ty, (A) = limy,, 00 My, 00 Ty ngony (A) <

Ea,b,sc(A)-

Once this is proven, we use the same construction that was used for {E‘gp, Qpos M} {ES, Q0 AL} €

¥4 to show that {Z,Q7,,A1} € 24, but with an additional limit. Namely, we replace (na,n;) by

sc?

(n3,n2) in the proof and use the tower constructed in the proof of Lemma instead of fnz’m (A, I) for
an interval /. We still gain the required convergence since the only change is an additional limit in the finite

number of decision problems that decide the appropriate tree.

Proof of Lemma Note that we can write

1 emsella]) = ul o ([a.8]) = pfy, e, pp((0,0]) = 1 e, ac([a:B]).

From this and the proofs of Lemmas and[5.3.4] it is clear that we can construct a height two arithmeti-

cal tOWer, g ny (A), for p , ([a,b]) where the final limit is from above. Now set

Tn:sﬂw,nl (A) = maxX @Gjnyng (A)

1<j<n3
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We see that each successive limit converges, with the second from above and the final from below. By
taking successive maxima, minima of our base algorithms, we can assume that the second and final limits
are monotonic and that T, ,,, », (A) is monotonic in both ny and ng. Define the limiting sets Y, p, (4) =
limy, 00 Thgnana (A), Thg(A) = limy, 00 Thygon, (A) and T(A) = limy,, o0 Th, (A). Then T(A) is
zero if 2 p sc(A) = 0, otherwise it is a positive finite number.

With a slight change to the previous argument (the monotonicity in ng and n3 is crucial for this to work),
consider the intervals Ji* = [0,1/m], and JJ* = [2/m,o0). Let k(m,n,n1) < ny be maximal such that
Tinnn, (A) € JT U JJ*. If no such k exists or Ty, , 1 (A) € Ji™ then set ﬁmn,m (A) = 0. Otherwise set
fm.,n,m (A) = 1. We then define

Pran(4) = max  min o, (4),

These can be computed using finitely many arithmetic operations and comparisons using A1, and, as before,

the first limit exists with

~

Tpyny(A) = lim Ty, 5y 0, (A) = max min T, ,,(A).

ni—oo 1<m<ng 1<n<ng
Note that the second and third sequential limits exist through the use of maxima and minima.

Now suppose that =, sc(4A) = 0 and fix n3. Then for large no, we must have that Y, ,,,(4) <

1/(2n3) for all m < ng due to the monotonic convergence of Y, as p — oo. It follows in this case that

lim T, n,(A) =0, forallng.

ng—»00

Now suppose that =, ; sc(A) = 1. It follows in this case that there exists M/ € N such that if m > M
then Y, (A) > 3/m. Due to the monotonic convergence of Y, , as p — oo it follows that for all p we
must have T, , > 3/m and hence there exists N(m, p) € N such that if ny > N (m, p) then we must have
T pny > 2/m. It follows that if ng > M then we must have fn&p(A) = 1 for all p and hence that

The conclusion of the lemma now follows. ]
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Chapter 6

Discrete Spectra and Spectral Gap

Computing discrete spectra of normal operators is a problem encountered in many areas of applied mathe-
matics and theoretical physics, as well as being of purely theoretical interest. We provide an algorithm that
converges to the discrete spectrum and separates it from the essential spectrum. The method yields a sharp
classification in the SCI hierarchy. This problem is subtly different to that of computing the point spectrum
(eigenvalues) discussed in Chapter [5] since the discrete spectrum does not include eigenvalues of infinite
multiplicity or eigenvalues embedded in the essential spectrum.

A second problem considered in this chapter is the spectral gap problem, which is related to the di-
chotomy between the discrete and essential spectrum. The spectral gap problem has a long tradition and is
linked to many important conjectures and problems such as the Haldane conjecture [Hal83) |GJL94] or the
Yang—Mills mass gap problem in quantum field theory [BCD™06]]. In the seminal paper [CPGWT3]], it was
shown that the spectral gap problem is undecidable (i.e., the problem ¢ A') when considering the thermo-
dynamic limit of finite-dimensional Hamiltonians. We consider the infinite-dimensional statement of the
problem and provide classifications in the SCI, as well as an extension to classifying the geometric/algebraic
properties of the bottom of the spectrum.

This chapter is based on [CHns].

6.1 Main Results

Throughout this chapter, we consider various operators acting on /?(N). The information given to us through

the functions A is the collection of matrix values of an operator A with respect to the canonical basis.

6.1.1 Computing discrete spectra

Let Q¢ denote the class of bounded normal operators on ?(N) with (known) bounded dispersion (recall
(3.1.1) and this concept from and with non-empty discrete spectrum (this condition can be dropped
- see below), and denote by QZ the class of bounded diagonal self-adjoint operators in Q. For a normal
operator A, there is a simple decomposition of Sp(A) into the discrete spectrum and the essential spectrum,
denoted by Sp,(A) and Sp,.(A) respectively. The discrete spectrum consists of isolated points of the
spectrum that are eigenvalues of finite multiplicity. The essential spectrum has numerous definitions in the

non-normal case, but for the normal case is defined as the set of z such that A — zI is not a Fredholm
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operator. Define the problem function
=24 08,08 5 A cl(Spy(A)) .

We have taken the closure and restricted to operators with non-empty discrete spectrum, since we want
convergence with respect to the Hausdorff metric. However, the algorithm we build, I';,, », , has the property

that limy,, o0 I'ny n, (A) C Spy(A), so this is not restrictive in practice.

Theorem 6.1.1. Let E‘f, Q% and QdD be as above. Then,
AS F{E], 9% e 5y, AT F{E], 08} e xs.

The constructed algorithm T',,, ,,, has the property that given A € Q¢ and 2z € Sp,(A), the following
holds. If € > 0 is such that Sp(A) N Bz.(z) = {z}, then there is at most one point in I',, ,,, (A) that also
lies in B.(z). Furthermore, the limit lim,,, oo Iy, n, (4) = 'y, (A) is contained in the discrete spectrum
and increases to cl (Sp,;(A4)) in the Hausdorff metric as no — oo. In other words, a given point of Sp,(A)
has at most one point in I',,, ,,, (A) approximating it.

Let Qlil denote the class of bounded normal operators with (known) bounded dispersion with respect
to the function f. Let Qp denote the class of bounded self-adjoint diagonal operators and consider the

following discrete problem (mapping into the discrete space {0, 1})
=2:0L,0p 3 A Is Spy(A) # 0?
An easy corollary of the proof of Theorem|[6.1.T]is as follows.

Corollary 6.1.2. Let =4, Qﬁ and Qp be as above. Then,

AS # (=40 ess, A # (=, 0p) e 24

What happens when we cannot bound the dispersion?

The algorithm constructed for Theorem has limy,, 00 'y ny (A) C Spy(A). But what happens if we
do not know a dispersion function f as in (3.I.1) such that we may not have known bounded dispersion?
To investigate this case, let ¢ denote the class of bounded normal operators with non-empty discrete

spectrum and Q4 the class of bounded normal operators. As the next theorem reveals, we get a jump in the

SCI hierarchy.
Theorem 6.1.3. Let Z¢ and Q¢ be as above. Then,
AF F{e{.0fy enf, A F {5, 05} e T4
The proof shows that, without additional structure, it requires three limits to compute the discrete spec-

trum of self-adjoint matrices or to check if there are any isolated eigenvalues of finite multiplicity.

6.1.2 The spectral gap problem

The question can be formulated in the following way. Let ﬁs A be the set of all bounded below, self-adjoint
operators A on [2(N), for which the linear span of the canonical basis form a core of A (we do not assume

A is bounded above) and such that one of the two following cases occur:
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(1) The minimum of the spectrum, a, is an isolated eigenvalue with multiplicity one.
(2) There is some € > 0 such that [a,a + ¢] C Sp(A4).

[DRAW PICTURE ON BOARD]

In the former case, we say the spectrum is gapped, whereas in the latter we say it is gapless. Note that,
because we have restricted ourselves to the class where either (1) or (2) must hold, our problem is well-
defined as a decision problem. Moreover, this definition is in line with the definitions in [CPGW 15[ and
the physics literature. We also let QD denote the operators in ﬁs A that are diagonal and define the decision

problem (mapping into the discrete space {0, 1})

Egap : SAZSA, Op > A Is the spectrum of A gapped? 6.1.1)
Theorem 6.1.4 (Spectral gap). Let Sgyp, be as in and ﬁs A, Qb as above. Then

Ag ? {Egam@SA} € 2317 Ag 7 {EgapvﬁD} € Ef-

Remark 6.1.5 (Diagonal vs. full matrix). It is worth noting that Theorem shows that there is no
difference in the classification of the spectral gap problem between the set of diagonal matrices and the

collection of full matrices.

The above spectral gap problem can also be extended as follows. Let (Nljsc A denote the class of operators
that are bounded below, self-adjoint, for which the linear span of the canonical basis form a core, and that
have (known) bounded dispersion with respect to the function f. Let a(A) = inf{z : € Sp(4)} and

consider the following four cases
1. a(A) lies in the discrete spectrum and has multiplicity 1,
2. a(A) lies in the discrete spectrum and has multiplicity > 2,
3. a(A) lies in the essential spectrum but is an isolated point of the spectrum,
4. a(A) is a cluster point of Sp(A).

[DRAW PICTURE ON BOARD]
We consider the classification problem =j,ss which maps ﬁé A (or relevant subclasses) to the discrete

space {1,2, 3,4} (with the natural order). We denote by (NZD the class of diagonal operators in ﬁé A

Theorem 6.1.6 (Spectral Classification). Let Zeiass, 2, and Qp be as above. Then

Ag ? {EclaSS7 QJSCA} S H1247 Ag ? {EclassvﬁD} S 1_[124

6.2 Proofs of Theorems on Discrete Spectra

The following are well-known and follow from the ‘min-max’ theorem characterising eigenvalues.

Lemma 6.2.1. Let B € B(I?(N)) be self-adjoint with eigenvalues \1 < )\ < ... (infinitely many, counted
according to multiplicity) below the essential spectrum. Consider the finite section approximates B, =

P,BP, € C" and list the eigenvalues of B,, as pi < p5 < ... < ur. Then the following hold:
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L Aj<pjforj=1,..n
2. forany j € N, p7 | Aj asn — oo (n > j so that ji} makes sense).

Lemma 6.2.2. Let B € B(I?(N)) be self-adjoint with finitely many eigenvalues A1 < lo < ... < A,
(counted according to multiplicity) below the essential spectrum and let o = inf{x : v € Sp.(B)}.
For j > m we set \j = a. Consider the finite section approximates B,, = P, BP, € C" and list the

eigenvalues of By, as pt < py < ... < ur. Then the following hold:
I XNj<pjforj=1,..n
2. forany j <m, pi | Ajasn — oo (n > j so that u; makes sense),
3. given € > 0and k € N, there exists N such that foralln > N, u < a+e.
Exercise: Prove these two lemmas.

Proof of Theorem Step 1: {=¢, Q%1 ¢ AS. Suppose this were false and that there exists some height
one tower I',, solving the problem. Consider the matrix operators A,, = diag{0,0,...,0,2} € C™*™ and
C = diag{0,0, ...} and set
A= diag{1,2} & P A,
m=1
where we choose an increasing sequence k,, inductively as follows. Set k; = 1 and suppose that k1, ..., &,
have been chosen. Sp,(diag{1,2} ® Ax, & Ak, ® ... ® A, ® C) = {1,2} is closed and so there exists

some n,, > m such that if n > n,,, then

dist(2, T, (diag{1,2} ® A, ® ... D Ag,, & C) <

m

. (6.2.1)

RNy

Now let k41 > max{N(diag{1,2} ® Ax, ® ... ® Ak, ® C,n), km + 1}. Arguing as in the proof of
Theorem[3.1.6] it follows that I, (A) = T'y,,, (diag{1,2} & Ay, & ... Ay, ©C). But T, (A) converges
to Spy(A) = {1}, contradicting (6.2.1).

Step 2: {Z¢,Q¢} € ¥2'. We now construct an arithmetic height two tower for Z¢ and the class
Q¢. To do this, we recall that a height two tower fm,m for the essential spectrum of operators in Q%
was constructed in [BACH™20]. For completeness, we write out the algorithm here. Let P, be the usual

projection onto the first n basis elements and set ,, = I — P,. Define

P (A) = min{ainf(Pf(n)(A —2I)

Qum P (12(N)))5 Tint (Prny (A — 2I)[q,. P, 2v)) }
o . s+ it . 2n 2n
GTL .mln{zn.s,tE{Q ,...,2 }},
T (2) =z + {w € C: |Re(w)], [Im(w)| < 27 (M},

We then define the following sets for n > m:

Sman(z) ={j=m+1,...,n:Jw e T, (2) NG, with fi,, ;(w) < 1/m},
Tn(z) ={j=m+1,..n:3w e Y, (2) NG, with pi, ;(w) <1/(m+1)},
Emn(2) = |Smn(2)] + | Tna(2)] = n,

it
Iy = {z S {s;—mz 18t € Z} tEpn(z) > 0} )
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Finally we define for ny > nq

fnz’nl (A) = U T, (2),

zel

ng,n1

and set T, ,, (A) = {1} if n; < ny. Furthermore, the tower has the following desirable properties:

1. For fixed ng, the sequence fnzml (A) is eventually constant as we increase n1,

2. The sets limy,, 00 I'ny n, (A) =: Ty, (A) are nested, converging down to Sp,.(A).

We also need the height one tower, I,,, for the spectrum of operators in Q% discussed in Chapter Note
that T',,(A) is a finite set for all n. For z € I',(z), this also outputs an error control E(n, z) such that
dist(z,Sp(4)) < E(n, z) and such that E(n, z) converges to the true distance to the spectrum uniformly
on compact subsets of C (with the choice of g(x) = z since the operator is normal). We now fit the pieces

together and initially define
Cnann (A) = {2 € Ly (A) = By, 2) < dist(z, Dngyny (4) + Biymy (0))}.

We must show that this defines an arithmetic tower in the sense of Definitions 2.1.1] and Given
z € f‘nl (A) and using Pythagoras’ theorem, along with the fact that fnz,nl (A) consists of finitely many
squares in the complex plane aligned with the real and imaginary axes, we can compute dist(z, f‘nz’nl (A))?
in finitely many arithmetic operations and comparisons. We can compute (E(ny, z) + 1/n2)? and check
if this is less than dist(z, T',,.n, (4))2. Hence C,,.n, (A) can be computed with finitely many arithmetic
operations and comparisons. There are now two cases to consider:

Case 1: Sp,(A)N (T, (A) + B1/n,(0))¢ = (. For large ny, Tpy(A) = Ty, (A) and this set contains
the essential spectrum. It follows, for large ny, since E(ny,z) > dist(z,Tpyn, (4)) forall z € T, (A),
that Cy 1, (4) = 0.

Case 2: Spy(A) N (T, (A) + Bi/n,(0))¢ # 0. In this case, this set is a finite subset of Sp,(A),
{21, s Zm(nz) }» separated from the closed set fn2 (A) + By/n,(0) (we need the +B; y,, (0) for this to
be true to avoid accumulation points of the discrete spectrum). There exists some 6, > 0 such that the
balls Bas,, (2;) for j = 1,...,m(ngy) are pairwise disjoint and such that their union does note intersect
T, (A) + Bi /n,(0).Using the convergence of ', (A) to Sp(A) and E(n, z) > dist(z, Sp(A)), it follows

that for large n; that
m(ns)

<n2,n1(A)C U B5n2(2’j), (6.2.2)
J

el

is non-empty and that (,,,, ,,, (A) converges to Sp;(A) N (T, (A) +B1/n,(0))¢ # () in the Hausdorff metric.

Suppose that ¢, », (A) is non-empty. Recall that we only want one output per eigenvalue in the discrete
spectrum. To do this, we partition the finite set (,, », (4) into equivalence classes as follows. For z,w €
Cnani (A), we say that z ~,, w if there exists a finite sequence z = z1,22,...,2, = W € (uyon, (4)
such that Bp(,, .,)(2;) and Bg(n, -, ,)(2j+1) intersect. The idea is that equivalence classes correspond
to clusters of points in (y,, n, (A). Given any z € (p,.n, (A) we can compute its equivalence class using
finitely many arithmetic operations and comparisons. Let Sy be the set {z} and given S, let S, ;1 be the
union of any w € (y, n, (A) such that By, ) (w) and Bg(,, ) (v) intersect for some v € S,,. Given
Sy, we can compute S, using finitely many arithmetic operations and comparisons. The equivalence

class is any S, where S,, = S, 11 which must happen since (,, n, (4) is finite. We let ®,,, ,,, consist of
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one element of each equivalence class that minimises F/(n1,-) over its respective equivalence class. By
the above comments it is clear that ®,,, ,,, can be computed in finitely many arithmetic operations and
comparisons from the given data. Furthermore, due to which holds for large nq, the separation of
the Bas,,, (2;) and the fact that E(ny, -) converges uniformly on compact subsets to the distance to Sp(A),
it follows that for large n; there is exactly one point in each intersection Bas,, (2;) N ®p, 0, (4). But
we can shrink d,,, and apply the same argument to see that ®,,,, ,,, (A) converges to Sp,(A) N (T, (A) +
B1/y,(0))¢ # 0 in the Hausdorff metric.

Now suppose that ¢y, », (A) is non-empty and z1,22 € @, ,, (A) and both lie in B.(z) for some
z € Spy(A) and € > 0 with Sp(A) N Ba(z) = {z}. It follows that z minimises the distance to the
spectrum from both 21 and zp. Hence, By, -,)(21) and Bg(y, .,)(22) both contain the point z so that
Z1 ~p, Z2. But then at most one of z1, z; can lie in ®,,, ,,, (A) and hence z; = 2.

To finish, we must alter ®,,, ,,, (A) to take care of the case when (,, ,, (4) = 0 and to produce a
¥4 algorithm. In the case that (,,, », (4) = 0, set ®,,, ,, (A) = 0. Let N(A) € N be minimal such that
Spy(A)N(Cn(A)+ By /N (0))¢ # 0 (recall the discrete spectrum is non-empty for our class of operators). If
ng > nq thenset 'y, ,, (A) = {0}, otherwise consider @y, ,,, (A) for ng < k < ny. If all of these are empty
thensetI',,, ,,, (A) = {0}, otherwise choose minimal k with ®y, ,, (A) # @ andlet T, ,,, (A) = Py ,,, (A).
Note that this defines an arithmetic tower of algorithms, with I, ,,, (A) non-empty. By the above case

analysis, for large n; it holds that

Fn27n1 (A) = q)nng(A),nl (A)

and it follows that

lim Fn277ll (A) = Fnz (A) = Spd(A) N (an\/N(A) (A) + Bl/n2VN(A) (O))C

ni—oo

Hence I',,, (A) C Sp,(A) and T',,, (A) converges up to cl (Sp,(A)) in the Hausdorff metric. O

Proof of Corollary[6.1.2) Since Qp C Q, its suffices to show that {24, 04} € ¥4 and {4, Qp} ¢ AG.
Step 1: {Z4,Qp} ¢ AY. The proof is almost identical to step 1 in the proof of Theorem Sup-
pose there exists some height one tower I';, solving the problem. Consider the matrix operators A, =

diag{0,0,...,0,2} € C™*™ and C' = diag{0,0, ...} and set

A= é Ap
m=1

where we choose an increasing sequence k,, inductively as follows. Set k; = 1 and suppose that k1, ..., &,
have been chosen. Sp,(Agk, @ Ag, @ ... ® Ak, & C) = {2} so there exists some n,, > m such that if
n > n,, then

Ip(Ag, @ ...® A, @ C) = 1.

m

Now let k41 > max{N(diag{1,2} ® A, ® ... ® A, ® C,np,), km + 1}. Arguing as in the proof of
Theorem [3.1.6} it follows that ', (A) = Ty, (A, @ ... ® Ak, ® C). But T, (A) converges to 0 as A
has no discrete spectrum and this contradiction finishes this step.

Step 2: {=4, Qf;} € 4" Consider the height two tower, (,,, n,, defined in step 2 of the proof of Theorem
Let A € Qf:r and if G, n, (A) = 0, define p,,, , (A) = 0, otherwise define p,, n, (A) = 1. The
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discussion in the proof of Theorem[6.1.1|shows that

. 0, if Spy(A) N (Tny (A) + Bryn, (0)° =0
nhl)noo Prna,ng (A) = Pny (A) =
! 1,  otherwise.

Since Spy(A) N (T, (A) + By, (0))€ increases to cl (Spy(A)), it follows that limy,, o0 pn, (A) = Z3(A)
and that if p,,,(A) = 1, then Z¢(A) = 1. Hence, p,, », provides a 33 tower for {Z¢, Q@} O

[1]

Proof of Theorem[6.1.3} Step 1: {Z¢,Q¢} ¢ A§. Suppose for a contradiction that T'y,, ,, is a height two
tower solving this problem. For this proof we shall use the decision problem =, from which was proven
in Theorem to have SCls = 3. For convenience, we remind the reader of this decision problem. Let
(M, d) be the discrete space {0,1}, let 2 denote the collection of all infinite matrices {a; ;}i jen With

entries a; ; € {0, 1} and consider the problem function
ég({aL ;1) : Does {a; ;} have only finitely many columns containing only finitely many non-zero entries?

We will gain a contradiction by using the supposed height two tower for {Z¢, Q¢}, T, ., » to solve {2, Q}.
Without loss of generality, identify B({*(N)) with B(X) where X = C* & @2, X in the [*-sense
with X; = I2(N). Now let {a; ;} € Q and for the jth column define B; € B(X) with the following matrix

representation:

M;
D I
r=1

1 1

where if M; is finite then lfwj = oo with A = diag(1,0,0, ...). The I/ are defined such that

> m
zl: B=m+) a;. (6.2.3)
r=1 =1

Define the self-adjoint operator .
A = diag{3,1} & P B;.
j=1
Note that no matter what the choices of 17 are, 3 € Sp,(A) and hence A € Q¢. Note also that the spectrum
of A is contained in {0, 1,2, 3}. If Z5({a; ;}) = 1 then 1 is an isolated eigenvalue of finite multiplicity and
hence in Sp,(A). Butif Z5({a; ;}) = 0 then 1 is an isolated eigenvalue of infinite multiplicity so does not
lie in the discrete spectrum and hence Sp;(A) C {0, 2, 3}.

Consider the intervals J; = [0,1/2], and Jo = [3/4,00). Set iy, = dist(1,T, 0, (A)). Let
k(n2,n1) < nq be maximal such that v, x(A) € J1 U Ja. If no such k exists or cv,, x(A) € Jp then
set T, n,({ai;}) = 1. Otherwise set Ty, ,,, ({a;;}) = 0. It is clear from that this defines a
generalised algorithm. In particular, given N we can evaluate { Ay ; : k,I < N} using only finitely many
evaluations of {a; ;}, where we can use a suitable bijection between bases of I*(N) and C* & ]2, X to
view A as acting on [?(N). The point of the intervals .J1, Jo is that we can show lim,,, o, fnzm ({ai;}) =
Ty, ({a; ;}) exists. If Z5({a; ;}) = 1, then, for large ny, lim,,, o0 n, x(A) < 1/2 and hence it follows

that lim,,, o T'n,({ai;}) = 1. Similarly, if Z5({a;;}) = 0, then, for large ny, we must have that
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lim,,, o0 @y x(A) > 3/4 and hence it follows that lim,,, o, T, ({a;;}) = 0. Hence T',,, ,,, is a height
two tower of general algorithms solving {ég, Q}, a contradiction.

Step 2: {Z=4,Q¢} ¢ A To prove this we can use a slight alteration of the argument in step 1. Replace
X by X =1*(N) ® @;2, X; and A by

A = diag{1,0,2,0,2,..} & P B;.
j=1

It is then clear that Z¢(A) = 1 if and only if Z5({a; ;}) = 1.
Step 3: {=¢,Q¢} € X4. For this we argue similarly to the proof of Theorem step 2. It was
shown in [BACH™20)] that there exists a height three arithmetic tower fng,n%nl for the essential spectrum

of operators in 2 such that

* Each f‘na’nz,m (A) consists of a finite collection of points in the complex plane.

* For large 11, Ty, 0y, (A) is eventually constant and equal to Ty, ., (4).

. f’nsz (A) is increasing with ny with limit r ns (A) containing the essential spectrum. The limit

', (A) is also decreasing with 7.

Furthermore, it was proven in [BACHT20] that for operators in ¢, there exists a height two arithmetic

tower fnzm for computing the spectrum such that
* Ty, (A) is constant for large ;.
« Forany z € I, (A), dist(z, Sp(A)) < 272,

Using these, we initially define

Cns,nz,m(A) ={z¢€ fnz,nl(A> 127 27 <L diSt(Zvrns,nz,m (A))}-

The arguments in the proof of Theorem [6.1.1] show that this can be computed in finitely many arithmetic

operations and comparisons using the relevant evaluation functions. Note that for large n4

Cngnami (A) = {2z € fm (A) 277" =27 < diSt(Z»fns,nz (A))} =t Cngna (A).
There are now two cases to consider (we use D, (z) to denote the open ball of radius 7 about a point 2):
Case 1: Sp,(A) N (T, (A) + Dy—ns(0))¢ = . Suppose, for a contradiction, in this case that there
exists 2y, € (ny,m, (A) with m; — oco. Then, without loss of generality, z,,; — z € Sp(A). We also have
that

dist (2, , Ty m, (A)) > 277 — 27

which implies that dist(z, T, (A)) > 27" and hence z € Spy(A) N (T, (A) + Dy-ns (0))€, the required
contradiction. It follows that (,,, »,(A) is empty for large no.

Case 2: Sp,(A) N (T, (A) + Dy—ns(0))¢ # (. In this case, this set is a finite subset of Sp,(A),
{Z1, .y 5m(n3)}~ Each of these points is an isolated point of the spectrum. It follows that there exists
Zny € Dy (A) with 2, — 21 and |2,,, — 21| < 27" for large ny. Since the T, ,,, (A) are increasing, this
implies that

dist(Zny s Iy ng (4)) > dist(zn,, Ty (4))
> dist(21, T, (4)) — 272 > 27" — 27Nz,
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so that 2, € (ny.n,(A). The same argument holds for points converging to all of {21, ..., Z,,,(n4) }. On the
other hand, the argument used in Case 1 shows that any limit points of (,,, n,(A) as ng — oo are contained

in Spy(A) N (T, (A) + Dy-ns (0))°. Tt follows that in this case C,, ., (A) converges to Spy(A) N (T, (A) +
B1/n,(0))¢ # 0 in the Hausdorff metric as 7y — oco.

Let N(A) € N be minimal such that Sp;(A) N (T 5 (A) + Dy—n~ (0))¢ # () (recall the discrete spectrum
is non-empty for our class of operators). If ng > ng then set 'y, n, n, (A) = {0}, otherwise consider
Chnony (A) for ng < k < ny. If all of these are empty then set ',y 1, », (A) = {0}, otherwise choose
minimal k with (g ny.n, (A) # 0 and let Ty g0, (A) = Chong.ny (4). Note that this defines an arithmetic
tower of algorithms, with I',,, 1, », (A) non-empty. Since we consider finitely many of the sets Cx n, n, (4),
and these are constant for large ny, it follows that I',,, ,,, n, (A) is constant for large n; and constructed in
the same manner with replacing (i .y ny (4) by Ci.ny (A). Call this limit ',y ,,, (A).

For large no,

Lnying (A) = Cng\/N(A),nQ (A)

and it follows that

lim Ty 0, (A) =: Ty (A) = Spy(A) N (Th,vna) (A) + Do—ngvna) (0))°.

Ny —>00
Hence I',,, (A) C Sp,y(A) and T',,, (A) converges up to cl (Sp,(A)) in the Hausdorff metric.
Step 4: {4,049} € ¥4, Consider the height three tower, (5 1, n,» defined in step 3. Let A € Q¢ and
if G npony (A) = 0, define ppy ny 0, (A) = 0, otherwise define py, ny.n, (4) = 1. The discussion in step 3

shows that

0, ifSpy(A) N (Thy(A) + Dyns(0))° =0
m  Hm oy e (A) = ppg (A) = pa(A4) N (L, (A) 9-n3(0))

ng—>00 N1 —>00 .
2 ! 1, otherwise.

Since Sp,(A) N (T, (A) + Dy-ns (0))€ increases to cl (Spy(A)), it follows that lim,,, oo pns (A) = Z4(A)
and that if p,,, (A) = 1, then Z¢(A) = 1. Hence, py; n,.n, provides a ¥4 tower for {=4, Qd}. O

6.3 Proofs of Theorems on the Spectral Gap

Proof of Theorem[6.1.4] Step 1: {Z,,,, Qsa} € 34 Let A € Qga. We can compute all n eigenvalues
of P, AP, to arbitrary precision in finitely many arithmetic operations and comparisons. In the notation
of Lemmas , and (whose analogous results also hold for the possibly unbounded A € ﬁs A)s
consider an approximation

0<lp:=py —py +en, n>2,

where we have computed p} — u7 to accuracy |e,| < 1/n. Recall that for A € Qga we restricted the
class so that either the bottom of the spectrum is in the discrete spectrum with multiplicity one, or there is
a closed interval in the spectrum of positive measure with the bottom of the spectrum as its left end-point.
It follows that I,, converges to zero if and only if Zg.,(A) = 0, otherwise it converges to some positive
number. If n; = 1 thenset Iy, ,, (A) = 1, otherwise consider the following.

Let J; = [0,1/(2n2)] and J?, = (1/ngz,00). Given ny € N, consider [, for k < ny. If no such k
uJ? , and

exists with [, € J} UJ2, thensetT',, », (4) = 0. Otherwise, consider k maximal with [, € J}},

set Ty ny (A) = 0ifly € J), and Ty, (A) = 1if Iy, € J2,. The sequence l,,, — ¢ > 0 for some number
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c. The separation of the intervals J! , and J2 ,» ensures that [,,, cannot be in both intervals infinitely often
as n1 — oo and hence the first limit T',,, (A) := lim,,, 00 [y ., (A) exists. If ¢ = 0, then Iy, (A) = 0 but
if ¢ > 0 then there exists ng with 1/ny < ¢ and hence for large nq, l,,, € J,%z. It follows in this case that
', (A) = 1 and we also see that if I',,, (A) = 1 then =g, (A) = 1. Hence T',,, ,,, provides a ¥4 tower.

Step 2: {Egap, QD} ¢ AS. We argue by contradiction and assume the existence of a height one
tower, I';, converging to Zg,,. The method of proof follows the same lines as before. For every A and n
there exists a finite number N (A, n) € N such that the evaluations from Ar, (A) only take the matrix entries
A;; = (Aej, e;) with i, j < N (A, n) into account. List the rationals in (0, 1) without repetition as d1, da, ...
We consider the operators A,, = diag{di, ds, ...,d,} € C™*™, B,, = diag{1,1,...,1} € C™*™ and
C = diag{1,1,...}. Let

A= @(Bkm @ Ay,,),
m=1

where we choose an increasing sequence k,,, inductively as follows. In what follows, all operators consid-
ered are easily seen to be in Qp.

Set k1 = 1 and suppose that kq, ..., k,, have been chosen with the property that upon defining
Cpi=min{d, : 1 <r <k},

we have (, > (py1 forp =1,....,m — 1. Sp(By, & Ag, & ... ® By,, @ Ag,, @ C) = {d1,da,....dm,, 1}

has (,,, the minimum of its spectrum and an isolated eigenvalue of multiplicity 1, hence
Z(By, ® Ap, ®...® By, ® Ay, ®C) = 1.

It follows that there exists some n,,, > m such that if n > n,,, then
I'(Bg, @ Ag, © ... By, @ A, ®@C) =1.

Now let k1 > max{N (B, ® A, @ ... D By, ® Ag,, ® C,np), km, + 1} with {, > (np1. The same
argument used in the proof of Theorem shows that T, (A) =T, (B, ® Ak, ®...0 By, ® A, &

m

C) = 1. But Sp(A) = [0, 1] is gapless and so must have lim,, (I, (A)) = 0, a contradiction. O

Proof of Theorem[6.1.6] By restricting Op to Qp and composing with the map
p:{1,2,3,4} = {0,1},

p(1) =1, p(2) = p(3) = p(4) = 0, it is clear that Theorem implies {Zcass, KNZJScAh {Zclass, W} ¢
Ag. Since QD - ﬁg A» We need only construct a H‘Q“ tower for {Zclass, ﬁg A}.

Let A € ﬁg A- For a given n, set B,, = P, AP, and in the notation of Lemmas and|6.2.1} let
0<U :=pj, —pt+é, forj <n.

where we again have computed 417, — pf to accuracy |eﬁl‘ < 1/n using only finitely many arithmetic
operations and comparisons. Z.ss(A) = 1 if and only if [} converges to a positive constant as n — oo
and Zjas5(A) = 2 if and only if I} converges to zero as n — oo but there exists j with I convergent to a
positive constant.

Note that we can use the algorithm, denoted I, to compute the spectrum presented in Chapter with

error function denoted by F(n,-) converging uniformly on compact subsets of C to the true error from
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above (again with the choice of g(x) = z since the operator is normal). Setting

an(A) = min {z+ E(n,x)},
$€f7L(A)

we see that a,,(A) > a(A) := inf,cgpa){2} and that a,,(A) — a(A). Now consider
by, (A) = min{E(k,ap(A) +1/no) +1/k: 1 <k <nq}

then by, », (A) is positive and decreasing in n; so converges to some limit b,,, (A).

Lemma 6.3.1. Let A € ﬁgA and cpy ny (A) = E(ny,an, (A) + 1/n2) + 1/nq, then

lim ¢y, (A) =: ¢y, (A) = dist(a + 1/n2, Sp(4)).

ni—o0

Furthermore, if Eclass(A) # 4 then for large ny it follows that ¢, (A) = by, (A) = 1/na.

Proof of Lemmal6.3.1] We know that a,,, (A) + 1/n, converges to a(A) + 1/ny as n; — oco. Furthermore,
dist(z, Sp(A)) is continuous in z and E(nq, z) converges uniformly to dist(z, Sp(A)) on compact subsets
of C. Hence, the limit ¢,,, (A) exists and is equal to dist(a(A) + 1/na, Sp(A4)). It is clear that b, (A4) <
Cny (A). Suppose now that E¢jass(A) # 4, then for large ny, say bigger than some N, and for large enough

na,

E(n1,an, (A) + 1/n2) > dist(an, (A) + 1/n2, Sp(A))
= |an, (4) + 1/n2 — a(A)]
> 1/ng = dist(a(A) + 1/n2, Sp(A4)).

Now choose no large such that the above inequality holds and 1/ne < 1/N. Then by, », (4) > 1/no.
Taking limits finishes the proof. O

If ng > ny then set I'y, », (4) = 1. Otherwise, for 1 < j < no, let k7 be maximal with 1 <

n2,ni

j J 1 2 j : 1 2 :
K}, n, < m1 such that lkﬁ;z,nl € J,, UJy;, if such &/, . exist, where J,,, and J7;, are as in the proof of

Theorem If k), ,, exists with [}, € J2 thenset Iy, (A) = 1. Otherwise, if any of .

ng,n n2,m1
exists with [}, € J2 for2 <m §2 nlg then set I',,, », (A) = 2. Suppose that neither of these two
cases hold. In 2t'hils case compute by, n, (A). If by, ny (A) > 1/n9 then set T, ,, (A) = 3, otherwise set
Tyony (A) = 4. We now must show this provides a IT3' tower solving our problem.

First we show convergence of the first limit. Fix ng and consider n; large. The separation of the
intervals J}l? and wa ensures that each sequence {I7 },,cn cannot visit each interval infinitely often. Since
bn, n, (A) is non-increasing in n1, we also see that the question whether b,,, ,, (4) > 1/n, eventually has a
constant answer. These observations ensure convergence of the first limit I',,, (A) = limy, 00 Ty ny (A4).

If Zc1ass(A) = 1 then for large no, l}Ll must eventually be in J7212 and hence I';,, (A) = 1. Itis also clear
thatif I',,,(A) = 1 then l}h converges to a positive constant, which implies Z¢jas5(A) = 1. If E¢ass(A) = 2
then for large no, l,’fl eventually lies in Jfl , for some 2 < 'm < ng, but l}ll eventually in J}L ,- It follows that

I,(A) =2 IfT',,,(A) = 2, then we know that there exists some "

m convergent to [ > 1/ny and hence

we know Zjas5(A) is either 1 or 2.
Now suppose that Zj.ss(A) = 3, then for fixed ns and any 1 < m < no, l;”l eventually lies in J}Lz and
hence our lowest level of the tower must eventually depend on whether b,,, ,,, (4) > 1/ns. From Lemma

6.3.1] by, (A) = ¢y (A) = 1/ng for large no. It follows that for large na, by, (A) > 1/ny for all ny and
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I, (A) = 3. Furthermore, if I',,,(A) = 3 then we know that ¢,,, (A) > b,,(A) > 1/n9, which implies
Eclass(A) # 4. Finally, note that if E¢j.55(A) = 4 but there exists ny with T',,,(A) # 4 then the above

implies the contradiction Z¢jass(A) # 4. The above imply T',,, ,,, realises the IT3' classification. O

6.4 Numerical Example for Discrete Spectra

Although it is hard to analyse the convergence of a height two tower, we can take advantage of the extra
structure in this problem. The algorithm constructed in Theorem [6.1.1] referred to as DiscreteSpec in
this section, computes I',,, ,,, (A) such that lim,,, oo I’y n, (A) is a finite subset of Sp,(A). Furthermore,
for each z € Sp,(A), there is at most one point in z,, € I'y, », (A) approximating z. We can use the
methods of Chapter[3|(Dist Spec) to gain an error bound of dist(z,, , Sp(A)), which, for large ny, will be
equal to |z — zp, | since z is an isolated point of Sp(A). As we increase ng, more and more of the discrete
spectrum (in general portions nearer the essential spectrum) are approximated.

Our example is the almost Mathieu operator on [?(Z), given by
(HoZ)p = Tp—1 + Tny1 + 2 cos(2mna + v)x,, A = 1 (critical coupling).

The case of A = 1 was studied in Hofstadter’s classic paper [Hof76] (Hofstadter butterfly). The Hamiltonian
represents a crystal electron in a uniform magnetic field, and the spectrum can be interpreted as the allowed
energies of the system. For rational choices of «, the operator is periodic with purely absolutely continuous
spectrum depending on v. For irrational ¢, the spectrum is a Cantor set and does not depend on v. Hence it
follows that there is no discrete spectrum. In general, we cannot work with infinite precision, so approximate
irrational o by rational approximations. We choose to work with v = 0 but found similar results for other

values. To generate a discrete spectrum, we add a perturbation of the potential of the form
V(n) =Va/(In| +1), (6.4.1)

where V,, are independent and uniformly distributed in [—2, 2]. The perturbation is compact so preserves
the essential spectrum, allowing us to test the algorithm. This type of problem is well-studied in the more
general setting of Jacobi operators [[Ies00, HS02], and physically models defects in the crystal.

Figure[6.1| shows a typical result for a realisation of the random potential. The figure shows the output
of finite section and the algorithm of Chapter [3| (with a uniform error bound of 10~2) for computing the
total spectrum. We have also shown the output of DiscreteSpec, which separates the discrete spectrum
from the essential spectrum. For each o we took no large enough (obtained by comparing with the output

of the height two tower for computing the essential spectrum) for expected limit inclusions
I, (A) CSpy(A) C T, (A) + Bo.o1(0). (6.4.2)

Recall that ', (A) C Sp,(A) always holds and taking ns larger caused sharper inclusion bounds on the
right-hand side of (6.4.2). Additionally, we confirmed that (6.4.2) does indeed hold by using the height one
tower to compute the spectrum (Chapter [3) with and without the random potential. Note that it is difficult
to detect spectral pollution when using finite section with the additional perturbation (6.4.1). In contrast,
DiscreteSpec computes the discrete spectrum without spectral pollution and allows us to separate the

discrete spectrum from the essential spectrum.
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Figure 6.1: Top: Output of finite section. Spectral pollution detected by the algorithm of Chapteris shown
as red crosses. Bottom: Output of DiscreteSpec and the splitting into the essential spectrum and the
discrete spectrum. The output captures the discrete spectrum down to a distance ~ 0.01 away from the

essential spectrum, which can be made smaller for larger ns.
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Chapter 7

Geometric Features and Detecting

Finite Section Failure

In this chapter, based on [Colns|], we address certain geometric features of the spectrum. We begin with
some remarks on the finite section method, the most common approach to computing spectra. A highlight of
this chapter is the proof that computing an error flag for finite section is harder than computing the spectrum
itself (the problem solved in Chapter [3). This also settles the problem of computing or detecting gaps in the
essential spectrum of self-adjoint operators, which has received considerable attention in the community.
Furthermore, we classify various types of spectral radii, polynomial operator norms and capacity (which
is useful for the analysis of Krylov numerical methods) in the SCI hierarchy. Even in the simplest case
of computing the usual spectral radius, the only previous computational results are for normal operators
(where the spectral radius is equal to the operator norm). In the non-normal case, this becomes a highly

non-trivial problem, requiring three limits in the general case for the class of bounded operators on (?(N).

7.1 The Finite Section Method and when it fails

To motivate parts of this chapter, we begin with some brief remarks on the finite section method, the
most common approach to approximate spectra (which, while successful for many problems, can also fail
catastrophically). There has been considerable attention towards methods that detect gaps in the essential
spectrum (spectral gaps) and eigenvalues within these gaps for self-adjoint operators [RS78] |K1a80} [Dav98|
7J00, BBGOO!, ICL90, [LS14]. When computing spectra via the finite section method, it is well-known that
spurious eigenvalues (spectral pollution) can occur anywhere within these gaps (see [LS09, Mar10] and
the theorems below). There is a large literature that studies the precise nature of spectral pollution and
possible ways to avoid it. This is an issue in applied areas such as computational chemistry, elasticity, elec-
tromagnetism and hydrodynamics [DG81], [SH84, [LS09, [STY 04, TWP96]||. The computation is often done
with finite element, finite difference or spectral methods by discretising the operator on a suitable finite-
dimensional space, and then using algorithms for finite-dimensional matrix eigenvalue problems on the dis-
cretised operator [Rap77, RSHSPVO97, BBG00, BDG99, BP06, BCJ09, |ABP06, [Zha07, BHPO7, BPW09,
BBG13,ICW13]. Related to this is a more subtle issue, namely, that most numerical methods for eigenvalue

problems come with convergence rates (often with hidden constants) and it is common knowledge that only
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a small portion of numerical eigenvalues are reliable. However, this knowledge is typically only qualitative
rather than quantitative, and it is not clear in general what portion of the computation can be trusted (even
when a method converges) [WT88, Zhal5]. In other words, how do we know that an eigenvalue or portion
of the spectrum is resolved?

To state our theorems in this chapter, we recall the definition of the essential numerical range:

We(A)= [ d(W(A+K)),
K compact
where W (A) = {(Az, ) : ||z|| = 1} is the usual numerical range. If A is hyponormal (A*A — AA* > 0)

then W, (A) is the convex hull of the essential spectrum [Sal72]]. We also recall two theorems:

Theorem 7.1.1 ([Pok79]). Let A € B(H) and {P,} be a sequence of finite-dimensional projections con-
verging strongly to the identity. Suppose that S C W,(A). Then there exists a sequence {Q,} of finite-

dimensional projections such that P,, < Q.,, (so Q, — I strongly) and
du(Sp(A,) U S,Sp(A,)) =0, n— oo,

where

An = PnA|PnH’ An = QnAlQnH

and dy denotes the Hausdorff distance.

Theorem 7.1.2 ([Pok79]). Let A € B(H) and {P,} be a sequence of finite-dimensional projections con-
verging strongly to the identity. If A ¢ W,(A) then A € Sp(A) if and only if

dist(A, Sp(P,Alp, %)) — 0, n — oo.

These theorems say that the failure of the finite section method is confined to the essential numerical
range and can be arbitrarily bad on WE(A)\Sp(A) This is one of the key results motivating the quest for
an algorithm that detects gaps in the essential spectrum of self-adjoint operators (in this case, these gaps

correspond exactly to W, (A)\Sp(A)).

7.2 The Set-up

Throughout this chapter and the next, A will be a bounded operator on [?(N) realised as a matrix with
respect to the canonical basis. By a choice of basis we can, as in previous chapters, deal with arbitrary
separable Hilbert spaces.

There are two basic natural sets of information that we allow our algorithms to read when computing
spectral properties of A. The first is the set of evaluation functions A; consisting of the family of all
functions le j: A — (Aej,e;), 1,7 € N, which provide the entries of the matrix representation of A with
respect to the canonical basis {e; };cn. The second, which we denote by As, is the family A; together with
all functions f7; : A — (Aej, Ae;) and f; : A — (A*ej, A*e;), i,j € N, which provide the entries
of the matrix representation of A*A and AA* with respect to the canonical basis {e;};en. In general,

the classification of a computational problem in the SCI hierarchy depends on the evaluation set A. We

'In the non-normal case it is possible for finite section to not capture all of the spectrum - parts of the spectrum may be unattainable.
This is distinct from spectral pollution. Theorem says that, up to a different choice of projections, this can be avoided on We (A).
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have included As in these two chapters since it is natural for problems posed in variational form. When
considering classes with functions f (and {c,}) and g as in and (3.1.2), we will add these to the
relevant evaluation set and, with the usual abuse of notation, still use the notation A;. A small selection
of the problems also require additional information, such as when testing if a set intersects a spectral set.

However, any changes to A; will be pointed out where appropriate.

7.3 Main Results

7.3.1 Spectral radii, operator norms and capacity of spectrum

The spectral radius r(A) of a bounded operator A is the supremum of the absolute values of member of
the spectrum (which is attained). Let {2 denote the class of normal operators in {25 and {2p denote the
self-adjoint diagonal operators in {2y. We also denote by €2 the class of operators in Q0 with dispersion
bounded by f (see . Let g : Ry — R be an increasing function such that g maps [0, co) onto itself

continuously and strictly monotonously. Let £, be the class of bounded operators with
IR(z, A)[ 7" 2 g(dist(z, Sp(A))), (73.1)

for z € C. Note that such a g is always guaranteed to exist, however, the classification in the SCI hierarchy
depends on whether one knows an estimate for g or not. For example, in the self-adjoint and normal cases
g(x) = x is the trivial choice of g. Operators with g(x) = x are known as G in the operator theory
literature and include the well-studied class of hyponormal operators [Put79]. It is known that if A is G
then: if Sp(A) is real then A is self-adjoint [Nie62], if Sp(A) is contained in the unit circle then A is unitary
[Don63], and if Sp(A) is finite then A is normal [Sta65]).

We let Z,.(A) := r(A). Our proofs show that the computational problem of the operator norm or
numerical radius of any A € Qg lies in 21'. Hence we can easily get an upper bound (that may not be sharp)
for 2, (A) in one limit. If an operator lies in Q4 with g(x) = =z, then it is well-known that the convex hull of
the spectrum is equal to the closure of the numerical range (the operator is convexoid) [Orl64] and hence the
computational problem lies in ¥4'. One might expect that the computation of =,.(A) is strictly easier than
that of the spectrum, particularly in light of Gelfand’s famous formula Z,.(A4) = lim,,_, « || A™|| . However,
the following shows that this intuition is false in general, and only occurs if an operator is convexoid.
Controlling the resolvent via a function g as in (7.3.T)) makes the problem easier than the general g, but is

not sufficient to reduce the SCI of the problem to 1.

Theorem 7.3.1. Let g : Ry — R be a strictly increasing, continuous function that vanishes only at 0 with

lim, 00 g(x) = 00. Suppose also that for some § € (0, 1) it holds that g(x) < (1 — 0)x. Then:

A {2, Qp, A} € B2, AS # {2, O, A} € 22, AF F{Z,,0,NQ, A} € 21,
AS #{E,, 9y, A1} € 5, AS #{E,, Qp, A} €103, A§ #{E,,Qp, A1} € 115
When considering the evaluation set Ao, the only changes are the following classifications:
AF F{E,,Q4, A2} € 27, AS #{E,,Qp, Ay} € TI2.
Next, we consider the essential spectral radius. Define the essential spectrum of A € (g as

SPess(A) = () Sp(4+ B),
BeQc
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where ()¢ denotes the class of compact operators. The essential spectral radius, Z.,.(A), is simply the

supremum of the absolute values over Sp,..(A).
Theorem 7.3.2. We have the following classifications for i = 1, 2:
A§ # {Eer, O, Ai} € 115, AF # {Zer, O, Ai} € 115, AY F{Eer, O, Ai} € 115
For general operators,
AS F {Zer, OB, A1} € T, AS F {E.,, O, Ap} € TTE.

As two final problems in this section, given a polynomial p (of degree at least two), we consider the

problem of computing =, , = ||p(A)| and the capacity of the spectrum defined by

Ecap(A) = inf Ip(A)l 1/deg(p),

monic polynomial p
Operators with Z.,,(A) = 0 are known as quasialgebraic, and a theorem of Halmos shows that this defi-
nition of capacity agrees with the usual potential-theoretic definition of capacity of the set Sp(A) [Hal71].
This quantity is of particular interest in Krylov methods where, for instance, it is related to the speed of
convergenceﬂ [Nev93l INev93l. Vaguely speaking, the capacity is a measure of the size of Sp(A) (a mea-
sure of its ability to hold electrical charge as opposed to volume). We will also see some other measures of

size in Chapter when considering the Lebesgue measure and fractal dimensions of Sp(A).
Theorem 7.3.3. We have the following classifications for i = 1,2 and Q=0p,Q £

AIG % {ET,[)a Q7AZ} € Zf’ Ag % {ECapa Q7AZ} € 1_[124
Whereas for Q0 = Qx, Qg or Qp:

AS F{Z0p, QA } € 54, AS # {Beap, U A} € 114
A? % {ET,%Q,AQ} € 2147 AQG % {ECG%Q’AQ} S 1_[124

7.3.2 Gaps in essential spectra and detecting algorithm failure for finite section

We will show that detecting whether spectral pollution can occur is strictly harder than computing the
spectrum for self-adjoint operators. In other words, detecting the failure of the finite section method is
strictly harder than the problem it was designed to solve!

Let 2,6 (A) = W, (A). For a given open set U in F (F being C or R), let o be the decision problem

gy b N T ANSA) 0
—poll ’ -

0, otherwise.
Egol , decides whether spectral pollution can occur on the closed set cl (U), which is assumed to have non-
empty interior. For the self-adjoint case (where ' = R), this is equivalent to asking whether there exists
a point in the open set U which also lies in a gap of the essential spectrum. To incorporate U into A;, we
allow access to a countable number of open balls {U,, },,eny whose union is U. If F is R then each U,, is
of the form (@, by, ) With @y, by, € QU {£00}, whereas if F is C then each U,,, is equal to D, (zy,) (the
open ball of radius 7, centred at z,,,) with r,,, € Q4 and z,,, € Q + Q. We add pointwise evaluations of

{(am,bm)} or {(rm, zm)} to A;. Let Qga denote the class of bounded self-adjoint operators.

2This is an idealisation since the capacity studies operator norms while true Krylov processes look at p(A)x with one or several
vectors . However, from local spectral theory (e.g. [M92])) it follows that generically the asymptotic speeds are the same.
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Theorem 7.3.4. Let Q = Qn, Qsa or Qp and let i = 1,2. Then
AY #F {Epe, A} € TIE

Furthermore, for i = 1, 2 the following classifications hold, valid also if we restrict to the case U = U; or

toU=U; =F:

A§ F{EE, Qsa, A} € 24, A§ F{Z5,0, 0, A} € B4

Remark 7.3.5. One can show that {Sp(-), Qsa, A1} € ¥4 and {Sp(-), Qsa, A2} € B4 Hence determin-
ing E;lfol | is strictly harder than the spectral computational problem and requires two extra limits if A = Ao.
Even in the general case, {Sp(-),Qp, A2} € TI3' and hence the spectral problem is strictly easier. The

proofs also make clear that we get the same classification of Egol L for other classes such as ), € etc.

7.4 Proofs of Theorems in §7.3.1!

We begin with the proof of Theorem dealing with the evaluation set A; first. Suppose that fn A
isa H? tower of algorithms to compute the spectrum of a class of operators, where the output is a finite set

for each nq, ..., ng. It is then clear that

Lopeceina (A) = _ sup 2] +

provides a Hﬁ tower of algorithms for the spectral radius. Strictly speaking, the above may not be an
arithmetic tower owing to the absolute value. But it can be approximated to arbitrary precision (from above
say), the error of which can be absorbed in the first limit. In what follows, we always assume this is done
without further comment. Similarly if f‘nk ....,n, brovides a Ef tower of algorithms for the spectrum (output

a finite set for each n1, ..., ng),

1
Lopeeeina (A) = _ Sup |2 = onk
2€0n, ... ,nq (A)

provides a Z? tower of algorithms for the spectral radius. If we only have a height k£ tower with no X, or
II}, type error control for the spectrum, then taking the supremum of absolute values shows we get a height
k tower for the spectral radius.

The fact that {=,, Qp} € 2, {Z,,Q,NQ,} € 24, {5,,Q,} € 25, {Z,,9Q,} € I and {Z,, 0B} €
114 hence follow from Chapter and the results of [BACHT20]. It is clear that {Z,, Qp} ¢ A and this
also shows that {Z,, In} ¢ A¥ and {Z,,Q7 N Q,} & AF. Hence, we must show the positive result that
{Z,,0x} € 24! and prove the lower bounds {Z,.,Q,} ¢ AS, {Z,,Q;} ¢ A and {E,,Qp} ¢ A.

Proof of Theorem for A1. Throughout this proof we use the evaluation set A; (dropped from notation
for convenience).
Step 1: {=,,Qn} € ©4. Recall that the spectral radius of a normal operator A € Qg is equal to its

operator norm. Consider the finite section matrices P, AP,, € C"*™. It is straightforward to show that
| P AR, || 1Al asn — oco.

The norm || P, AP, || is the square root of the largest eigenvalue of the semi-positive definite self-adjoint
matrix (P, AP,)*(P,AP,). This can be estimated from below to an accuracy of 1/n, which then yields a
¥4 algorithm for {=,., Qn}.
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Step 2: {Z,,Q,} ¢ AY. Recall that we assumed the existence of a§ € (0, 1) such that g(x) < (1—8)z.

Let e > 0, then it is easy to see that the matrices

have norm bounded by 1 + € + €2 and are clearly inverse of each other. Choose ¢ small such that (1 + € +
)2 < 1/(1 = 9). If B € C**2 is normal, it follows that B := S, (¢)BS_ (€) lies in 2, and has the same

spectrum as B. We choose

The crucial property of B is that the first entry 14€2 is strictly greater in magnitude than the two eigenvalues
(1£v1+4e?)/2.
Now suppose for a contradiction that a height one tower, I';,, solves the problem. We will gain a

contradiction by showing that I',,(A) does not converge for an operator of the form,

1+¢? —€
A=PA,, A= e Ccmxm,
r=1

63 —62

where we only consider I, > 3. Each A,, is unitarily equivalent to the matrix B @®0 € C™™ and has
spectrum equal to {0, (1 + /1 4 4€?)/2}. Any A of the above form is unitarily equivalent to a direct sum
of an infinite number of B’s and the zero operator and hence lies in €0,. Now suppose that I1, ..., [}, have

been chosen and consider the operator
Bry=4,®..0 A4, ®C, C=dag{l+é0,..}.

The spectrum of By, is {0, (1 £ /1 + 4€2)/2,1 + €2} and hence there exist 7 > 0 and n(k) > k such that
Lok)(Br) > (14+v/1 + 4€%) /2+n. But T',, (1) (By,) can only depend on the evaluations of the matrix entries
{By}ij = (Brej,e;) with i, j < N(By,n(k)) (as well as evaluations of the function g) into account. If
we choose ly11 > N(By,n(k)) then by the assumptions in Definition 2.1.1} T,y (A) = T'yx)(Bx) >
(1414 4€2)/2 +n. But T',,(A) must converge to (1 + /1 + 4€2)/2, a contradiction.

Step 3: {Z,,Q;} ¢ AS. Suppose for a contradiction that a height one tower, I',,, solves the problem.

We will gain a contradiction by showing that I';,(A) does not converge for an operator of the form,

01
0 1
A=Pa, oA, A,:= e Cm™*m O, = diag{0,0,...,0} € C™*",
r=1

1
0

where we assume that [,. > r to ensure that the spectrum of A is equal to the unit disc B (0). Note that the

function f(n) = n + 1 will do for the bounded dispersion with ¢,, = 0. Now suppose that [y, ..., [, have
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been chosen and consider the operator
Br=(C,®A,)®..e(C,oA,)aC, C=dag0,0,..}.

The spectrum of By, is {0} and hence there exists n(k) > k such that I',, 1y (By) < 1/4. But I';, (1) (Bg ) can
only depend on the evaluations of the matrix entries { By, }i; = (Bge;, €;) with ¢, j < N(By,n(k)) (as well
as evaluations of the function f) into account. If we choose lx1 > N(By,n(k)) then by the assumptions
in Deﬁnition Ly (A) = Ty (Br) < 1/4. But I',, (A) must converge to 1, a contradiction.

Step 4: {=,,Qp} ¢ A§. Suppose as a contradiction that T',,, ,,, is a height two (general) tower and
without loss of generality assume it to be non-negative. Let (M, d) be the space [0, 1] with the usual
metric, let ) denote the collection of all infinite matrices {a; ;}; jen with entries a; ; € {0,1} and recall

the problem function
=1({aij}) : Does {a; ;} have a column containing infinitely many non-zero entries?

It was shown in Theorem that SCI(él7 Q)G = 3. We will gain a contradiction by using the supposed
height two tower to solve {Z;, Q}.

Without loss of generality, identify Qp with B(X) where X = JZ, X in the [%-sense with X; =
I2(N). Now let {a; ;} € € and define B; € B(X;) with the matrix representation

1, ifk=dandag; =0
(Bj)ki =41, ifk<ianda;; =0fork < <i
0, otherwise 0 <n < 1.

Let Z; be the index set of all ¢ where a; ; = 1. B; acts as a unilateral shift on cl (span) {ej : k € Z;} and

the identity on its orthogonal complement. It follows that

1, ifZ; =0

Sp(B;) = 1 {0, 1}, if Z; is finite and non-empty

D (the unitdisc), if Z; is infinite.
For the matrix {a; ;} define A € Qg by
= 1
A:j@(Bj—Qlj),

where I; denotes the identity operator on C7*7, then Sp(A) = cl (U;’;ISp(Bj)) -1
Hence we see that
, it E1({aig}) =0
. ifE1({ai,}) = 1.

We then set Ty, ., ({@;;}) = min{max{T',, ,,, (A) — 1/2,0},1}. It is clear that this defines a generalised

Dl Nl

algorithm mapping into [0, 1]. In particular, given N we can evaluate { Ay ; : k,I < N} using only finitely
many evaluations of {a; ;}, where we can use a bijection between canonical bases of I*(N) and @7, X;

to view A as acting on [?(N). But then T',,, ,,, provides a height two tower for {=;,Q}, a contradiction. [

Proof of Theorem for A5. Here we prove the changes for =,. when we consider the evaluation set As.

It is clear that the classifications in X7 do not change. It is also easy to use the algorithms in Chapter
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(now using As to collapse the first limit and approximate +,,) to prove {Z,,Q,, A2} € 4. Similarly we
can use the algorithm for the spectrum of operators in €2y for Qg using A, to collapse the first limit and
hence {Z,, Qp, A2} € T4, Since Qf C O, it follows that we only need to prove {Z,,Q;, A2} ¢ AF.
This is proven using the same example and a similar argument to step 3 of the proof of Theorem([7.3.1 O

Proof of Theorem[7.3.2] We begin by proving the results for A;. For the lower bounds, it is enough to
show that {=Z.,,Op, A1} € AS and {Z.,,Qp,A;} € A§. For the upper bounds, we must show that
{Eer, Qp, A1} € I3, {Z., 08, A1} € 1’[‘34 and {Z.,,Qn, A1} € 114 The lower bounds for A, follow
from {Z.,, Qp, A1} ¢ AS and for the upper bounds it is enough to prove {=.,, g, Ay} € 14

Step 1: {Z..,0p, A1} ¢ AS. This is the same argument as in step 3 of the proof of Theorem
however now we replace A,, by 4,, = diag{1,1,...,1} € C™*™ and use the fact that =.,.(By) = 0. It
follows that given the proposed height one tower I',, and the constructed A, Z.,.(A) = 1 but '3,y (A) <
1/4, the required contradiction.

Step 2: {Z.,, 0, A1} € AS. This is the same argument as step 4 of the proof of Theoremm

Step 3: {Z.,,Qp, A1} € 14, {Z.,, Op, A1} € 114 and {Z.,, Qp, Ao} € 1T {E,,,Qp, Ay} € 115
follows immediately from the existence of a IT4' tower of algorithms for the essential spectrum of operators
in Qy proven in [BACH'20]. The output of this tower is a finite collection of rectangles with complex
rational vertices, hence we can gain an approximation of the maximum absolute value over this output to any
given precision. This can be used to construct a IT3' tower for {Z,., 2 7, A1}, Similarly, {E.,, Qg, A1} €
114 follows from the IT4 tower of algorithms for {Sp,.s, 5, A1} constructed in [BACHT20]. Finally, we
can use Ay to collapse the first limit of the algorithm for the essential spectrum in [BACHT20], giving a
I14' algorithm and this can be used to show {Z.,., O, Ay} € T4

Step 4: {Z.,, On, A1} € T3, ATI4 tower is constructed in the proof of Theoremfor the essential
numerical range, W, (A), of normal operators (using A1) and this outputs a finite collection of points. For
normal operators A, W, (A) is the convex hull of the essential spectrum and hence SUpP e, (4) |z| is equal
to Z.,(A). Hence a 14 tower for {Z.,., Qn, A1} follows by taking the maximum absolute value over the

tower for W, (A). O

Proof of Theorem Some general remarks are in order to simplify the proof. First, note that given
a height £ arithmetical tower fnknl(,p) for Z,, and a class ', we can build a H?—H tower for

{Ecap, ¥} as follows. Let p1,pe, ... be an enumeration of the monic polynomials with rational coeffi-
1/deg(p)

cients and fmﬁ_,’m (,p) be an approximation to fnk,...,m (,p to accuracy 1/n4 using finitely
many arithmetic operations and comparisons. Define
Fnk+17-~~;n1 (A) = min F’ﬂk,m”ﬂl (A7pm)'

1<m<ng
The fact that this is a convergent H‘,;‘ 1 tower is clear. This, together with inclusions of the considered
classes of operators, means that to prove the positive results we only need to prove {Z,.,,Qr, A1} € a4,
{Z0p, OB, A1} € 24 and {Z,,, 0B, A2} € %4 Likewise, for the negative results we only need to
prove {Zcap, Op, Ao} & AS (the fact that {Erp:; O, A2} ¢ A§ is obvious), {Ecap, N, A1} & AgG and
{Z,,Ox, A2} & AF. We shall prove these results with Qx replaced by the class of self-adjoint bounded

operators denoted by 254 .

Remark 7.4.1 (Efficiently computing the capacity). Listing the monic polynomials with rational coeffi-

cients in the above proof is very inefficient. In practice, it is much better to split the domain of interest into
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intervals (or squares if in the complex plane, but we stick to the self-adjoint case in the following discus-
sion). Suppose that each interval has dyadic endpoints and a diameter of 27 ™2 and that our operator is
self-adjoint with known bounded dispersion. One can then apply Lemma (denoting the index of that
tower by n1) to obtain an interval covering of the spectrum which will converge as ny — 0o, modulo the
possibility of isolated points of the spectrum located at the endpoints of the intervals. Since the capacity of
a compact set is unaltered by adding finitely many points, we do not have to worry about the endpoints -
the limit of the capacity of this covering as nqy — oo will be the capacity of a covering of the spectrum. As
ng — 00, we can use the fact that capacity is right-continuous as a set function (for compact sets E,,, I/
with E,, | E, one has cap(E,,) | cap(F)) to obtain a 113\ algorithm. The point of this is that it reduces
the computation of the resulting tower I',,, ,,, to computing the capacity of finite unions of disjoint closed
intervals in R. In our numerical example, we made use of the method in [LSNI17|], which uses conformal

mappings and can deal with thousands of intervals.

Step 1: {Z,,,Qf, A1} € ¥¢. The function f and sequence {c,} allows us to compute the matrix
elements of p(A) for any A € Qy and polynomial p to arbitrary accuracy. We can then use the same
argument as step 1 of the proof of Theorem|[7.3.1] approximating || P, p(A) P, || instead of || P, AP,

Step 2: {=,.,,, 0, A1} € ¥4 and {Z,,, Op, A2} € 2. For the first result, we note that

rrlgnoo HPnp(PmAPm)PnH = HP”p(A)Pn”

and let I'), ,,, (A, p) be an approximation of || P,p(P,, AP,,)P,|| to accuracy 1/m, which can be computed
in finitely many arithmetic operations and comparisons. To prove {Z, ,, 5, A2} € >4, for any given
A € Qp we can use A, to compute a function f4 and sequence {c,,(A)} bounding the dispersion such that
A € QF4 and use step 1.

Step 3: {Zcap, Qsa, A1} ¢ AF. Suppose as a contradiction that Ty, ,,, is a height two (general) tower
for the problem and without loss of generality, assume it to be non-negative. Our strategy will be as in the
proof of Theorem Let (M, d) be the space [0, 1] with the usual metric, let  denote the collection of

all infinite matrices {a; ;}; jen with entries a; ; € {0, 1} and consider the problem function
Z2({ai;}) : Does {a; ;} have (only) finitely many columns with (only) finitely many 1’s?

Recall that it was shown in Theorem that SCI(Z5, Q)¢ = 3. We will gain a contradiction by using
the supposed height two tower to solve {ég, Q} Without loss of generality, identify g5 with self adjoint
operators in B(X) where X = @JZ, X; in the [?-sense with X; = [?(N). To proceed we need the

following elementary lemma, which will be useful in constructing examples of spectral pollution.

Lemma 7.4.2. Let z1, 22, ...,2; € [—1,1] and let a; = /1 — ZJQ (say positive square root). Then the
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symmetric matrix

z 0 - ay 0
0 Z9 0 R 0 as 0
0 0
zZ a
B(zl,...,zk) = k k c (C2k><2k
al O CEEEEY 72:1 O ...
0 as 0 0 —Z9 0
0 0
ag —Zk

has eigenvalues £1 (repeated k times).

Proof. By a change of basis, the above matrix is equivalent to a block diagonal matrix with blocks

These blocks have eigenvalues {—1,1}. O

Now choose a sequence of rational numbers {z;},en € [—1,1] that is also dense in [—1,1] and let
B;j = B(z1,...,2;). For each column of a given {a; ;} € Q, let the infinite matrix C/) be defined as
follows. If k,1 < j + 1 then C,g) = 23,05;. Let (¢) denote the row of the ith one of the column {a; ; }ien
(with (i) = 00 if ), ap; < iand7(0) = 0). If r(i) < oo then for k < [ define

aplri—(r(iy—r(i-1)—1)s P =1, yl=r(@)+j-(2i—1)+p—1
o) — —2p0k,1, p=1,jl=r()+j (2i—1)+p—1

2pOk1; p=1y gl =r()+2j-i+p—1

0, otherwise,

and extend C,g ) below the diagonal to a symmetric matrix. The key property of this matrix is that if
the column {a; ; };cn has infinitely many 1s, then its is unitarily equivalent to an infinite direct sum of
infinitely many B; together with the zero operator acting on some subspace (whose dimension is equal to
the number of zeros in the column). In this case Sp(C'¥)) = {—1,1,0} or {—1,1}. On the other hand,
if {a; j}ien has finitely many 1s, then C () is unitarily equivalent the direct sum of a finite number of
B, the diagonal operator diag{z1,...,z;} and the zero operator acting on some subspace. In this case
{2152} CSp(CY)). Let A = @, C'), then it is clear that if Z5({a; ;}) = 1, then Sp(A) is a finite
set, otherwise it is the entire interval [—1, 1].

Now we use the following facts for bounded self-adjoint operators A. If Sp(A) is a finite set then
Ecap(A) = 0 whereas if Sp(A) = [—1, 1] then E.,,(A) = 1/2 (this can be proven easily using the minimal
{°° norm property of monic Chebyshev polynomials). We then define f‘w,nl ({ai;}) = min{max{1 —
2T, ny (A),0},1}. Tt is clear that this defines a generalised algorithm. In particular, given N we can

evaluate {Ay; : k,I < N} using only finitely many evaluations of {a; ;}, where we can use a bijection
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between canonical bases of 2(N) and @;‘;1 X to view A as acting on [*(N). We also have the convergence
limy,, 00 limy, 00 Ty ny ({@4,5}) = E2({as,5}), a contradiction.

Step 4: {Z.qp, Op, A2} & AY. This is the same argument as in step 3 of the proof of Theorem
however now we replace A,, by A,, = diag{ds,ds, ...,d,} € C™*™, where {d,,} is a dense subsequence
of [—1, 1], and use the fact that =.,,(B) = 0. It follows that given the proposed height one tower I',, and
the constructed A, Z.4p(A) = 1/2 but I';, (1) (A) < 1/4, the required contradiction.

Step 5: {Z,,,Qsa, A2} ¢ AF. Recall that we are given some polynomial p of degree at least two.
We assume without loss of generality that the zeros of p are =1 and |p(0)| > 1 (the more general case is
similar). The argument is similar to step 3 of the proof of Theorem but we spell it out since it uses
Lemma|[7.4.2] Suppose for a contradiction that a height one tower, I',,, solves the problem. We will gain a

contradiction by showing that T',,(A) does not converge for an operator of the form,

A= @B(zl, o 21,
r=1

and define

C = diag{z1, 2o, ...} € Op.

Where we assume that [, > r to ensure that the spectrum of A is equal to {—1,1} and hence =, ,(4) = 0.

Now suppose that Iy, ..., [ have been chosen and consider the operator
By =B(z1)® ... ® B(z1, ..., z1,,) ® C.

The spectrum of By, is [~1,1] so that =, ,(By) > 1 and hence there exists n(k) > k such that ', ;) (By) >
1/4. But I'y(;)(Bg) can only depend on the evaluations of the matrix entries {By}i; = (Brej,e;)
with 4,5 < N(By,n(k)) (as well as evaluations of the function f) into account. If we choose l4; >
N (B}, n(k)) then by the assumptions in Definition2.1.1} T',, (x)(A) = T,y (Bx) > 1/4. But I';,(A) must

converge to 0, a contradiction. O

7.5 Proof of Theorem

Proof of Theorem for Z,c. For the lower bounds, it is enough to note that {Z,.., 0p, A2} ¢ AF
by the same argument as step 1 of the proof of Theorem The construction is exactly the same but
yields dy (I ) (A), {0}) < 1/2, whereas Z,,(A) = [0, 1]. Hence the proposed height one tower cannot

converge. To construct a IT4' tower for general operators, we need the following Lemma:

Lemma 7.5.1. Let B € C"*™ and € > 0. Then using finitely many arithmetic operations and comparisons,

we can compute points z1, ..., 2z, € Q + iQ such that
du({z1, .., 21}, W(B)) <e.

Proof. Recall from step 1 of the proof of Theorem that we can compute an upper bound M € Q.
for || B|| in finitely many arithmetic operations and comparisons. Now choose points z1, ...,z € Q7,
each of norm at most 1, such that dg({z1,...,zx},{x € C" : ||z|]| = 1}) < ¢/(3M). These can be
computed in finitely many arithmetic operations and comparisons using generalised polar coordinates and

approximations of trigonometric identities. It follows that

du({{(Bz1, 1), ..., (Bxg, k) }, W(B)) < 2¢/3.
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We then let each z; € Q + iQ be a €/4 approximation of (Bz;, x;), which can be computed in finitely

many arithmetic operations and comparisons. O

Remark 7.5.2 (Efficient computation). In practice, there are much more efficient methods of computation.
For example, the method of Johnson [Joh78|], reduces the computation of W (B) for B € C™*™ to a series

of n X n Hermitian eigenvalue problems.
It is well-known that for A € Qg,
cl (W(PnA Pn'H)) T cl (W(A)) )
Cl (W((I — Pn)A|(I—Pn)H)) \I, We(A)

Given A, letT',,, ,,, (A) be a finite collection of points produced by the algorithm in Lemma applied to
B = (I — Pp,)Pny+n,+14lp, 4,41 (1-P,,)n and € = 1/n1. The above limits show that I',, ,,, provides
a I13' tower for {=.,, O, A1 }. O

Proof of Theorem for EF ;- We will prove that {ZF ,, Qp, A;} ¢ A and {25, 05, A1} € T3
The construction of towers for E;lfol , are similar, as are the arguments for lower bounds.

Step 1: {Z5,,,, 05, A1} € 33, Let Ty, .n, be the TT2' tower for {Z,,., g, A} constructed above. Let

Ynayni (25 A) = min{oing (P, (A — ZI)‘PnQH)a Tint (Pp, (A" — 21)‘&,27{)}

and note that this can be approximated to any given accuracy in finitely many arithmetic operations and
comparisons. We assume that we approximate from below to an accuracy of 1/n; and call this approxi-
mation 4y, »,. The function v, », (z; A) is Lipschitz continuous with Lipschitz constant bounded by 1.
Define the set -
Voo = | Un,
m=1
where U, are the approximations to the open set U. By taking squares of distances to ball centres, we can
decide whether a point z € Q + iQ has dist(z, V,,,) < n for any given n € Q4. Let T, », (4, U) be the
finite collection of all z € T,,, ,,, (A) with dist(z, V,,,) < 1/ng — 1/ny. If T,y 0, (A, U) is empty then set
Qny.n, (A, U) = 0, otherwise set
Qnyny (A,0) = sup Ay (23 A) — i
2€Tny,n, (AU) n
The above remarks show that this can be computed using finitely many arithmetic operations and compar-
isons.
For notational convenience, we let W,,, = cl (W((I — PnQ)A|(1,pn2)H)> and also let Wy, ,, =
W((I = Po,)Prytna+14lP, 1y i1 (1- P,y )n)- We claim that the set Yo, 1, (4, U) converges to
T, (A U) :=cl <{z € Wy, :dist (2,c1 (U)) < nlg}) ,
as n; — oo, meaning also if Y,,,(A,U) is empty then Y, ,,, (A,U) is empty for large ny. If z €
T, 0, (A, U), then there exists 2 € Wy, ,, C W, with |z — 2| < 1/n4. Since

dist (z,cl(U)) < dist(z, Vy,,) < 1/ng — 1/ny,

it follows that dist (2,¢l (U)) < 1/ng and hence Y,,,(A,U) is non-empty. So to prove convergence we

only need to deal with the case T,,,(A,U) # (. The above argument also shows that any limit point of a
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subsequence z,,(;) € Y, m(j)(A,U) must lie in T, (A, U). Hence to prove the claim, we need to only
prove that for any z € T,,,(A,U), there exists z,, that are contained in Y, ,,, (A, U) for large n; and
converge to z.

Let z € W, with dist (z,cl(U)) < 1/ng, then there exists ¢ > 0 and j > 0 such that dist(z, U;) <

1/ny — €. There also exists z,, € [n,.n, (A) with z,, — 2. It must hold for n; > j that

dist(2p,, Vi, ) < dist(2zn,, Vj) < |20, — 2| +dist(z,U;)
1
<|zn, — 2|+ — —e
T2
This last quantity is smaller than 1/ny — 1/n; for large ny and hence z,, € Ty, n, (4,U) for large ny.
It follows for any z € T,,(A,U), there exists z,, that are contained in Y, ,, (4, U) for large n; and
converge to z.

Define

an (A7 U) = sup Tna (Z; A),
2T, (AU)

where we recall that v,,, (2; A) = min{oine (A —21)|p,, 1), Oint (A" = 21)|p,, %)} If 2 € T, 0, (A, U),
then the above shows that there exists 2 € T, (A4, U) with |z — 2| < 1/n4. It follows that

1
Tna,nq (ZvA) - — < Yna,nq (Z,A) -
< Yngyna (25 A) < vy (25 4),

where we have used the bound on the Lipschitz constant and the fact that ,,, ,,, converge up to v,, (and
uniformly on compact subsets of C). It follows that Qy,, », (A, U) < Qn,(A,U) and this also covers the
case that T, (4, U) = 0 if we define the supremum over the empty set to be 0. The set convergence proven
above and uniform convergence of 7, ,, implies that Q,, », (A, U) converges to Q,,(A,U). It is also
clear that the Y',,, (A, U) are nested and converge down to W,.(A) N ¢l (U) since W,,, converges down to

W (A). The function 7, also converges down to
~1
V(2 4) = [|[R(z, A
uniformly on compact subsets of C and hence @), (A4, U) converges down to

QA U) = sup IR(z, A)| 7"
z€We(A)Ncl(U)
Define
| P (Av U) =1- X[O,l/ns](Qnme (Aa U)) € {07 1}'

The above show that

lim Pﬂs,nmm (Av U) =1- X[0,1/n3] (Qn2 (Av U)) = an,n2 (Av U)

ni—00

Since X[0,1/n,] has right limits and @,,, (A, U) are non-increasing,

lim an,ng (A7 U) =1- X[O,l/ng](Q(Av U):l:) = an (A7 U),

ng—r00
where + denotes one of the right or left limits (it is possible to have either). Now if Egou (A,U) = 0, then

I, (A,U) = 0 for all n3. But if ESOIZ(A, U) = 1, then for large ng, I',,;(A,U) = 1. Moreover, in this
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latter case, Iy, (A,U) = 1 signifies the existence of z € W,(A) N cl(U) with y(z; A) > 0 and hence
2 & Sp(A). Hence I, ., », provides a 24" tower.

Step 2: {=5,,,,0p, A2} & AF. We will argue for the case that U = U, = R and the restricted
case is similar. Assume for a contradiction that this is false and I',, ,,, is a general height two tower for
{E]Eol 1> 2D, Ao }. We follow the same strategy as the proof of Theoremm step 4. Let (M, d) be discrete
space {0, 1} and €2 denote the collection of all infinite matrices {a; ; }; jen with entries a; ; € {0,1} and

consider the problem function
=1({ai;}) : Does {a; ;} have a column containing infinitely many non-zero entries?

For j € N, let {b; ; }ien be adense subset of I; := [1—1/2% =1 1—-1/22J]. Given a matrix {a; ; }i jen €

€2, construct a matrix {c; ; }; jen by letting ¢; j = a; jb,(; j),; Where

i
r(4,j) = max {1, Zak,j} .
k=1

Now consider any bijection ¢ : N — N? and define the diagonal operator

A= diag(c¢(1), C¢(2), C¢(3), )

!/
nz,ni

The algorithm fn%nl thus translates to an algorithm I" for {él, Q} Namely, we define the algorithm

[, n ({aijien) = fn2,n1(A). The fact that ¢ is a bijection shows that the lowest level '}, ~are
generalised algorithms (and are consistent). In particular, given N, we can find {4, ; : 4,5 < N} using
finitely many evaluations of the matrix values {cj; } (the same is true for A* A and AA* since the operator
is diagonal). But for any given ¢ ; we can evaluate this entry using only finitely many evaluations of the

matrix values {a, » } by the construction of 7. Finally note that

Sp(4) = {1} U U I |ue,
j:{ai,; }ien has infinitely many 1s
where @ lies in the discrete spectrum. The intervals I; are also separated. It follows that there is a gap in
the essential spectrum if and only if there exists a column {a; ; };cn with infinitely many 1s. Otherwise the

essential spectrum is {1}. It follows that Z({a; ;}) = Epoi (A, R) and hence we get a contradiction.  [J

7.6 Numerical Examples

The SCI-sharp towers of algorithms constructed in this chapter can be efficiently implemented for large
scale computations. Moreover, they have desirable convergence properties, converging monotonically or
being eventually constant, as captured by the X/II classification. Generically, this monotonicity holds in
all of the limits, and not just the final limit: many of the towers undergo oscillation phenomena where
each subsequent limit is monotone but in the opposite sense/direction than the limit beforehand. We can
take advantage of this when analysing the algorithms numerically. The algorithms also highlight suitable
information that lowers the SCI classification to 31 /II;. Other advantages for the algorithms based on

approximating the resolvent norm include locality, numerical stability and speed/parallelisation.
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| 7 '/// \\\\
/ N
1r 1 10°
ny = 10 }
ne = 100 102
ng = 1000
05 1 - 1o
R \\\ ///

-~ - = =Ty 101(4)

0 . : p

10" 10? 10° 10
ny

Fﬂz-"l (A)

Figure 7.1: Left: Output of the algorithm for computing the spectral radius. Right: Pseudospectrum com-
puted using the method of Chapter (the colour scale corresponds to the resolvent norm [[(A — zI)~!|))
which provides error control. We have show the output of T'ygs 194 (A) via the green dashed circle.

7.6.1 Numerical example for spectral radius

We begin with the spectral radius and consider the upper-triangular non-normal operator on [2(Z) defined

by its action on the canonical basis via
A@j =ej—2+ ijej_l.

In this case, the operator norm of A is 2 and the approximation of the spectrum by finite section is {0}.
Hence, to compute the spectral radius, one must resort to the techniques used in our tower of algorithms
based on rectangular truncations. Recall that the SCI classification for computing the spectral radius of
such operators (where the dispersion is knowrﬂ) is 1_[‘24 (see Theorem for further classifications). The
first parameter, n1, controls the size of the rectangular truncation (as well as the grid resolution), whereas
the second, ng, controls the resolvent norm cut-off (e = 1/ns).

Figure (left) shows the output of the tower of algorithms T',,, ,,, (4) for computing the spectral
radius. We see the expected monotonicity: I'y,, ,,, (A) is increasing in n, but decreasing in n,. It appears
that limy,, o0 I'102 0, (A) ~ limp, 00 ['108 1, (A) = 1.4149. The fact that these two values for different
ng are similar suggests that we have reached convergence. Though, of course, the proof that the problem
does not lie in AS shows that we can never apply a choice of subsequences to gain convergence in one limit
over the whole class €2¢. Nevertheless, the approximate value of 1.4149 is confirmed in Figure |7;1'| (right)

where we have shown pseudospectra, computed using the algorithm of Chapter 3]

7.6.2 Numerical examples for essential numerical range

To demonstrate the algorithm for computing the essential numerical range, we first consider the Laurent
operator Ag acting on [?(Z) with symbol
th ¢!
t) = ———.
alt) = —
In this case, Sp(Agp) = Spes(Ao) = {a(z) : |z| = 1}. We consider the operator A = Ay + E where the

compact perturbation E is given by
3¢

Bej = ————e; 1.
RN

3For this example and others on 2 (Z), we reorder the basis so that the operator A acts on 12(N).
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Examples of
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Figure 7.2: Left: The boundaries of OW (A) and OI's, 104,500(A). We have also shown the essential spec-
trum of A (whose convex hull, in this example, corresponds to W, (A)) and the output of finite section for
a 200 x 200 truncation. Right: Pseudospectrum computed using the method of Chapter [3] (the colour scale
corresponds to the resolvent norm || (A — zI)~!||) which provides error control. This confirms that eigen-
values, computed using finite section, outside 0F2X1047 500(A) are accurate and, in this example, indicates
that the other eigenvalues correspond to spectral pollution.

Recall that the SCI classification for computing the essential numerical range is IT5' (see Theorem .
The first parameter, ny, controls the size of the truncation, whereas the second, ns, controls how far along
the matrix the truncations (I — P, )Py, +n, A Poy 4n, (I—P,,)# are taken with respect to the canonical basis
once we have represented the operator as an operator on [2(N). (An alternative to reordering the basis
so that the operator acts on [?(N) is to use truncations in ‘both directions’ on [?(Z) by letting P, be the
projection onto the span of {e; : |j| < n}.)

Figure[7.2](left) shows the output of the algorithm I',,, ,,, (A) to compute the essential numerical range
for ny = 20000 and nq = 500. We show the boundary OT',,, ., (A) since the essential numerical range is
convex. In this example, W, (A) is the convex hull of Sp..(Ao), which allows us to verify the output of
the algorithm. We also show 200 eigenvalues of finite section (computed using extended precision to avoid
numerical instabilities associated with non-normal truncations), the majority of which are due to truncation
and provide an example of spectral pollution. This is confirmed when we compare to the pseudospectrum,
also shown in Figure[7.2] (right), computed using the algorithm of Chapter 3] However, eigenvalues outside
We(A) correspond to true eigenvalues of A (see Theorem .

The algorithm can also be extended to unbounded operators, as outlined in [Colns]ﬂ For example, we
consider the complex Schrédinger operator

2

T4
dx?

+ (2i + 1) cos(x). (7.6.1)

By using a Gabor basis, we can represent T' as a closed operator on [?(N) such that the linear span of
the canonical basis (corresponding to the Gabor basis) forms a core. We compute the matrix elements
(corresponding to inner products with the basis functions) with error control using quadrature. Figure
shows the output for ny, = 10% and various n,. We see the expected monotonicity as n; increases and the

output for n; = 2000 has converged to visible accuracy in the plot.

4The essential numerical range for unbounded operators was defined and studied in [BMTZ20].
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Figure 7.3: The output of the algorithm for computing the essential numerical range of closed operators,
applied to the complex Schrédinger operator 7" in (7.0.1)).

Figure 7.4: Output of the algorithm for computing the capacity of Sp(Hj).

7.6.3 Numerical example for capacity

We now consider the transport Hamiltonian H, on a Penrose tile discussed in §3.4.1] of Chapter[3] Recall
that by choosing a suitable ordering of the vertices, we can represent Hy as an operator acting on [?(N)
of bounded dispersion with f(n) —n ~ O(y/n). Recall also that the SCI classification for computing the
capacity of the spectrum of such operators is I14' (see Theorem for further classifications). The first
parameter, n1, controls the size of the truncation used to test if intervals intersect the spectrum via Lemma
8.1.7, whereas the second, n2, controls the spacings of the interval coverings (which have width 27"2). In
this example, we used the conformal mapping method of [LSN17] to accurately and rapidly compute the
capacity of finite unions of intervals in R. See Remark[7.4.1|for a discussion of computational efficiency.

Figureshows the output of I',,, ,,, (Ho) and we see the expected monotonicity: the output is increas-
ing in n, but decreasing in ny. By comparing the outputs for n; = 10* and n; = 10°, it appears we have
convergence up to around ny = 8. This suggests an upper bound (since the output is non-increasing in ny)
of approximately 2.26 for the capacity of Sp(Ho) (Sp(Hy) is shown in Figure[3.1).
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Chapter 8

Lebesgue Measure and Fractal

Dimensions of Spectra

In this chapter, based on [Colns], we consider the SCI of computing the Lebesgue measure of the spec-
trum (and pseudospectrum) and different fractal dimensions of the spectrum (box-counting and Hausdorff).
This chapter is motivated by recent progress in the field of Schrodinger operators with random or almost
periodic potentials [Avi09, |Avi08, |IAJO9, IAKOQ6, IAVO7, [Pui04)} |Siit89]]. Cantor-like spectra occur in many
families of one-dimensional operators. Fractal dimensions of spectra are important in many applications.
For example, in quantum mechanics, they lead to upper bounds on the spreading of wavepackets, and are
related to time-dependent quantities associated with wave functions [HTHK94, [KPG92| KKKG97]. Frac-
tal spectra appear in a wide variety of contexts, such as exciting new results in multilayer materials (e.g.
bilayer graphene) [DWM™ 13, [GG13a, [HSYY 13, [PGY " 13], strained materials [NBLOLT17, RTN14] or
quasicrystals [BRS16, TGB™ 14, KST87, LRF"11].

Whilst results are known for specific one-dimensional examples such as the almost Mathieu operator
[AKO6] or the Fibonacci Hamiltonian [Siit89]], the problems of computing the Lebesgue measure and frac-
tal dimensions of spectra remain open in the general case [DGS15). This is reflected by the difficulty of
performing rigorous numerical studies, despite many examples studied in the physics literature (see the ref-
erences in [AIM17, BS91l |Sir89]). In general, there are no known algorithms for determining the Lebesgue
measure and fractal dimension of spectra for general operators or even banded self-adjoint operators.

We solve these problems and design towers of algorithms that are numerically implementable. These
are demonstrated numerically on a two-dimensional model of a quasicrystal. In particular, we provide
numerical evidence that a portion of the spectrum of the graphical Laplacian on a Penrose tile is fractal with
fractal dimension approximately 0.8. However, we find that determining the Lebesgue measure and fractal
dimensions are hard in the sense of the SCI. This helps to explain the difficulty encountered in studying

these properties numerically or theoretically.

8.1 Main Results

We continue to use the set-up of Chapter [7] described in and recall the following classes of bounded
operators from for which we prove classifications:
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* {)¢: operators with dispersion bounded by f
* {),: operators with resolvent bounded by g
¢ Qp: self-adjoint and diagonal operators

e Qga: self-adjoint operators

e Qn: normal operators

¢ Qp: general bounded operators.

We first discuss the Lebesgue measure, and then move onto the computation of the box-counting di-

mension and Hausdorff dimension.

8.1.1 Lebesgue measure of spectra

A basic property of Sp(A), also connected to physical applications in quantum mechanics, is its Lebesgue
measure. Well-studied operators such as the almost Mathieu operator at critical coupling [[AKO6] or the
Fibonacci Hamiltonian [Siit89]] have spectra with Lebesgue measure zero. The Lebesgue measure on C
will be denoted by Leb and, when considering classes of self-adjoint operators, the Lebesgue measure on

R will be denoted by Lebg. We will also consider
Spe(4) = {z € C: |R(z, A7 < e},

whose closure is Sp, (A4). For a class 2 C Qp, there are three questions we are interested in and answer in

this section:
1. Given A € 2, can we compute Leb(Sp(A))?
2. Given A € Q and € > 0, can we compute Leb(gf)e(A))?
3. Given A € Q, can we determine whether Leb(Sp(A)) = 0?

We do not consider the final question for the pseudospectrum since Leb(gl\)€ (A)) > 0. It might appear that
answering the third question is at least as easy as the first. However, this could be false (and in general is),
since we consider a problem function with range in a different metric space. For the first two questions, we
consider the metric space ([0, 00), d) with the Euclidean metric. For question three we consider the discrete
metric on {0, 1}, where 1 is interpreted as ‘yes’, and 0 as ‘no’. Finally, we consider the computation of

Leb(gf)6 (A)) since it is not immediately clear that the level sets
S.(A):={ze€C:||R(zA)| "' =€ (8.1.1)

always have Lebesgue measure zero. Again, this is analogous to the case of approximating the pseudospec-
tra for bounded operators, where one uses the crucial property that the pseudospectrum cannot jump - it
cannot be constant on open subsets of C for bounded operators acting on a separable Hilbert space [[ShaO8].
Assuming that the sets in (§.1.1) are null is the measure theoretic equivalent. Note, however, that it is

straightforward to show that S, (A) is null for A € Qy through the formula || R(z, A)||~! = dist(z, Sp(4)).
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The above problem functions are denoted by =&, =L and =£ respectively. In analogy to computing the

spectra/pseudospectra themselves, = is, in fact, the easiest to compute and can be done in one limit for a

large class of operators. We also have from the dominated convergence theorem that

lim Leb(Sp,(A)) = Leb(Sp(A)). (8.1.2)
Unless otherwise told, we will assume that given A € Q¢, we know a sequence {c,, }nen that converges to
zero such that Dy ,,(A) < ¢,,. When considering Qp, or Qga, we use Lebg.
Lebesgue measure of spectrum and pseudospectrum
Theorem 8.1.1. Given the above set-up, we have the following classifications

AS F{EE QN ely, AS F{EF Op, A} elly i=1,2,
and for ) = Qg, Qga, On or Qg,
A F{EF QN eny, AY #{EL 0, A} eT1d.

The constructed algorithm is local, and we can easily adapt it to find the Lebesgue measure of Sp(A)
intersected with any compact interval or cube in one or two dimensions, respectively. It also does not need
the sequence {c,}. In other words, the evaluations of {c,} can be dropped from A;, and the theorem
remains true. The algorithm can also be restricted to R where it converges to Lebg (Sp(4) NR).

We now turn to the SCI classification of Leb(gl\)e(A)) which is useful since it provides a route to
computing Leb(Sp(A)) for any A € Qp via (8.1.2). This is a similar state of affairs to the computation of

the spectrum itself - one can approximate the spectrum via pseudospectra.
Theorem 8.1.2. Given the above set-up, we have the following classifications
{9 N ey, AT F{EL ap, A ex? i=1,2,
and for 1 = Qp, Qga, Qn or Qg,
F{2L, A} e, A F{2L O, A} e ni

Heuristically, the pseudospectrum is less refined than the spectrum, making the measure easier to esti-

mate. Another viewpoint is the analysis of the continuity points of the maps =¥ and Z%:
Proposition 8.1.3. In the above set-up, the following hold:

1. =k is continuous at A € Qp if and only if Lebr(Sp(A)) = 0.

2. EL is continuous at all A € Qp if e > 0.

Exercise: Prove Proposition|8.1.3

When is Leb(Sp(4)) = 0?
In this section, let (M, d) be the set {0, 1} with the discrete topology and consider the problem function
0, ifLeb(Sp(4)) >0

1, otherwise.
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It is straightforward to build a height three tower for this problem based on the monotonicity of LebSpec
(the algorithm constructed in Theorem [8.1.1). The next theorem shows that this is optimal - even for the
set of diagonal self-adjoint bounded operators. This demonstrates just how hard it is to answer decision
problem questions about the spectrum with finite amounts of information, particularly when the questions

involve a tool such as Lebesgue measure, which ignores countable sets.

Theorem 8.1.4. Given the above set-up, we have the following classifications
AS F{EL, QN ey, A #{EL,Qp, A} elly, i=1,2,
and for € = Qg, Qga, On or Qg,

Af % {E§7Q7Al} € Hf7 ASG ? {E§,97A2} € HSA

8.1.2 Fractal dimensions of spectra

If the spectrum of an operator has zero Lebesgue measure, it is natural to ask about its fractal dimension.
This question is not just borne out of mathematical curiosity. For instance, the fractal dimension leads
to an upper bound on the spreading of an initially localised wavepacket, and there has been much work
by physicists on relating the fractal dimension to time-dependent quantities associated with wave functions.
However, estimating the fractal dimension is extremely difficult. One possible reason is that it is not possible
to construct a height one tower of algorithms, even for the most basic definition of fractal dimension, the
box-counting dimension. The Hausdorff dimension is even worse and has SCI > 3. In this section, we

exclusively treat self-adjoint operators and seek fractal dimensions of subsets of RF_-]

Box-counting dimension

Let F' be a bounded set in some Euclidean space and Ns(F') be the number of closed boxes of side length

6 > 0 required to cover F'. Define the upper and lower box-counting dimensions as

L log(N(F)
dimp(F) =1 1 ) log(1/0) '
log(Ns(F))

@B(F) = hr{?&)ﬂf log(l/é)

When both are equal, we can replace the lim inf and lim sup by lim and we define the common value as
the box-counting dimension dimpg(F'), an example of a fractal dimension. The major drawback of this
definition is lack of countable stability. For instance, the box-counting dimension of {0,1,1/2,1/3,...}
is 1/2. Examples also exist of closed Cantor sets for which the upper and lower dimensions do not agree
[FalO3]. A natural example occurring as the spectrum of a discrete Schrodinger operator is presented in
[Colns|, where this effect can be seen numerically. In the one-dimensional case, it is easy to prove that if
F is measurable with dimp(F) < 1 then Lebg(F) = 0. The converse is false by considering countable
unions of Cantor sets whose Hausdorff dimension tends to 1 and similar results hold in higher dimensions.

We shall show that we can compute the box-counting dimension in two limits.

IThe proofs for general self-adjoint operators can be adapted with an additional limit and the use of two-dimensional covering
boxes to treat the class of general bounded operators. Some care is required involving boundaries of covering boxes for the Hausdorff
dimension, but for brevity, we omit the details.
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Let Q? D be the class of self-adjoint operators in 2y whose upper and lower box-counting dimensions
of the spectrum agree. Let Q&L be the class of self-adjoint operators whose upper and lower box-counting

dimensions of the spectrum agree, and denote by Q5P the class of diagonal operators in Q&P

Theorem 8.1.5. Let =p be the evaluation of box-counting dimension of spectra, then for i = 1,2 and
Q= Q}B D or QgD

AQG % {EBagaAi} € H1247

whereas

ASG % {EBaQSBAD7A1} € H1347 Ag ? {EBaQSBAD’AQ} € HIQA

Remark 8.1.6. The algorithms we construct for =g also converge without the assumption that the upper

and lower box-counting dimensions agree to a quantity T'(A) with

dim5(Sp(A)) < T(A) < dimp(Sp(A)).

Hausdorff dimension

A more complicated, yet robust notion of fractal dimension is related to the Hausdorff measure. For the
connection and various other measures that give rise to the same dimension we refer the reader to [Fal03|
Mat93]. Let I C R™ be a Borel set in n-dimensional Euclidean space and let Cs5(F') denote the class of
(countable) 6—coverﬁ of F. One first defines the quantity (for d > 0)

HE(F) = inf {Z diam (U;)4 : {U;} € C5(F)} )
and the d-dimensional Hausdorff measure of F' by

HUF) = gigﬂg(F).

There is a unique d’ = dimg (F) > 0, the Hausdorff dimension of F, such that H%(F) = 0 for d > d’ and
HYF) =ooford < d'.
One can prove that
dimp (F) < dimy(F) < Tmp(F).

A useful property of the Hausdorff dimension that makes it hard to compute is its countable stability (if
F is countable then dimy (F') = 0). The following lemma is used in the construction of an algorithm for

computing the Hausdorff dimension but is interesting in its own right so is listed here.

Lemma 8.1.7. Let (a,b) C R be a finite open interval and let A € Qy N Qga. Then determining whether
Sp(A4) N (a,b) # O using A; is a problem with SCI4 = 1. Furthermore, we can design an algorithm that
halts if and only the answer is ‘yes’, that is, the problem lies in ¥.1*. Similarly the problem lies in ¥4 when

considering Qga with Ay (or Zf‘ when we allow access to As).

Theorem 8.1.8. Let =g be the evaluation of the Hausdorff dimension of spectra, then for i = 1,2 and
QZQDOFQfﬂQSA
whereas

AT #{Em,Qsa, M} €57, AF F {En, Qsa, A2} € 54

2That is, the set of covers {U; };c1 with T at most countable and with diam(U;) < 4.
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8.2 Proofs of Theorems on Lebesgue Measure

We will use the function Dist Spec discussed in Chapter 3] written in (highly non-efficient form):

Function DistSpec (An, f(n),z)
Imput :n €N, f(n) € N, matrix A4, z € C

Output: y € R, an approximation to the function z — | R(z, A)|| "
B=(A—-zI)1: f(n),1:n), C=(A-2D)*1:f(n),1:n)
S=B*B, T=C*C
v=1101=0

while v = 1 do
l=1+1

p = IsPosDef(S — %), q = IsPosDef(T — 71722)

v = min(p, q)
end

y=14
end

For ease of notation, we suppress the dispersion function f in calling Di st Spec but assume that we
know D fﬁn(A) < ¢, with ¢, — 0 as n — oo. However, the proof of convergence also works when using

¢n = 0 (which does not necessarily bound Dy ,,(A)). The key observation is the following:

Observation: If A € Qy, then the function F,,(z) := DistSpec(4,n, f(n), z) + ¢, converges uni-
formly to ||R(z, A)||~" from above on compact subsets of C. By taking successive minima, we can assume

without loss of generality that F}, is non-increasing in n.

The other ingredient needed is the following proposition

Proposition 8.2.1. Given a finite union of disks in the complex plane, the Lebesgue measure of their in-
tersection with the interior of a rectangle can be computed within arbitrary precision using finitely many
arithmetical operations and comparisons on the centres and radii of the discs as well the position of the

rectangle.
Exercise: Prove Proposition |8.2.1

Proof of Theorem[8.1.1) Step 1: {=L Q¢ A;}, {EF,Qp, A;} € TIZ. Tt is enough to consider A;. We
will estimate Leb(Sp(A)) by estimating the Lebesgue measure of the resolvent set on the closed square

[—C, )2, where ||A|| < C. We do not assume C is known. For ny,ny € N, let

) 1
Grld(nl,ng) = ons

1
Z + 2n2’LZ> N [—ﬂl,ﬂ1]2.

Letting B(x,r), D(z,r) denote the closed and open balls of radius r around x respectivel in C (or R

where appropriate), we define

U(ni,nz, A) = [-n1,n1] x [=n1,m1] 0 (Uzeoria(n, n) B2, Fny (2)))-

3We set D(z,0) = 0.
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Note that Leb(U (nq, na, A)) can be computed up to arbitrary predetermined precision using only arithmetic

operations and comparisons by Proposition[8.2.1] Using this we can define
Ty oy (A) = 4nt — Leb(U(ny, ng, A))

where, without loss of generality, we assume that we have computed the exact value of the Lebesgue
measure (since we can absorb this error in the first limit). It is obvious that I',,, ,,, are general arithmetical
algorithms, the only non-trivial part is convergence.

We will now show that the algorithm LebSpec converges and realises the 114 classification. There
exists a compact set K such that |[R(z, A)||”" > 1 on K¢ and without loss of generality we can make C'

larger, C' € N and take K = [~C, C]2. Forn; > C
U(ni,n2, A) = ([=C, C1? N (Usecriatnna) Bz, Fuy (2)))) U ([=n1, m]*\[-C, CP?)
since F,,(z) > ||R(z, A)||~". It follows that for large n4
Ly (A) = 4C% = Leb([=C, CI N (Uzecrsatni,ng) B(2, Fay (2))))-
Asny — 00, [—C, CI> N (U,ecria(n na) B(z, Fny (2))) converges to the closed set
X(n2, A) = [=C,C* N (Uzearia(ens) B( [R(z, A7)
from above and hence

lim T,.p, (A) = 4C% — Leb(X (na, A)),

niy—oo

from below. Consider the relatively open set
V(”Za A) = [703 0]2 N (UZEGrid(C,nQ)D(Zv HR(Za A)||71))

Clearly Leb(X (ng, A)) = Leb(V(ng, A)) since the sets differ by a finite collection of circular arcs or
points (recall we defined the open ball of radius zero to be the empty set). Hence we must show that

lim Leb(V(ng, A)) = Leb(pc(A)),

ng—00

where pc(A) = [-C, C]?\Sp(A). For z € pc(A),
dist(z,Sp(A)) > || R(z, )|~

and hence we get V(na, A) C pc(A). Since pc(A) is relatively open, a simple density argument using the
continuity of || R(z, A)|| " yields V (ny, A) T pc(A) as ny — oo since the grid refines itself. So we get

Leb(V (ns, A)) 1 Leb(pc(A)).

This proves the convergence and also shows that T',,, (4) | Z(A), thus yielding the IT3' classification. The

same argument works in the one-dimensional case when considering self-adjoint operators {2, and Lebg.
Simply restrict everything to the real line and consider the interval [—C, C] rather than a square.

Step 2: {=L Qp, A}, {EF,Op, A;} ¢ A§. It is enough to consider Ay. We will only show that
SCI(ElL, Qp, As)e > 2 for which we use Lebg and the two-dimensional case is similar. Suppose for a

contradiction that there exists a height one tower I',,, then Ar_(A) is finite for each A € Qp. Hence, for
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every A and n there exists a finite number N (A, n) € N such that the evaluations from Ar, (A) only take
the matrix entries A;; = (Ae;j, ;) with ¢, j < N(A,n) into account.

Pick any sequence aq,as, ... dense in the unit interval [0, 1]. Consider the matrix operators A,, =
diag{ay,az,....,am} € C™*™, B, = diag{0,0,...,0} € C™*™ and C = diag{0,0,...}. Set A =
@D, _,(Bx,, ® Ay,,) where we choose an increasing sequence ky,, inductively as follows. Set k; = 1 and
suppose that k1, ..., k,,, have been chosen. Sp(Bg, & Ak, @ ... ® By, ® A, ® C) ={0,a1,a9,...,ax,, }
and hence Leb(Sp(By, ® Ak, @ ... ® By, @ Ag,, ® C)) = 0 so there exists some n,,, > m such that if
n > n,, then

IW(Bg, ® Ak, ® ... ® By, ® Ag,, @C) <

DN | =

Now let kp, 41 > max{N(Bg, ® A, ® ... ® B, ® Ai,, ® C,nm), km + 1}. Any evaluation function

fi.j € Ais simply the (4, j)*" matrix entry and hence by construction

f@j(Bkl S5 Ak1 & ...8 B, & Akm D C) = fiyj(A),

forall f; j € Ar,, (B, ® Ag, © ... ® By,, ® Ag,, © C). By assumption (iii) in Definition it follows
that Ar, (Br, © Ay, © ... ® By, ® Ay, © C) = Ar, (A) and hence by assumption (ii) in the same
definition that ', (A) = I'y,,, (Bg, © Ak, @ ... © By, ® Ag,, @ C) < 1/2. But lim, o (I'n(4)) =
Leb(cl({0, a1, as, ...})) = 1 a contradiction.

Step 3: {EIL, O,M} € Hg,j‘ for 2 = Qp, Qga, O or ;. We will deal with the case of Q. The cases
of Q and €}, then follow via Qn C €, C Qp and the one-dimensional Lebesgue measure case for {1gy is
similar.

A careful analysis of the proof in step 1 yields that
e Ty, 0, (A) converges to Ty, (A) from below as ny; — cc.

* T',,, (A) converges to Leb(Sp(A)) monotonically from above as ng — .

We can ensure that the first limit converges from below by always slightly overestimating the Lebesgue
measure of U(nq,ny) (with error converging to zero) and using Proposition These observations will
be used later to answer question 3. We do not need to know ¢,, for the above proof to work, but we will
need it for the first of the above facts. A slight alteration of the proof/algorithm by inserting an extra limit
deals with the general case.

Define the function

Ynm (23 A) = min{oing (P (A — 21)|p,2), Oint (Pm (A" = 21)|p,2) },

where oi,¢ denotes the injection modulus/smallest singular value. One can show that v, ,,, converges uni-

formly on compact subsets to

Yn(2; A) = min{oins (A — 21)|p,2), Oint (A" — ZI)|p,2)},

as m — oo and that this converges uniformly down to || R(z, A)|| ™"

on compact subsets as n — oo [Hanl11]].
With a slight abuse of notation, we can approximate 7, ,,(z; A) to within 1/m by DistSpec(A,n,m, z)
(where the spacing of the search routine is 1/m) so that this converges uniformly on compact subsets to

~n(z; A). In exactly the same manner as before, define

U(n17 n2,ns, A) = [_n27 n2]2 M (Uz€Grid(n2,n3)B(z7 ’yn%nl (Z7 A)))’
an,ng,nl (A) = (2%2)2 - Leb(U(nlv n2, ng, A))
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The stated uniform convergence means that the argument in step 1 carries through and we have a height
three tower, realising the Hg‘ classification.

Step4: {=F Qga, A1} ¢ AF. The proof is exactly the same argument as the proof of step 3 of Theorem
However, in this case to gain the contradiction, we then define T',,, ,,, ({a; ;}) = min{max{1 —
Thyny (A)/2,0}, 1} where T, 1, (A) is the supposed height two tower for {2, Qga, A1}

Step 5: {ZL,Q, A1} ¢ A§ for Q = Qp, Qx, or Q. Since O C Q, C Qp, we only need to deal with

Qn. We can use a similar argument as in step 4, but now replacing each C) by

J
DY = Byin ),

k=1

where hq, ho, ... is a dense sequence in [0, 1] and this operators acts on X; = i:l I2(N). This en-
sures that the spectrum of the operator yields a positive two-dimensional Lebesgue measure if and only if
Z5({a;;}) = 0. The rest of the argument is entirely analogous.

Step 6: AS # {=L,Q, Ax} € TIE for Q = Qp, Qga, QO or Q,. The impossibility result follows by
considering diagonal operators. For the existence of IT5' algorithms, we can use the construction in step 3,

but the knowledge of matrix values of A* A allows us to skip the first limit and approximate ~,, directly. [
Proof of Theorem[8.1.2] Using the convergence
lim Leb(Sp, (4)) = Leb(Sp(4)),

the lower bounds in Theorem immediately imply the lower bounds in Theorem Hence we only
need to construct the appropriate algorithms.

Step 1: {ZL,Qp, A1}, {EL,Qp, A1} € 241 Let A € Q; and
E, = % (Z+iZ)N{z € C: F,(z) < e} N [—n,n)>.
Clearly, we can compute [, with finitely many arithmetic operations and comparisons, and we set
I (A) = Leb(Uzep, D(z,max{0,e — F,(2)})).

Proposition m shows that, without loss of generality, we can assume I';,(A) can be computed exactly
with finitely many arithmetic operations and comparisons.

Suppose that F},(z) < € and that |w| < € — F,,(2). If z € Sp(A) then clearly
IR(z +w, )| < Jw| < e Fu(z) <,

and this holds trivially if z + w € Sp(A) so assume that neither of z,z + w are in the spectrum. The

resolvent identity yields
[1R(z +w, A)|| = [|R(z, A)|| = [w[ [ R(z + w, A)|[ | (2, A)]|,

which rearranges to

IR(z 4w, A" < |R(z, A7+ fw] < e.

It follows that U,c g, D(z, max{0,e — F,,(z)}) is in gf)e(A) and hence that T',,(A) < ZL(A). Without loss

of generality by taking successive maxima we can assume that I',,(A) is increasing. Together these will

126



8.2. Proofs of Theorems on Lebesgue Measure CHAPTER 8. Lebesgue Measure and Fractal Dimensions

yield ¥4 once convergence is shown. Using the uniform convergence of F,, and density of 1/n(Z + iZ) N

[—n,n]? we see that pointwise convergence holds:

XU.em, D(z,max{0,e—F, (z)} - XéBE(A)’

where x g denotes the indicator function of a set . It follows by the dominated convergence theorem that
Ir.(A) — Leb(@e(A)). The proof for Q2 is similar by restricting everything to the real line.
Step 2: {ZL,Q, A1} € 24 for Q = Qp, Qsa, O or . To prove this, we simply replace F},, by the

functions vy, », and set
Tpyn (A) = Leb( UseE,, D(z,max{0, € — vn, n, (; A)}))

Step 3: {Z£,Q, A2} € X1 for Q = Qp, Qsa, O or ;. The knowledge of matrix values of A*A

allows us to skip the first limit in the construction of step 2 and approximate +,, directly. O

Finally, we deal with the question of determining if the Lebesgue measure is zero. Recall that for this
problem, (M, d) denotes the set {0, 1} endowed with the discrete topology and we consider the problem
function

0, ifLeb(Sp(4)) >0

1, otherwise.

Proof of Theorem[8.1.4, We will show that {Z%,Q, A1} € I and {EL, Qp, A2} ¢ A§. The analogous
statements {Z%, Qp, A1} € 114 and {Z,Qf, Ay} ¢ AS follow from similar arguments.

The lower bound argument can also be used when considering A, and 2 = Qp, Qga, On or 4. We
will also prove the lower bound {Z%, Qga, A1} ¢ AY. The remaining lower bounds for A; follow from
a similar argument and construction as in step 5 of the proof of Theorem [8.1.1] to ensure we are dealing
with two-dimensional Lebesgue measure. Finally, we prove that {ZX Qp A} € II1{'. The upper bounds
for 2 = Qga, On or Q4 and A; follow from an almost identical argument. When considering Az, we can
collapse the first limit in exactly the same manner as we did for solving Z¥.

Step 1: {=%,Q, A1} € II4. First we use the algorithm used to compute =% in Theorem|8.1.1] which
we shall denote by f, to build a height 3 tower for {E%, Q f}. As above, ()¢ denotes the set of bounded
operators with the usual assumption of bounded dispersion (now with known bounds ¢,,). Recall that we

observed

¢ Ty, (A) converges to I',, (A) from below as n; — co.

» T',,(A) converges to Leb(Sp(A)) monotonically from above as ng — oo.

We can alter our algorithms, by taking maxima, so that we can assume without loss of generality that

fm,m (A) converges to I',,, (A) monotonically from below as n; — co. Now let

| (A) = X[0,1/n3] (FTLQ n1 (A)) .

Note that X[g,1 /n,) is left continuous on [0, co) with right limits. Hence by the assumed monotonicity

lim Fna,nz,m(A) = X[071/n3](rnz (A>)

n1—00
It follows that
lim  Hm Ty 0,0, (A) = X[0,1/ns) (Leb(Sp(A))£),

Ny —»00 N —>00
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where + denotes one of the right or left limits (it is possible to have either). It is then easy to see that

lim lim lim Ty, pyn, (4) = Eé(‘@

ng—00 Ny —>00 N —00

It is also clear that the answer to the question is 0 if T',,, (A) = 0, which yields the T4 classification.
Step 2: {=% Op, A1} ¢ AS. Assume for a contradiction that this is false and I‘n2 n, 18 @ general
height two tower for {Z%, Qp}. Let (M, d) be discrete space {0,1} and Q denote the collection of all

infinite matrices {a; ; }; jen with entries a; ; € {0, 1} and consider the problem function
=1({aij}) : Does {a; ;} have a column containing infinitely many non-zero entries?

Recall that it was shown in Theorem in Chapter that SCI(él, Q)G = 3. We will gain a
contradiction by using the supposed height two tower to solve {él, Q}
For j € N, let {b; ; }ien be a dense subset of I; := [1 —1/2971 1 —1/27]. Given a matrix {a; ; }; jen €

€0, construct a matrix {ci,j}i,jen by letting ¢; j = a; jb,(; ;),; Where

r(i,7) max{ Za’”}

Now consider any bijection ¢ : N — N? and define the diagonal operator

A= diag(c¢(1), C¢(2), C¢(3), )

The algorithm Fn2 n, thus translates to an algorithm defined by I for {él, Q} Namely, we set

n2,n1

I, 0 ({aijien) = Fn%m(A). The fact that ¢ is a bijection shows that the lowest level I"],, , ~are
generalised algorithms (and are consistent). In particular, given N, we can find {4; ; : 4,5 < N} using
finitely many evaluations of the matrix values {cj; }. But for any given c; ; we can evaluate this entry using

only finitely many evaluations of the matrix values {a,,_,, } by the construction of . Finally note that

Sp(4) = U n)ve,
where () is at most countable. Hence
1
Lebr(Sp(A)) = > =
Ji32; ai g =00

It follows that =, ({a; ;}) = 2% (A) and hence we get a contradiction.

Step 3: {Z,Qsa, A1} ¢ AF. Suppose for a contradiction that Ty, ., », is a height three tower of
general algorithms for the problem {Z% Qsa, A1 }. Let (M, d) be the space {0, 1} with the discrete metric,
let  denote the collection of all infinite arrays {am ;, j}m,i, jen with entries a, ;5 € {0, 1} and consider

the problem function
§4({amyi,j}) : For every m, does {a, ; ; }i,; have (only) finitely many columns
with (only) finitely many 1’s?
Recall that it was shown in Theorem in Chapter that SCI(Z4,Q)¢ = 4. We will gain a
contradiction by using the supposed height three tower to solve {§47 Q}

The construction follows step 3 of the proof of Theorem[7.3.3|closely. For fixed m, recall the construc-
tion of the operator A, := A({am ;}: ;) from that proof, the key property being that if {a, ; ;} ; has
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(only) finitely many columns with (only) finitely many 1’s then Sp(A4,,,) is a finite subset of [—1, 1], other-
wise it is the whole interval [—1, 1]. Now consider the intervals I,,, = [1 — 2™~ 1 — 2™] and affine maps,
Qy, that act as a bijection from [—1,1] to I,,,. Without loss of generality, identify Qg with self adjoint
operators in B(X) where X = @;2, @2, X; ; in the [*-sense with X; ; = [*(N). We then consider the

operator
T({@mijtmis) = €D am(Am).
m=1

The same arguments in the proof of Theorem show that the map

L nsing ({@mij Ymiig) = Dngngny (T{@moi g tm.ig))

is a general tower using the relevant pointwise evaluation functions of the array {a, ; j }m.: ;. If it holds
that Z4({am.i;}) = 1, then Sp(T({@m.i j}m.;)) is countable and hence =5 (T({am i ;}tmi;)) = 1.
On the other hand, if Z4({ami;}) = 0, then there exists m with Sp(A,,) = [~1,1] and hence I,,, C
SP(T ({@m.ijtm.ij)) so that ZX(T({am.i ;}m.i;)) = 0. It follows that fnsm,nl provides a height three
tower for {4, 2}, a contradiction.

Step 4: {Z%,Qp, A1} € TI5. Recall the tower of algorithms to solve {=F Qp, A1}, and denote it by

I. Our strategy will be the same as in step 1 but with an extra limit. It is easy to show that

¢ Tyingm, (A) converges to Ty, , (A) from above as 7, — oc.

il

sy (A) converges to I',,, (A) from below as ngy — oo.
* T',,, (A) converges to Leb(Sp(A)) from above as ng — oo.

Again, by taking successive maxima or minima where appropriate, we can assume that all of these are

monotonic. Now let

Fn4,n3,n2,n1 (A) = X[0,1/n4] (an,nmnl (A))

Note that x[9,1/n,] is left continuous on [0, 00) with right limits. Hence by the assumed monotonicity and

arguments as in step 1, it is then easy to see that

(1]

5(A).

lim lim lim lim Ty, pynn, (4) =
74— 00 N3 —00 Ny —00 N — 00

It is also clear that the answer to the question is 0 if I',,, (A) = 0, which yields the IT3 classification. ~ []

8.3 Proofs of Theorems on Fractal Dimensions

We begin with the box-counting dimension. For the construction of towers of algorithms, it is useful to use a
slightly different (but equivalent - see [Fal03]) definition of the upper and lower box-counting dimensions.
Let F' C R be bounded and Nj(F') denote the number of J-mesh intervals that intersect F. A j-mesh
interval is an interval of the form [mJd, (m + 1)d] for m € Z. Then
dimp(F) = limsup M7
sl0  log(1/0)

ey
dim () =l inf = 0
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Proof of Theorem[8.1.3] Since 05, C QBD c Q8P it is enough to prove that {Zp, QJ’?D7 A} € 1T,
Ep, Q8P Ao} e I8, {25, Q8P Ay} e T4, {E5, Q8P A1} & Af and {E5, Q8P Ao} & A4
Step 1: {Z5,Q7P A1} € IT4'. Recall the existence of a height one tower, I,,, using A; for Sp(A),
Ace QJ]? D from Chapter Furthermore, T',,(A) outputs a finite collection {21 ,, ..., ¢, »} C Q such that
dist(2;,n, Sp(A)) < 27", Define the intervals

Iim=1[2jn — 27", 2jn + 277

and let Z,,, denote the collection of all 2~"-mesh intervals. Let Y, ,(A) be any union of finitely many
such mesh intervals with minimal length | Y, ,,(A) being the number of intervals € Z,,, that make

up Y, n(A)) such that

Ton(A) NIy #0, forl <l<n,1<j<k.

There may be more than one such collection so we can gain a deterministic algorithm by enumerating each
T, and choosing the first such collection in this enumeration. It is then clear that | Y, ,,(A4)| is increasing
in n. Furthermore, to determine Y, ,,(A), there are only finitely many intervals in Z,, to consider, namely
those that have non-empty intersection with at least one /;; with 1 <1 < n,1 < j < k. It follows that
Y1.n(A) and hence |Y,, ,(A)| can be computed in finitely may arithmetic operations and comparisons
using A;.

Suppose that I = [a,b] € Z,, has (a,b) N Sp(A) # 0. Then for large n there exists z;,, € I such
that I;,, C I and hence I C T,, ,(A) for large n. If z € Sp(A) N 27™Z then a similar argument
shows that z C Y,, ,(A) for large n. Since Sp(A) is bounded and Sp(A) N 2~™Z finite, it follows that
Sp(A) C YTy, n(A) for large n and hence

No-n (Sp(A)) < lminf | Yo (A)].
n—roo

Let W,,,(A) be the union of all intervals in Z,,, that intersect Sp(A). It is clear that W,,,(A) N I;; # O for
1 <1<mn1<j <k andhence |Y,,,(A4) < N)_,.(Sp(A4)). It follows that lim,,_,o0 [Ty, n(A4)| =
Om (A) exists with

Ny-m (Sp(A)) < 9 (A) < Ny (Sp(A)). (83.1)

For ng > nq set Ty, n, (A) = 0, otherwise set
log(|T,;(4)])
r A) = g .
()= 008 B8 T Wog(2)
The above monotone convergence and (8.3.1)) shows that

log(0(A)) . log(0(A))
lim T, n, (A) =Ty, (4) = sup ——== > limsup ——=,
n1—co (4) (4) kzrl?g klog(2) kﬁoop klog(2)

lim T, (A) = limsup M.

n2—00 k—oo  Klog(2)

Hence, by the assumption that the box-counting dimension exists, we have constructed a IT4' tower.

Step 2: {5,080, Ay} € 114 and {E5,Q8P, A1} € T4, The first of these is exactly as in step
1, using As to construct the relevant 34 tower for the spectrum. The proof that {Zp, Q8P A} € 114
uses a height two tower, Fn%nl, using Ay for Sp(A), A € Q D (or any self-adjoint A) constructed in
[BACH™20]. This tower has the property that each Fm,nl (A) is a finite subset of Q and, for fixed no,

is constant for large ;. Moreover if z € limy,, o0 [ny.n, (A) then dist(z, Sp(A)) < 2772, It follows
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that we can use the same construction as step 1 with an additional limit at the start to reach the finite set
1imy,, o0 Dy .y (A).

Step 3: {5,050 Ay} ¢ A3, This is exactly the same argument as step 2 of the proof of Theorem
with Lebesgue measure replaced by box-counting dimension.

Step 4: {Z5, Q8P Ay} ¢ A#. This is exactly the same argument as step 4 of the proof of Theorem

[B-1.T] with Lebesgue measure replaced by box-counting dimension. O

We now turn to the Hausdorff dimension. Recall Lemma[8.1.7 on the problem of determining whether
Sp(A) N (a,b) # 0.

Proof of Lemma(8.1.7] We start with the class Qy N Qga. We can interpret this problem as a decision
problem and the following algorithm as one that halts on output yes. Let ¢ = (a + b)/2 and § = (b — a)/2
then the idea is to simply test whether DistSpec(A4,n, f(n),c) + ¢, < d. If the answer is yes then
we output yes, otherwise we output no and increase n by one. Note that Sp(A) N (a,b) # O if and
only if ||[R(c, A)||”" < & and hence as DistSpec(A,n, f(n),c) + ¢, converges down to ||R(c, A)| ™"
we see that this provides a convergent algorithm. For (g4 we require an additional limit by replacing

DistSpec(4,n, f(n),c) + ¢, with the function 7y, », (2; A). If we have access to Ao then this can be

avoided in the usual way. O

To build our algorithm for the Hausdorff dimension, we use an alternative, equivalent definition for
compact sets that can be found in [FMSG15, [FMSGI14]. We consider the case of subsets of R. Let py
denote the set of all closed binary cubes of the form [27%m, 27 (m + 1)],m € Z. Set

.Ak(F) = {{Ui}ie] : Lisfinite , F' C U;c;U;,U; € Ulzkpl}

and define

k—o0

HI(F) = inf {Z diam(U;)? : {U; }ier € Ak(F)}, HYF) = lim H(F).
The following can be found in [EMSG14] (Theorem 3.13):

Theorem 8.3.1 ([FMSGI14])). Let F be a bounded subset of R. Then there exists a unique d' = dimpg. (F')
such that HA(F) = 0 for d > d’ and H*(F) = oo for d < d'. Furthermore, d’ = dimp (cl(F)).

Denoting the dyadic rationals by D, we shall compute dimy (Sp(A)) via approximating the above
applied to F' = Sp(A) N D* and using the lemma8.1.7]

Proof of Theorem[8.1.8 1t is enough to prove the lower bounds {Zx,Qp, Ao} ¢ A, {Ex, Qsa, A1} ¢
A$ and construct the towers of algorithms for the inclusions {Z, QrNQga, A1} € Y {Zm, Qsa, A1} €
¥4 and {Zx, Qsa, Ao} € 24

Step 1: {Zx,0p, A2} ¢ A§. Suppose for a contradiction that a height two tower, T',,, ,,, exists
for {Zx,Qp} (taking values in [0, 1] without loss of generality). We repeat the argument in the proof of

Theorem Consider the same problem

Z1({a;;}) : Does {a; ;} have a column containing infinitely many non-zero entries?
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but now mapping to [0, 1] with the usual metric, and the same operator A = diag(cg(1), Cs(2), Cp(3) )
with
Sp(A) = U 5jue
Jid2; @i =00
where () is at most countable. We use the fact that the Hausdorff dimension satisfies

dimpy (U72, X;) = supdimp (X;)
JEN

and that dim(Q) = 0 for any countable Q, to note that the equality =z (A) = =;({a;;}) holds. We
then set Ty 1y ({@ij}i5) = Ty (A) to provide a height two tower for =;. But this contradicts Theorem
237

Step 2: {Zx,0sa, A1} ¢ A§. Suppose for a contradiction that Ty, ,,, », is a height three tower
of general algorithms for the problem {Zg,{ga, A1} (taking values in [0, 1] without loss of general-
ity). Let (M, d) be the space [0, 1] with the usual metric, let { denote the collection of all infinite arrays

{@m,i,j }m.i jen With entries a,, ; ; € {0,1} and consider the problem function

§4({a,m, ;1) : For every m, does {a, ; ; }i,; have (only) finitely many columns

with (only) finitely many 1’s?

Recall that it was shown in Theorem in Chapter that SCI(Z4, Q)¢ = 4. We will gain a
contradiction by using the supposed height three tower to solve {§47 Q}

We use the same construction as in step 3 of the proof of Theorem If Z5({am,i;}) = 1
then Sp(T'({@m.,i,j}m,i,;)) is countable and hence Zg (T ({@m,i ;j}m,i,;)) = 0. On the other hand, if
Z4({am.ij}) = 0, then there exists m with Sp(A,,) = [~1,1] and hence I, € Sp(T({@m.i j}m.i.j)) 50
that 2y (T ({@m.ij}m.i ;) = L. Ttfollows that Ty 1y s ({@mei j Ymii) = 1=Tng my s (T @mij bmii)
provides a height three tower for {Z4, 2}, a contradiction.

Step 3: {=x, Q2 N Qsa, A1} € 234. To construct a height three tower for A € Qf N Qga, if no < n3

set I'y, sy (A) = 0. Otherwise, consider the set
A g i (A) = {{Ui}ier : Lis finite , Sy, 0, (A) C UierUs, Ui € Ung<i<n,pi}

where S, n,(A) is the union of all S € p,,, with S C [—nq,n1] and such that the algorithm discussed in
Lemma[8.1.7) outputs yes for the interior of S and input parameter ;. We then define

Png mg . (A, d) 1nf{Zdlam AU} € Apg s nl(A)}.

If S, n,(A) is empty then we interpret the infinum as 0. There are only finitely many sets to check and
hence the infinum is a minimisation problem over finitely many coverings (see §8.4.2]for a discussion of
efficient implementation). It follows that ki, 1, n, (A, d) defines a general algorithm computable in finitely

many arithmetic operations and comparisons. Furthermore, it is easy to see that

np—roo

lim hnsﬂlzfﬂl A d inf {Z dlam d {U} € CﬂB,n2( )} = hnSanQ (A7 d)
from below (since we are covering larger sets as nj increases), where

Cn3,n2 (A) = {{Ui}ie[ : I is finite 7Sp(A) n Dfm C UicrU;, U; € Un3§l§n2pl}
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and D, := 1/2F . Z denotes the dyadic rationals of resolution k. We now use the property that Ay (F)
consists of collections of finite coverings. As ny — 00, hn, n, (4, d) is non-increasing (since we take
infinum over a larger class of coverings and the sets Sp(A) N D, decrease) and hence converges to some
number. Clearly

M A (A, d) = hoy (A,d) > L, (Sp(4) N D).

ng—00

Fore > 0let! € Nand {U;} € A,,(Sp(4) NDf)} with

> diam(Uy)? < e+ He (Sp(A) N D).

For large enough no, {U;} € Cy, n, (A) and hence since € > 0 was arbitrary,
hny (A, d) < Hy, (Sp(A) NDF)

for all [. For a fixed A and d, hy,, (A, d) is non-decreasing in n3 and hence converges to a function of d,

h(A,d) (possibly taking infinite values). Furthermore,
HA(Sp(A) D) < h(A,d) < HYSp(A) NDY).

Since the set Sp(A) N D is countable, its Hausdorff dimension is zero. Using sub-additivity of Hausdorff
dimension and Theorem [§:3.1]

dimy (Sp(A)) < dimp(Sp(A) N D)
< dimp (cl(Sp(A) N D°)) = dimz (Sp(A) N D°)
< dimy (cl(Sp(A) N D)) = dimyz(Sp(4) N D)
< dimp (Sp(A)).

It follows that h(A,d) = 0if d > dimy (Sp(A4)) and that h(A,d) = oo if d < dimpy (Sp(A)). Define

] 1 1
Lhgngni(A) = sup {‘7 D hig na g (A, k/27%) + — > 3 fork =1, ...,j} ,

j=1,...,2m3 [ 2M3 N
where in this case we define the maximum over the empty set to be 0.
Consider ng > ng. Since hy, ny ny (A, d) T Ang ony (4, d), it is clear that

] 1
lim Ty, nom, (A) = sup {2‘]m Dhingne (A, k/27%) + —

ny—ro0 j=1,...,2"3 N9

1
> 5 for k = 1, 7]} = an,nz (A)

If hpy(A,d) > 1/2, then hpy pn, (A, d) +1/ng > 1/2 for all ng, otherwise we must have hy,, »,(A,d) +
1/ny < 1/2 eventually. Hence

: 1
lim T, ., (A) = sup {Qi g (A, k/27%) 2 fork = 1, j} =T, (A).

ng— 00 j=1,...,2"3

Using the monotonicity of A, (4, d) in d and the proven properties of the limit function h, it follows that

lim I',,(A) =dimgyg(Sp(4)).
na—»o0
The fact that h,,, is non-decreasing in ns, the set {1/2"s,2/2"3 ... 1} refines itself and the stated mono-
tonicity show that convergence is monotonic from below and hence we get the E{{‘ classification.

Step 4: {Z, 054, A1} € 4 and {E, Qsa, An} € Eé“. The first of these can be proven as in step 3
by replacing (n, 12, n3) by (12, n3,n4) and the set Sy, ,, (A) by the set Sy, n,n, (A) given by the union
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of all S € p,, with S C [~ng,ns] and such that the ¥4' tower of algorithms discussed in Lemmam
outputs yes for the interior of S and input parameters (n2,n;). To prove {Eg,Qsa, A2} € 24 we use
exactly the same construction as in step 3 now using the ¥{' algorithm (which uses Ay) given by Lemma
8.1.7] O

8.4 Numerical Examples

We demonstrate that whilst some of the problems considered in this chapter require more than one limit to
solve, the towers of algorithms constructed in this chapter are usable and can be efficiently implemented
for large scale computations. Exactly the same comments can be made as in §7.6] The algorithms have
desirable convergence properties, converging monotonically or being eventually constant, as captured by the
3 /11 classification. Generically, this monotonicity holds in all of the limits, and not just the final limit: many
of the towers undergo oscillation phenomena where each subsequent limit is monotone but in the opposite
sense/direction than the limit beforehand. We can take advantage of this when analysing the algorithms
numerically, and this can be useful for creating ansatz for stopping criteria. The algorithms also highlight
suitable information that lowers the SCI classification to 3, /II;. Other advantages for the algorithms based

on approximating the resolvent norm include locality, numerical stability and speed/parallelisation.

8.4.1 Numerical examples for Lebesgue measure

Our first set of examples tests the towers of algorithms constructed for Lebesgue measure. We consider one

example where the solution is analytically known and then one where nothing is currently known.

Almost Mathieu operator

We begin testing the algorithms on the almost Mathieu operator, which was studied in of Chapter [6]

For the benefit of the reader, we recall that the operator acts on [?(Z) via
(Ho)n = Tp—1 + Tpy1 + 2A cos(2mna + v)x,.
For irrational «, the spectrum of H, does not depend on v and [AKOGQ]
Lebr(Sp(Ha)) =41 — |A|]. (8.4.1)

We consider the case & = (v/5 — 1)/2 and without loss of generality set v = 0. Figure shows the
output of the algorithm, computing Lebg (Sp(H,)) and Lebr(Sp.(H,)) for a range of values of . We
chose values of n = 5000 (corresponding to 10003 x 10001 matrices for resolvent estimates), a grid
spacing of 1/128 and a resolution in DistSpec of order 1/1000. One can clearly see that the estimates
for Lebr(Sp, (H,)) are decreasing to Lebg (Sp(H,,)), which is well-estimated by LebSpec (Method 1).
We also compare Method 1 with the naive estimate provided by finite section estimates Sp(P,, H, Py, ),
where P, is the orthogonal projection onto span{ey : |k| < n}. As expected, this gives too coarse an
estimate of the Lebesgue measure, overestimating the true value, particularly when the Lebesgue measure is
close to zero. LebSpec and LebPseudoSpec estimate the distance to the spectrum directly, allowing us
to produce covering estimates that are tailor-made to the spectrum of the operator at hand. Other advantages

include locality, numerical stability, speed/parallelisation, and guaranteed convergence.
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Sp.(Ha),e=1/2

——Sp.(H,), e =1/10
8 Sp, (H,),e = 1/20

——Sp.(Ha), € = 1/100 g
7 Sp.(Ha), e =1/200

= Sp(H,), Method 1
6 [= = [4—4A|

= = Finite Section

Estimated Lebsegue Measure
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Figure 8.1: Left: Output of algorithm to compute Lebgr(Sp.(H,)) as well as the direct algorithm for
Lebgr(Sp(H,)) from (Method 1). Note that we gain convergence to the true value as € | 0. Right:
Estimates for Lebg(Sp(H) N (—oo,x]) obtained by letting n; = 10° and selecting different ny. The
estimate above —3 appears to be well-resolved.

Graphical Laplacian on Penrose tile

We now consider the transport Hamiltonian H on a Penrose tile discussed in §3.4.1] of Chapter 3] An
obvious problem of a height two tower I',,,, ,,, is that apriori we do not know, for a given input A, a choice
of subsequence ny(n1) such that I'y,, (1, ) n, (A) converges. There are numerous ‘stopping criteria’ for such
scenarios (but, in general, the SCI classification shows that given such a criterion, there will always be
an operator for which the subsequence choice fails). In our case, note that, for the height two tower in
we may assume without loss of generality that I',,,, ,,, (A) is decreasing in n, but increasing in n;.
This suggests setting ny as computationally large as feasibly possible, then choosing a suitable cut-off, or
maxima N, for no and seeing if we appear to gain convergence for ny < N. We set n; = 10° and look at
the average estimated error of the output. This was 0.0016 for a grid spacing of 10~ so we shall consider
grid refinements of spacing 1/32,1/64,...,1/1024 corresponding to ns = 5,6, ..., 10. Figure (right)
shows the output as a cumulative Lebesgue measure, that is, an estimate of Lebg (Sp(H) N (—oo, z]) for a
given z, along with the computed spectrum (for a grid spacing of 10~°). The figure suggests that we have
not reached required convergence in n; to take no any larger. However, there is strong evidence that the
part of the spectrum closest to 0 is resolved by the algorithm and has Lebesgue measure zero. We shall see
more evidence for this in §8.4.2]

8.4.2 Numerical examples for fractal dimensions

We begin with the box-counting dimension and denote by T, the ¥4 algorithm for the spectrum from
Chapter [3] The caveat in the tower of algorithms used to compute the box-counting dimension is that
convergence can, at best, only be expected to be logarithmic in the following sense. We expect that the
error in approximating log(Ny jon (Sp(A)))/ log(2"2) (recall that N5 (F) is the number of closed boxes of
side length 6 > 0 required to cover F) via the first limit is roughly order O(1/n5). This can only be reached
in the worst case for dg (T, (A),Sp(A)) = O(1/2"2) meaning that we have to resolve the spectrum to

order exp(—1/¢) to approximate the box-counting dimension to order €. This is a problem shared by all
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Figure 8.2: Left: A plotof Ny, (T10s (H)N[—3, 00)) against ny. We found a scaling region with estimated
box-counting dimension ~ 0.8. Note that for large no = 5000, scalings are not resolved by ['105 (We can

~

predict when this happens using the ¥¢' property of T',,). We have also shown the approximation using finite
sections (square 10% x 10° matrix truncations), as a dashed line, which overestimate the size of coverings,
cannot detect the fractal structure, and break down for smaller ny. Right: A, 9.105(H,d) A 10 to show
a range of d where the estimates to the Hausdorff measures of Sp(H) N [—3, co) rapidly increase. These
curves increase with ng consistent with the theory. This supports that the Hausdorff dimension may be
close to 0.8. The ‘cut-off’ is a lower bound for the estimates given by J/2"2, with J being the number of
intervals of length 272 that need to be covered from the estimate of Sp(H) N [—3, 00).

methods that use the definition of box-counting dimension directly with an estimate of the spectrum. In
reality, it is much better to assume that one has the stronger asymptotic condition N5 ~ 1/6%, as 6 — 0.
We do this for the operator H from for which the fractal dimension of Sp(H) is unknown.

In Figure we plot N/, (T105 (H)N[—3, 00)) against ny. We also show a linear fit of slope 0.8. The
error control provided by the algorithm I, allows us to deduce the region where the fit holds, corresponding
to a reliable resolution of the spectrum. In other words, we can ensure that ny is not too large, so that the
spacings of the coverings are not smaller than the numerically resolved spectrum. As expected, when no
is too large we see the effect of the grid spacing and the unresolved spectrum (by choosing larger ni, we
can take ny larger). The figure suggests that the spectrum above —3 is fractal with box-counting dimension
~ 0.8 and hence has Lebesgue measure zero, in agreement with the findings in Figure [8.1]

Figure[8.2]shows what happens when one performs the same experiment but with finite section replacing
I',,. First, for small no, using finite section produces an overestimate of the size of the covering and the
corresponding slope of the graph due to spectral pollution. In other words, finite section prevents us from
detecting the fractal spectrum. Second, the covering estimate via finite section breaks down at smaller nq
and it is impossible to predict suitable values of ng so that the spacings of the coverings do not go beyond
the resolution of the computed spectrum. Together, these issues highlight why finite section is unsuitable in
general for approximating fractal dimensions and why the new algorithms are needed.

Finally, we investigate the Hausdorff dimension. An efficient way to compute a minimal covering is
to use binary trees. We take n; = 10° and use the error bounds to estimate the resolution obtained which
corresponds to ns. The height three tower can be written as

j 1 1
Thgnan, (A) = sup {j S hngmam (A, k/2™) + — > —fork =1, ...,j} ,
j=1,...,273 213 o 2
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where hy,; 5, n, 1S an analogue of 7—[? (see ~,| Figure (right) shows h,,, 9 195(H, d) for various d
and restricted to estimating Sp(H ) N [—3, co). The figure is consistent with the estimates increasing in ns.
There appears to be a region around 0.8 where the estimates begin to rapidly increase. Both algorithms

support the possibility that the spectrum above —3 is fractal and hence has Lebesgue measure zero.
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Chapter 9

Data-driven Computations of Spectral

Properties of Koopman Operators

In this chapter, based on [CT21, ICAS22], we consider spectral problems that arise in data-driven study of
dynamical systems. We consider autonomous dynamical systems whose state z evolves over a state-space

Q C R% in discrete time-steps according to a function F' : 2 — €2. In other words,

Toi1 = F(z,), n>0, 9.0.1)

where ) is a given initial condition. Such a dynamical system forms a trajectory of iterates o, Z1, &, . . . in
). We are interested in answering questions about the system’s behavior by analyzing such trajectories. The
interaction between numerical analysis and dynamical systems theory has stimulated remarkable growth in
the subject since the 1960s [Kal63l Cor63l, [Eps69, [SHOS]. With the arrival of big data [HTT™09]], modern
statistical learning [HTFQ9], and machine learning [MRT18]], data-driven algorithms are now becoming

increasingly important in understanding dynamical systems [SL09, BK19].

9.1 Koopman Operators and associated Challenges

A classical viewpoint to analyze dynamical systems that originates in the seminal work of Poincaré [Po199]
is to study fixed points and periodic orbits, as well as stable and unstable manifolds. Two fundamental

challenges with Poincaré’s geometric state-space viewpoint are:

* Non-linear dynamics: To understand the stability of fixed points of non-linear dynamical systems,
one typically forms local models centered at these fixed points. Such models allow one to predict
long-time dynamics in small neighbourhoods of fixed points and attracting manifolds. However, they
do not provide reasonable predictions for all initial conditions. A global understanding of non-linear

dynamics in state-space remains largely qualitative [BMM12].

¢ Unknown dynamics: For many applications, a system’s dynamics may be too complicated to de-
scribe analytically, or we may have incomplete knowledge of its evolution. Typically, we can only
acquire several sequences of iterates of starting at different values of y. This means that
constructing local models can be impossible. In this chapter, we focus on data-driven approaches to

learning and analyzing the dynamical system with trajectories of iterates from (9.0.1).
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Koopman operator theory, which dates back to Koopman and von Neumann [KvN32, [Koo31]], is an
alternative viewpoint from which to analyse a dynamical system, that uses the space of scalar observable
functions [Mez21]. Its increasing popularity has led to the term “Koopmanism” [BMM12], as well as thou-
sands of articles over the last decade. A reason for the recent attention is its use in data-driven methods for
studying dynamical systems (see [BBKK21]| for a review and the history). Some popular applications in-
clude fluid dynamics, epidemiology, neuroscience, finance, robotics, power grids, and molecular dynamics.

Let g : Q — C be a function that one can use to indirectly measure the state of the dynamical system
in (9.0.1)). Such a function g is known as an observable. One typically works in the Hilbert space L*({, w)
of observables for a positive measure w on Q We consider the Koopman operator K : D(K) — L*(Q,w),
where D(K) C L?(2,w), given by

[Kgl(z) = (go F)(z), e, g € D(K), 9.1.1)

where the equality is understood in the L?(£2,w) sense. K is a linear operator, regardless of whether the
dynamics are linear or non-linear. Hence, the behaviour of the dynamical system (9.0.1) is determined by
the spectral information of K (e.g., see (9.3.4)). However, since K is an infinite-dimensional operator, its
spectral information can be far more complicated than that of a finite matrix. For example, /C can have both
discret and continuous spectra.

Computing the spectral properties of K is an active area of research - see [CT21] for further discussion.

However, remaining challenges (some of which we have met in previous chapters) include:
¢ Continuous spectra.
¢ Spectral pollution.
¢ Lack of (non-trivial) finite-dimensional invariant subspaces.
¢ Strong non-linearities and high-dimensional state-space.

The goal of this chapter is to show how these challenges can be overcome. We have not framed theorems
in terms of the SCI hierarchy. However, the reader will be able to see its presence in some of the theorems.
Currently, it is an open problem to prove lower bounds for the classification of computational problems
associated with Koopman operators.

We assume that we have access to discrete time snapshots of this system, i.e., a finite set of M pairs of
measurements

~{:1:(j),y(j)}§”i1 such that y¥) = F(:lr:(j))7 j=1,..., M, 9.1.2)

where the operator F' evolves the system along one discrete time unit. For example, these snapshots could
be measurements of unsteady velocities across M discrete spatial grid points taken via Particle Image
Velocimetry (PIV). Suitable data could be collected from one long time trajectory, corresponding to (/) =

Fi=Y(zg), or from multiple shorter trajectories.

'We do not assume that this measure is invariant, and the most common choice of w is the standard Lebesgue measure. This
choice is natural for Hamiltonian systems for which the Koopman operator is unitary on L2 (2, w). For other systems, we can select

w according to the region where we wish to study the dynamics, such as a Gaussian measure.
2Throughout this chapter we use the term “discrete spectra” to mean the eigenvalues of /C, also known as the point spectrum. This

also includes embedded eigenvalues, in contrast to the usual definition of the discrete spectrum.
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9.2 Residual Dynamic Mode Decomposition (ResDMD)

We develop an algorithm, Residual DMD (ResDMD), that approximates the associated Koopman operator
of the dynamics. Our approach allows for Koopman operators /C that have no finite-dimensional invariant
subspace. The key difference between ResDMD and other DMD algorithms (such as EDMD) is that we
construct Galerkin approximations for not only /C, but also *KC. This difference allows us to have rigorous
convergence guarantees for ResDMD when recovering the spectral information of /IC and computing spectra

and pseudospectra. In particular, we avoid spectral pollution.

9.2.1 Extended DMD (EDMD) and a new matrix for computing residuals

Before discussing our ResDMD approach, we describe EDMD. EDMD constructs a matrix Kgpyp €
CN&*Nk that approximates the action of K from the snapshot data. The original version of EDMD assumes
that {20 )}]-M:1 C 2 are drawn independently according to w [WKRI15]. Here, we describe EDMD for
arbitrary initial states and use {z /) }ﬁl as quadrature nodes.

Given a dictionary {¢1,...,%n,} C D(K) of observables, EDMD selects a matrix Kgpyp that

approximates K on the subspace Vy,. = span{u1,...,¥n, },i.e.,

Ng

[KCws)(@) = 4;(F(2)) ~ Y (Kupwb)ijti(@)

i=1

for 1 < j < Nk. Define the vector-valued feature map ¥(z) = [wl () - Yn.(x)| € C*N5. Then
any g € Vp, can be written as g(z) = Z;VZKI Yj(z)g; = V(z) g for some vector g € CVx . It follows that

Nk
[Kgl(z) = U(F(z))g = ¥(z)(Kepup ) + | > v;(F(x))g; — ¥(@)(Kepmp 9)
=1

r(g,z)
Typically, Vi, is not an invariant subspace of X so there is no choice of Kgpyp that makes 7(g, z) zero
forall g € Viy and = € Q). Instead, it is natural to select Kgpyp as a solution of
ATEIIN v { | o res)Pdote) = [ [9(F@) - v@) B dw(z)} CERY
In practice, one cannot directly evaluate the integral in (9.2.1)). Instead, we approximate it via a quadra-
ture rule with nodes {z(/)} L, and weights {w;}7L,. The discretised version of is therefore the

following weighted least-squares problem:

M
, , 2
argmin g Ny x Ny ij H\I/(y(])) —U(zU)B 9.2.2)
j=1

e

A solution to (9.2.2) can be written down explicitly as Kepyp = (Ui W x )T (U5 Wy ), where ‘1’

denotes the pseudoinverse and W = diag(ws, ..., was). Here, ¥x and ¥y are the M x Nk matrices
T T
Uy = [‘l,(x(l))‘l' o WEOD)T] Wy = [\p(y(l))T ()T 9.2.3)

By reducing the size of the dictionary if necessary, we may assume without loss of generality that U5 WU x
is invertible. In practice, one may also consider regularisation through truncated singular value decompo-

sitions. Since WA W ¥y = 307, w; U(z?))* ¥(z)) and W Wy = 3200 w; ¥ (z) ¥ (y), if the

140



9.2. Residual Dynamic Mode Decomposition (ResDMD) CHAPTER 9. Data-driven Koopman Operators

quadrature converges then
i (O WWxje = (o) and - lm W Wy ] = (Kebg, 1),

where (-, -) is the inner product associated with L?(€), w). Thus, EDMD can be viewed as a Galerkin method
in the large data limit as M/ — oo. Let Py, denote the orthogonal projection onto Vi, . In the large data
limit, Kgpmp approaches a matrix representation of Py, KPy, and the EDMD eigenvalues approach
the spectrum of Py, K Py, . Thus, approximating Sp(K) by the eigenvalues of Kgpwp is closely related
to the finite section method. Since the finite section method can suffer from spectral pollution, spectral
pollution is also a concern for EDMD and it is important to have an independent way to measure the

accuracy of a candidate eigenvalue-eigenvector pair.

9.2.2 Measuring the accuracy of candidate eigenvalue-eigenvector pairs

Suppose that we have a candidate eigenvalue-eigenvector pair (A, g) of I, where A € Cand g = ¥ g €

VN, . One way to measure the accuracy of (), g) is by estimating the squared relative residual

Jo lKg)(2) — Ag( 2)* dw(z) _ (K - N)g, (K= N)g) (9.2.4)

Jo l9(@)[? dw(z) (9,9)
SN Giaw [, Kabg) — N, Kby — MICbw, ) + [N (0o, 1))

51 G50k (W, 1)
If K is a normal operator, then the minimum of (9.2.4) over all normalised g € D(K) is exactly the square
distance of ) to the spectrum of /C; otherwise, for non-normal K the residual can still provide a measure of
accuracy. One can also use the residual to bound the distance between g and the eigenspace associated with
A, assuming A is a point in the discrete spectrum of K.
We approximate the residual in (9.2.4) by
res(A, )7 = S Tk [(W Wy )i — MWW W) j — MWWy ) + A2 (‘I’xW‘I’X)Jk]
S Tk (T W) i

(9.2.5)
All the terms in this residual can be computed using the snapshot data. Note that, as well as the matri-
ces found in EDMD, - 9.2.3) has the additional matrix U3, WUy Moreover, under certain conditions, we

have limp/_,o0 res(X, )2 = [, |[Kgl(x) — Ag(z) (x)/ o 19(x)|” dw(z) for any g € Vi, . In partic-
ular, we often have limps o0 (W5 WUy = (Ika7 IC%—) and then \Ilg‘,W\I/y formally corresponds to a

Galerkin approximation of K*/C as M — oc.

9.2.3 Convergence of quadrature
There are typically three scenarios that ensure that
i (W WW ik = (s 1),
lim [OxW¥y]r = (Kw, ¥;), (9.2.6)
M —o0
lim [y WOy = (Ko, Kipj).
M—o00
* Suppose that {:1: M | are selected so that they are an M -point quadrature rule with weights {w J}

Integrals and inner products can then be approximated with numerical integration by evaluating func-

tions at the data points. High-order quadrature rules can lead to fast rates of convergence if the
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Algorithm 1 : ResDMD for computing eigenpairs without spectral pollution.

Input: Snapshot data {z(/), 4} | (such thaty) = F(z(1)), quadrature weights {w; }}Z,, a dictionary

of observables {1, };V:Kl and an accuracy goal € > 0.
1: Compute V5 WV x, WS WUy, and U5 W ¥y
2: Solve (V5 Wy )g = A\(W5 WV x)g for eigenpairs { ()}, gy = Vg;)}.
3: Compute res(\;, g(;)) for all j (see (9.2.5)) and discard if res();, g(;)) > .

Output: A collection of accurate eigenpairs {();,g;) : res(};, g;)) < €}.

dictionary functions and F' are sufficiently regular. If the integrands are analytic in a neighbourhood
of (2, then we can often select a quadrature rule that even converges exponentially as M — oco. For
example, if {2 is unbounded then we can use quadrature rules such as the trapezoidal rule and if €2 is
a bounded simple domain then one can use Gaussian quadrature. When the state-space dimension d

is moderately large we can use sparse grids and a kernelized approach for large d.

+ If w is a probability measure and the initial points {2/} j]‘/il are drawn independently and at random
according to w, the strong law of large numbers shows that limMﬁoo[\Il}W\I/X]jk = (Y, z/Jj> and
limps oo [T W8y 5 = (Ktbg, 1;) holds with probability one [KKST6| Section 3.4] provided that
w is not supported on a zero level set that is a linear combination of the dictionary [KM18| Section
4]. This is with the quadrature weights w; = 1/M and the convergence is typically at a Monte
Carlo rate of O(M 1/ 2) [Caf98]. It is a practical approach if the state-space dimension is large. One
could also consider quasi-Monte Carlo integration, which can achieve a faster rate of O(M 1) (up
to logarithmic factors) under suitable conditions [Caf98]]. This argument is straightforward to adapt

to show the convergence limps o0 [¥5 WUy |1 = (Kb, K1bj).

* For a single long trajectory, if the dynamical system is ergodic, then one can use Birkhoff’s Er-
godic Theorem to show that lima/ oo [U5x WU x|jr = (Y, ;) and limp oo [T WUy | =
(Kb, ;) [KMI18]. One chooses w; = 1 /M but the convergence rate is problem dependent [Kac96].
This argument is straightforward to adapt to show limps_, oo [T WUy |1 = (Kibi, K9;).

The scenario depends on the type of data that is collected. Typically for experiments, it is the later two
that are most relevant. However, if one is entirely free to select the initial conditions of the trajectory data,

and d is not too large, then we recommend picking them based on a high-order quadrature rule.

9.2.4 Convergence theorems

We now present our first ResDMD algorithm that computes the residual using the snapshot data to avoid
spectral pollution. As is usually done, the algorithm assumes that Kgpyp is diagonalisable. First, we
compute the three matrices W5, WU x, U5 W Wy, and U5, W ¥y Then, we find the eigenvalues and eigen-
vectors of Kgpwmp, 1.€., we solve (\IJ}W\IIX)T(\I/}W\Ify)g = Ag. One can solve this eigenproblem
directly, but it is often numerically more stable to solve the generalised eigenproblem (V% WUy )g =
AP WU x)g. Afterward, to avoid spectral pollution, we discard computed eigenpairs with a larger rela-
tive residual than an accuracy goal of € > 0.

Algorithm [T] summarises the procedure and is a simple modification of EDMD, as the only difference

is a clean-up where spurious eigenpairs are discarded based on their residual. This clean-up avoids spectral
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Algorithm 2 : ResDMD for estimating Sp, (KC).

Input: Snapshot data {27,y }} | (such thaty¥) = F(2(9))), quadrature weights {w;}}2,, a dictionary
of observables {1, ;V:’j, an accuracy goal € > 0, and a grid 21, ..., 2, € C.

1: Compute U3 WU x, U5 WUy, and U5 W ¥y
2: For each z;, compute 7; = mingccny res(z;, ¥g) (see (9.2.5)), which is a generalised SVD problem,

and the corresponding singular vectors g;.

Output: Estimate of Sp,(K): {2, : 7; < €}, and approximate eigenfunctions: {g; : 7; < €}.

pollution and also removes eigenpairs that are inaccurate because of numerical errors associated with non-

normal operators, up to the relative tolerance e. The following result makes this precise.

Theorem 9.2.1. Let K be the associated Koopman operator of (9.0.1) from which snapshot data is col-
lected. Let A s denote the eigenvalues in the output of Algorithm|[I] Then, assuming (9.2.6),

lim sup max |[|[(K = \) 7Y™t <e.
M_mpkeAMll( )T <

Exercise: Prove Theorem

Theorem tells us that, in the large data limit, ResDMD computes eigenvalues inside Sp,(K) and
hence, avoids spectral pollution and returns reasonable eigenvalues. Despite this, Algorithm [T] may not
approximate the whole Sp_(K), even as M — oo and Nx — oo. This is because the eigenvalues of
Kgpup may not approximate the whole spectrum of K. For example, consider the shift operator, which is
unitary. [DRAW PICTURE ON BOARD] Suppose our dictionary consists of the functions v; (k) = dj, ()
where ¢ : N — 7 is an enumeration of Z. Then, in the large data limit, Kgpyp corresponds to a finite
section of the shift operator and has spectrum {0}, whereas Sp(K) = T. Hence, for ¢ < 1, the output of
Algorithm[T]is the empty set. This issue is known as spectral inclusion.

To overcome this issue, [CT21]] developed ways to compute spectra and pseudospectra. For example,
Algorithmcomputes practical approximations of Sp_ (k) with rigorous convergence guarantees. Assum-
ing (9.2.6), the output is guaranteed to be inside the Sp, (). Algorithmalso computes observables g with
res(], g) <€, which are known as e-approximate eigenfunctions.

Exercise: Using Algorithmlgl develop an algorithm that converges to the so-called approximate point
pseudospectrum,
SPe ap(K) :=cl({A € C: oint (K = A) < €}),

as Ng — oo.

9.2.5 Dealing with large state-space dimension

When d is large, it can be impractical to store or form the matrix Kgpmp, since the initial value of Ny is

very large. We consider two common methods to overcome this issue:

(i) DMD: In this case, the dictionary consists of all monomials over £ with ¢;(x) = e;x. Itis standard

to form a low-rank approximation of v W W x via a truncated singular value decomposition (SVD) as

VWU x = U2, V). 9.2.7)
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Here, ¥, € C"*" is diagonal with strictly positive diagonal entries, and V,, € CVN«*" and U, €
CMx" have V,*V,. = U}U, = I,.. We then form the matrix

Kepvp = (VWU V) IVIW OV, = STWUSVIW Oy Y, = Vi KepupV, € C°7. (9.2.8)

Note that to fit into our Galerkin framework, this matrix is the transpose of the DMD matrix that is

commonly computed in the literature.

(i) Kernelized EDMD (KEDMD): kKEDMD [WRK15] aims to make EDMD practical for large d. Sup-
posing that W x is of full rank, KEDMD constructs a matrix with an identical formula to (9.2.8)) with

r = M, for which we have the equivalent form
Kepvp = (B4,U5) (VW Oy Wi VIV ) (Up 2. (9.2.9)
Suitable matrices Ups and 35, can be recovered from the eigenvalue decomposition
VWU x WV = Uy 23,05,

Moreover, both matrices \/W Uy \P}\/W and \/W Uy \I/}\/W can be computed using inner prod-
ucts. KEDMD applies the kernel trick to compute the inner products in an implicitly defined re-
producing Hilbert space H with inner product (-,-)3; [SchOI]. A positive-definite kernel function
S : Q x Q — R induces a feature map ¢ : R? — H so that (¢(z), p(y)) = S(z,y). This leads to
a choice of (typically non-linear) dictionary ¥ (z) so that U(2)¥(y)* = (p(x), p(y))n = S(z,y).
Often S can be evaluated in O(d) operations, meaning that Kgpyp is constructed in O(dM?) oper-

ations.

In either of these two cases, the approximation of K is equivalent to using a new dictionary with feature
map ¥(zx)V, € C'*". In the case of DMD, it is beneficial to use the mathematically equivalent choice
U(xz)V,. X, L which is numerically better conditioned. To see why, note that vW U x V.3~ L'~ U, and U,

has orthonormal columns.

The problem of vanishing residual estimates

Proposition 9.2.2. Suppose that VWV x'V,. has full row rank, so that v = M, and thatv € CM is an

eigenvector of Kgpwmp with eigenvalue . Then res(A, g) = 0.

Exercise: Prove Proposition9.2.

Similarly, if r is too large, res()\, g) will be a bad approximation of the true residual. In other words,
the regime r ~ M prevents the large data convergence (M — 00) of the quadrature rule, which holds for
a fixed basis and hence a fixed basis size. In turn, this prevents us from being able to apply the results of
Section We next discuss how to overcome this issue by using two sets of snapshot data; these could

arise from two independent tests of the same system, or by partitioning the measured data into two groups.

Using two subsets of the snapshot data

A simple remedy to avoid the problem in Section is to consider two sets of snapshot data. We

consider an initial set {:i:(j ) , f/(j ) } jl‘/ill, which we use to form our dictionary. We then apply ResDMD to the
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Algorithm 3 : ResDMD with DMD selected observables.
Input: Snapshot data {:i:(j ) gl )}é\il and {.’i'(j ) , ;l}(j ) }?gi, positive integer N < M.

I: Set Upyp(z) = [efz -+ ejx].
2: Compute a truncated SVD

1 B o T .
S .
3: Apply Algorithms[I]and [2] with the matrices
Wpwp (&) Upnn ()
Ux = : VN SN, Ty = : Ve Sk (9.2.10)
Upup (&) Upup (™))

Output: Spectral properties of Koopman operator according to Algorithms[I]and[2]

Algorithm 4 : ResDMD with KEDMD selected observables.

Input: Snapshot data {2/, 59 }22 and {29 g M, positive-definite kernel function S : @ x Q — R,
and positive integer N < M'.

1: Apply KEDMD to {:i(m),g}(m)}%':l with kernel S to compute the matrices Kgpyp, U and
using the kernel trick.

2: Compute the dominant N eigenvalues of Kgpwmp and stack the corresponding eigenvectors column-
by-column into Z € CM'* Nk

3: Apply a QR decomposition to orthogonalise Z to Q) = [Ql e QNK] € CM'*x N,

4 Apply Algorithmsandwith {2 (™IM” and the dictionary {1, };VzKl where

Ui(e) = |S@a") S@a?) - S@a™) OwT)Q, 1< <N

Output: Spectral properties of Koopman operator according to Algorithms|[I]and[2]

computed dictionary with a second set of snapshot data {.'fv(j ) , g}(j )}?4:’1, allowing us to prove convergence
as M" — oo.

Exactly how to acquire a second set of snapshot data depends on the problem and method of data collec-
tion. Given snapshot data with random and independent {a:(j )}, one can simply split up the snapshot data
into two parts. For initial conditions that are distributed according to a high-order quadrature rule, if one
already has access to M’ snapshots then one must typically go back to the original dynamical system and re-
quest M" further snapshots. For ergodic sampling along a trajectory, we can let {Z), )} j”i/l correspond
to the initial M’ + 1 points of the trajectory (&) = Fi=1(z,) for j = 1,..., M’) and let {:i:(j),g)(j)}jl‘i/i
correspond to the initial M” + 1 points of the trajectory (&) = Fi=l(zg) forj=1,...,M").

In the case of DMD, the two stage process is summarised in Algorithm [3] Often a suitable choice of
Ng can be obtained by studying the decay of the singular values of the data matrix.

In the case of KEDMD, the two stage process is summarised in Algorithm 4} The choice of kernel S
determines the dictionary and the best choice depends on the application. In the following experiments, we
use the Laplacian kernel S(z,y) = exp (—v||z — y||), where 7 is the reciprocal of the average £*-norm of
the snapshot data after it is shifted to have mean zero.

We can now apply the theory of Section in the limit M — oo. It is well-known that the eigen-

values computed by DMD and KEDMD may suffer from spectral pollution. However, and crucially in our

setting, we do not directly use these methods to compute spectral properties of . Instead, we are only
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using them to select a reasonable dictionary of size N, after which our rigorous ResDMD algorithms can
be used. Moreover, we use {ﬁz(m) , @(m)}f\nﬁl to check the quality of the constructed dictionary. By study-
ing the residuals and using the error control in ResDMD, we can tell a-posteriori whether the dictionary is
satisfactory and whether N is sufficiently large.

Finally, it is worth pointing out that the above choices of dictionaries are certainly not the only choices.
ResDMD can be applied to any suitable choice. For example, one could use other data-driven methods such

as diffusion kernels [GKKS18|| or trained neural networks [LDBK17, MEE20].

9.3 Spectral Measures for measure-preserving Systems

In the following, we will use the setup outlined at the start of Chapter 4]

9.3.1 The setup and Koopman mode decompositions

Suppose that the associated dynamics is measure-preserving so that w(E) = w({z: F(z) € E}) for
any Borel measurable subset £ C (). Equivalently, this means that the Koopman operator /C asso-
ciated with the dynamical system in is an isometry, i.e., ||KCg|| = |lg|| for all observables g €
D(K) = L*(Q,w). Dynamical systems such as Hamiltonian flows, geodesic flows on Riemannian mani-
folds, Bernoulli schemes in probability theory, and ergodic systems are all measuring-preserving. Moreover,
many dynamical systems become measure-preserving in the long-run.

As discussed in Chapter[d] spectral measures provide a way of diagonalising normal operators, including
self-adjoint and unitary operators, even in the presence of continuous spectra. Unfortunately, a Koopman
operator that is an isometry does not necessarily commute with its adjoint. Therefore, we must consider its

unitary extension before defining a spectral measure and Koopman mode decomposition.

Unitary extensions of isometries

Given a Koopman operator KC of a measure-preserving dynamical system, we use the concept of unitary
extension to formally construct a related normal operator K’. That is, suppose that K : L*(,w) —
L?(Q,w) is an isometry, then there exists a unitary extension K’ defined on an extended Hilbert space H’
with L2(Q,w) C H' [NFBKI0, Proposition I.2.3] Even though such an extension is not unique, it allows
us to understand the spectral information of C by considering K’, which is a normal operator. If F' is

invertible and measure-preserving, K is unitary and we can simply take K’ = K and H' = L?(Q,w).

Spectral measures of a Koopman operator

Given an observable g € L?(Q,w) C H’' of interest such that ||g|| = 1, the spectral measure of K’ with
respect to g is a scalar measure defined as 1, (U) := (EX'(U)g, g), where U C T is a Borel measurable
set [RS80]]. For plotting and visualisation, it is more convenient to equivalently consider the corresponding

probability measures v, defined on the periodic interval [—, 7], after a change of variables A = exp(6)

3To see how to extend K to a unitary operator K’, consider the Wold—von Neumann decomposition [NFBK10l Theorem I.1.1].
This decomposition states that /C can be written as K = (®qec1S«) @ U for some index set I, where S, is the unilateral shift on a
Hilbert space H and U is a unitary operator. Since one can extend any unilateral shift to a unitary bilateral shift, one can extend K

to a unitary operator K'.
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so that dpg(A\) = dvg(8). We use the notation f[—w,ﬂ]pe,- to denote integration along the periodic interval
[—7, T per as ffﬂ is ambiguous since spectral measures can have atoms at £7. The precise choice of g is
up to the practitioner: smooth g makes v, easier to compute but tends to blur out the spectral information
of KC, whereas v, is more challenging to compute for non-smooth g but can give better resolution of the
underlying dynamics. In other situations the application itself dictates that a particular g is of interest.

To compute vy, we start by noting that the Fourier coefficients of v, are given by

~ 1 —1in 1 —-n 1 -n
Vg(n) : /[ | e du, (0) = %/T)\ dpg(N) = §<IC' 9, 9), n € Z. 9.3.1)

T om
Since K’ is a unitary operator its inverse is its adjoint and thus, the Fourier coefficients of v, can be ex-
pressed in terms of correlations (K"g, g) and (g, K"g). That is, for g € L?(Q,w),

n

Ug(n) = %(K_"g,g% n <0, Ug(n) = %(g,K g), n>0. 9.3.2)
Since g € L*(Q,w) and (9.3:2) only depend on correlations with K, and v, is determined by its Fourier
coefficients, we find that v, is independent of the choice of unitary extension K'. Henceforth, we can safely
dispense with the extension K’, and call v, the spectral measure of /C with respect to g.

From (0.3:2), we find that 7,(—n) = 7, (n) for n € Z, which tells us that v, is completely determined
by the forward-time dynamical autocorrelations (g, K™ g) with n > 0. Equivalently, the spectral measure of
IC with respect to almost every g € L?({,w) is a signature for the forward-time dynamics of (9.0.1). This
is because v, completely determines K when g is cyclic, i.e., when the closure of span{g, Kg, K?g, ...} is
L?(9,w), and almost every g is cyclic. If g is not cyclic, then v, only determines the action of K on the

closure of span{g, Kg, K2g, ...}, which can still be useful if one is interested in particular observables.

Continuous and discrete parts of spectra, and Koopman mode decompositions

Of particular importance to dynamical systems is Lebesgue’s decomposition of v:

dvy(y) = > (Pxg, 9) 8y — 0)dy + py(y) dy + dv§™ (y) . (9.3.3)
A=exp(i0)€Sp,, (K)

continuous part

discrete part
The discrete (or atomic) part of v, is a sum of Dirac delta distributions, supported on Sp,(K), the set
of eigenvalues of K[| The coefficient of each & in the sum is (Pyg,g) = [|Prg||?, where Py is the
orthogonal spectral projector associated with the eigenvalue A. The continuous part of v, consists of a
part that is absolutely continuous with respect to the Lebesgue measure, with Radon-Nikodym derivative
pg € LY([—7,7]per), and a singular continuous component uésc). The decomposition in (9.3.3) provides
important information on the evolution of dynamical systems. For example, suppose that there is no singular
continuous spectrum, then any g € L?(), w) can be written as
9= Z CAPA +/ Po.g dY,
AESP,, (K) [=m7]per

where the ) are the eigenfunctions of K, c) are expansion coefficients and ¢g 4, is a “continuously
parametrised” collection of eigenfunctionsE] Then, one obtains the Koopman mode decomposition [Mez035]]

g(x,) = [K"gl(zo) = Z exA"ox(xo) +/ e g 4 (o) dO. 9.3.4)
AESP, (K) [=m 7 lper

4 After mapping to the periodic interval, the discrete part of v is supported on the closure of Spp (K'). However, we can always
choose the extension K’ so that Sp,(K’) = Sp,, () with the same eigenspaces.
5To be precise, ¢g,4 df is the absolutely continuous component of dEX (0)g and pgy () = (90,4, 9)-
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Often, one can also characterise a dynamical system in terms of these decompositions. For example,
suppose F' is measure-preserving and bijective, and w is a probability measure. In that case, the dynamical
system is: (1) ergodic if and only if A = 1 is a simple eigenvalue of /C, (2) weakly mixing if and only if
A = 1 is a simple eigenvalue of I and there are no other eigenvalues, and (3) mixing if A = 1 is a simple
eigenvalue of X and K has absolutely continuous spectrum on span{1}+ [Hall7]]. Different spectral types
also have interpretations in the context of fluid mechanics [Mez13|], and weakly autonomous transport where

the Koopman operator has singular continuous spectra [Zas02].

9.3.2 General framework for computations

To develop convergence theory, we consider convolution with kernels. We form an approximation to v, by
convolution. That is, we define

y;(oo):/[ = 0)ivy0),

where K. are a family of integrable functions { K. : 0 < e < 1} satisfying certain properties (see Definition

9.3.1) so that v; converges to ¥4 in some sense. The most famous example of K. is the Poisson kernel for

the unit disc given by

1 (1+e€)? -1
K.(0) = — , 9.35
(6) 211+ (1+¢€)%2 —2(1+¢€)cos(9) ©3.5)
in polar coordinates with 7 = (1 + ¢)~!. The Poisson kernel is a first-order kernel because, up to a

logarithmic factor, it leads to a first-order algebraic rate of convergence of v to v,. We now give the
following general definition of an mth order kernel, and justify their name by showing that they lead to an

mith order rate of convergence of v; to v, in a weak and pointwise sense (see Section[9.3.2).

Definition 9.3.1 (/mth order periodic kernel). Let { K. : 0 < € < 1} be a family of integrable functions on

the periodic interval [—m, 7| per. We say that { K.} is an mth order kernel for [—m, 7| per if

(i) (Normalised) f[, K. (0)do = 1.

7T)T‘-]per

(ii) (Approximately vanishing moments) There exists a constant Cg such that

/ 0" K. (6) do
[~ per

(iii) (Decay away from 0) For any 6 € [—m, 7] and 0 < ¢ < 1,

< Cge™log(e™t), foranyinteger1 <n <m — 1. (9.3.6)

CK em

[Ke(0)] < G

9.3.7)

The conditions in Definition [9.3.T]are mostly technical assumptions that allow one to prove appropriate
convergence rates of v; to v;. For pointwise convergence, property (iii) is required to apply a local cut-off
argument away from singular parts of the measure. Properties (i) and (ii) are used to show that terms vanish
in a local Taylor series expansion of the Radon—Nikodym derivative, and the remainder is bounded by (iii).

For weak convergence, we apply similar arguments to the test function by Fubini’s theorem.
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Pointwise convergence

For a point 6y € [—, 7], the value of the approximate spectral measure v (6) converges to the Radon—
Nikodym derivative, p, () provided that v, is absolutely continuous in an interval containing 6, (without
this separation condition it still converges for almost every ). The precise rate of convergence depends
on the smoothness of p, in a small interval I containing 6. In particular, we write p, € C™(I) if p,
is n-times continuously differentiable on I and the nth derivative is Holder continuous with parameter

0 < a < 1. For hy € C%¥(I) and hy € C¥*(I) we define the seminorm and norm, respectively, as

|hi(z) — ha(y)] (k) &)
[hlco.e(r) = iy P o P [haller.ary = lhg |co.e(r) + max 175" oo, 1-

We state the following pointwise convergence theorem for general complex-valued measures v as we apply
it to measures corresponding to test functions to prove Theorem The choice v = vy with ||y]| =1

in Theorem [9.3.2] gives pointwise convergence of spectral measures.

Theorem 9.3.2 (Pointwise convergence). Let { K.} be an mth order kernel for [—m, 7| per and let v be a
complex-valued measure on [—, T|per With finite total variation ||v||. Suppose that for some 0y € [—m, 7]
and n € (0,7), v is absolutely continuous on I = (6y — 0,0y + n) with Radon-Nikodym derivative
p € C*(I) (o € [0,1)). Then the following hold for any 0 < e < 1:

(i) If n + o < m, then

em —nN—
p00)~ [ Kty = 0)av(0) 5 Coe I+ s ) (77 + 7S )L+ 7,
o (9.3.8)
(ii) If n + o > m, then
m - e —m
P(eo)—/[ ] K (0o —0)dv(0)| < Cx ([lv]| + ||P||cm(1))<€ log(e™ ') + (€‘H7)m+1>(1 +n ™).
o 93.9)

Here, ‘S’ means that the inequality holds up to a constant that only depends on n + o and m.

Proof. By periodicity, we can assume without loss of generality that 8y = 0. First, we decompose p into
two parts p = p1 + pa, where p; € C"™%(T) is compactly supported on I and ps vanishes on (—7/2, +1/2).
Using (9.3.7), we have

<

p(0) /[ K)o

per

p(0) — /[ K.(~6)p(6) do

7,7 per

+/ Cre™d|vr|(0)
0|52 (e+n/2)mtL’

(9.3.10)
where dv*(0) = dv(0) — p1(0) df. The second term on the right-hand side of (9.3.10) is bounded by
CiCx (||v]| + || 1 | o0 (1)) €™ (€ + 1) =™V for some constant Cy independent of all parameters. To bound

the first term, we expand p; using Taylor’s theorem:

k=1 (5) (k)
NP 0) e () o
p(6) = jgzo 7 67 + o 0%, k = min(n, m), (9.3.11)

where |£g| < |0]. We now consider the two cases of the theorem separately.

Case (i): n + o < m. In this case, £k = n and we can select p; so that,

cra(n) < Cn,a)llpllenay (L+027"7%) 5 lollemy < C(n,a)llp

l[p1] cmoe (1) (9.3.12)
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for some universal constant C(n, «) that only depends on n and «. Existence of such a decomposition
follows from standard arguments with cut-off functions. Using (9.3.T1), part (ii) of Definition[9.3.T|and the
first bound of (9.3.12), we obtain

<CoCk||pllenare™log(e™ ) (1 + ")

pr(0) - /[ K0 (0)do

per

- (9.3.13)

/ K. ()P = A0 g
[ ]

+

)

n!

per

for some constant Cl independent of €, 7 and v (or p, p1, p2). Note that we have added the factor of pgn) (0)
into the integrand by a second application of part (ii) of Definition [9.3.1] and the fact that n < m. The
Hoélder continuity of p{™ implies that [p{" (&) — p{"(0)] < C(n,a)|pllenacry (1+n7""%) 6. Using

this bound in the integrand on the right-hand side of (9.3.13) and (9.3.7)), we obtain

m/e pntaqr

e (D) <€ log(e™") +6”+“/0 W) (L+n7m79),

for some constant C'3 independent of €, n and v (or p, p1, p2). Since m > n + «, the integral in brackets

< C3Ck||p|

p(0) - /[ K.(~0)p1(0) dB

—7,7]per

converges as € | 0 and the bound in (9.3.8) now follows.

Case (ii): n + o > m. In this case, £ = m and we can select p; such that

Iptllemny < Cm)lpllemay (L+07"),

for some universal constant C'(m) that only depends on m. Again, existence of such a decomposition
follows from standard arguments with cut-off functions. Using (9.3:11) and applying (9.3.6)) to the powers
6, for j < m and (9:377) to the #™ term, we obtain

Tdr

/€
— K. (—=0)p1(0)do| < C " ™ log(e™t) + €™ — (14 ™
p1(0) /[mr]pcr (=0)p1(0) dO| < C2Ck||pllem(r) <€ og(e™") +e /0 (1+r)m+1> (T+97m),

for some constant C'y independent of ¢, 77 and v (or p, p1, p2). The bound in (9.3.9) now follows. O

Weak convergence
We now turn to proving weak convergence.

Theorem 9.3.3 (Weak convergence). Let { K.} be an mth order kernel for |[—m, 7] per, ¢ € C™*([—7, T]per)s

and let v, be a spectral measure on the periodic interval [—m, T|per. Then

/S CK”Q/)HC"’Q([—?T,‘IT]I)SI-) (enJra + ™ IOg(eil)) ,

(9.3.14)

P(O)vi(0)do — @(0) dv, (0
|/[7T77r]p0r ( ) g( ) /[”’W]Pcr ( ) g( )

where ‘<’ means that the inequality holds up to a constant that only depends on n. + o and m.

Proof. Let K .(0) = K.(—0), then it is easily seen that { K.} is an mth order kernel for [, 7], Fubini’s

theorem allows us to exchange the order of integration to see that

O (0)d6 = O) e x v)(6) db = K )(0) dvy (0).
/[ﬂ,ﬂpﬂ )75(6) /[] SO ) O)d0 = [ (Rex6)(6) dy(0)

[=m.7]per
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We can now apply Theorem to the absolutely continuous measure with Radon—-Nikodym derivative ¢
and the kernel K, (e.g., with n = 7/2) to see that

[ % 61(6) = 6(8)] < CLCkBllcn e ((mmyer) (€747 + ™ Tog(e ™))
for some constant C'; depending on n, o and m. Since v, is a probability measure, (9.3.14) follows. O

The high-order convergence in Theorem@]does not require any regularity assumptions on v,. More-
over, though not covered by the theorem, for any mth order kernel and continuous periodic function ¢, weak

convergence still holds.

Recovery of the atomic parts of the spectral measure

Finally, we consider the recovery of the atomic parts of spectral measures or, equivalently, Sp,(K) - the set
of eigenvalues of K (see (9.3.3)). This convergence is achieved by rescaling the smoothed approximation

K. xvg.

Theorem 9.3.4 (Recovery of atoms). Let { K.} be an mth order kernel for [—m, 7| per that satisfies
~1

€
limsup —— < o0,
el0 |K€(0)|

and let v, be a spectral measure on [—7, T|per. Then, for any 0y € [—7, T|per,

va({60}) = lim %(O)[Ke ¥ 1,)(80)- (9.3.15)

Proof. By periodicity, we may assume without loss of generality that 8 = 0. Let v/ = v, — v,({0})do,
yp y y g y 9 g g

then
1 1
oy el = () +

Consider the function K.(—6)/K.(0), which is uniformly bounded for sufficiently small ¢ using and
the assumption lim sup, | ﬁ < o0. Since lim, o K(—0)/K(0) = 0 for any 6 # 0 and v, ({0}) = 0,

(K * v,)(0). (9.3.16)

1 Ke(fa)
lim —— [K, * /](0) = Ii ' =0
mrglkodo-igf | Fa-o
where we used the dominated convergence theorem. Using (9.3.16)), the theorem now follows. O

-1
The condition that lim sup, | 175y < o0 is a technical condition that is satisfied by all the kernels
constructed in this chapter. A condition such as this is required to recover the atomic part of v, as it says

that K. must become localised around 0 sufficiently quickly as ¢ — O.

9.3.3 Computation from autocorrelations

We now suppose that one has already computed the autocorrelations (g, X"¢g) for 0 < n < N and would
like to recover a smoothed approximation of v,. Since the Fourier coefficients of v, are given by autocor-
relations (see (9.3:1))), the task is similar to Fourier recovery [GS97bl[AHI2]. We are particularly interested
in approaches with good convergence properties as N — oco, as this reduces the number of computed

autocorrelations and the sample size M required for good recovery of the spectral measure.

151



9.3. Spectral Measures for measure-preserving Systems  CHAPTER 9. Data-driven Koopman Operators

Motivated by the classical task of recovering a continuous function by its partial Fourier series, we start
by considering the “windowing trick” from sampling theory. That is, we define a smoothed approximation

to v, as

N -1
n 1

N
(@)= Y e(1)ame™ = = 3 o(5)TETae + 5> o) oK)
n=—N n=—N n=0

(9.3.17)
The function ¢ : [—1,1] — R is often called a filter function. The idea of ¢ is that ¢(z) is close to 1 when
x is close to 0, and ¢ tapers to 0 near x = £1. By carefully tapering ¢, the partial sum in converges
to v4 as N — oo. For fast pointwise or weak convergence of v, x to v, it is desirable for ¢ to be an even
function that smoothly tapers from 1 to 0.

One of the simplest filters is the hat function @p,s(z) = 1 — ||, for which corresponds to the
classical Cesaro summation of Fourier series. With this choice of ¢, v, n(#) is the convolution of v, with
the famous Fejér kernel, Fy (0) = Zi\f:_ ~ (1= |n|/N)e™?. Other filter functions can provide a faster rate
of convergence than ¢p,¢(x) = 1 — ||, including the cosine and fourth-order filters [GS97b]:

1
Peos(T) = 5(1 — cos(mz)), Gfour(z) =1 — x4(—20\x|3 + 702% — 84|x| + 35).

For the recovery of measures, we find that a particularly good choice is

Phump () = exp (-1_2|x exp (—;4)) . e~ 0.109550455106347, (9.3.18)
where the value of ¢ is selected so that @pump(1/2) = 1/2. This filter can lead to arbitrary high orders of
convergence with errors between v, v and v, that go to zero faster than any polynomial in N~'. A further
useful property is that v, n localises any singular behavior of ygﬂ

Algorithm [5] summarises our computational framework for recovering a smoothed version of v, from
autocorrelations of the trajectory data. It is easy to verify that v4 5 = K. * v4 with
1 o N\ ino -1
K0 =53 o(5)e™ N=l").

The properties of an mth order kernel can be translated to properties of a filter and we can therefore use the

convergence theory of Section[9.3.2]

Proposition 9.3.5. Let m € N and suppose that o is an even continuous function that is compactly sup-
ported on [—1,1] such that (a) ¢ € C™ '([~1,1]), (b) ©(0) = 1 and ©™(0) = 0 for any integer
1<n<m-—1, ()™ (1) = 0 for any integer 0 < n < m — 1, and (d) el € C™TH([0, 1]).
Then,

N
K.(0)= — v (ﬁ) e N =|e! (9.3.19)

is an mth order kernel for [—m, T per.

Exercise: Prove Proposition 9.3.5|using the Poisson summation formula.

Therefore, it can be verified that: ©hat, @cos, and Yoy induce first-order, second-order and fourth-order
kernels in (9.3.19), respectively. Similarly, ¢pump induces a kernel that is mth order for any m € N. For
example, up to a logarithmic factor, the rate of convergence for ¢roy, is O(€*) as € — 0 (resp. O(N %) as

N — 00) in a weak and pointwise sense.

9This because the kernel associated with ©bump (see Proposition|9.3.5) is highly localised due to the smoothness of Ypump-
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Algorithm 5 A computational framework for recovering an approximation of the spectral measure v, asso-

ciated with a Koopman operator that is an isometry.

Input: Trajectory data, a filter ¢, and an observable g € L?(Q,w).

1: Approximate the autocorrelations a,, = i(g, K™g) for 0 < n < N. (The precise value of N and the
approach depends on the trajectory data (see Section[9.2.3).)

2: Seta_, =a, forl <n < N.

Output: The function vy v (0) = SN\ 0 (2) a,e™” that can be evaluated for any 0 € [—7, 7] per.

Weak Convergence Error Pointwise Error

10° 10°
@hat
gOCos
-5 © i 5
10 You, 10
10—10 L 4 1 0—1 0oL
Sobump
L]
1 0—15 L 1 0—1 5 L
10" 102 103 10" 102 10°
N N

Figure 9.1: Relative errors between v, n and v, for the shift operator computed with filters ¢y,,¢ (blue),
Peos (red), Yrour (yellow), and pr,ump, (purple). Left: Relative error between v, n to v, in the sense of weak
convergence for the test function ¢(6) = cos(56)/(2 + cos(#)). Right: Relative error between v, n to p,

at § = 0, illustrating pointwise convergence.

As an example, consider the shift operator with state-space {2 = Z (and counting measure w) given by
Tpy1 = Flay), Fz)=2+1.

We seek to compute the spectral measure v, with respect to g € L*(Z,w) = ¢*(Z), where ¢*(Z) is the space
of square summable doubly infinite vectors. This example is a building block of many dynamical systems,
such as Bernoulli shifts, with so-called Lebesgue spectrum [AA68, Chapter 2]. We consider the observable
g(k) = Csin(k)/k, where C ~ 0.564189583547756 is a normalisation constant so that ||g|| = 1. For
this example, v, is absolutely continuous but p, has discontinuities at § = £1. Figure shows the weak

convergence (left) and pointwise convergence (right) for various filters.

9.3.4 Computation using ResDMD

We now develop rational kernels that allow us to compute smoothed approximations of spectral measures
from the ResDMD matrices U5 WV x, 5 W Wy, and W5 W ¥y . Moreover, these matrices can be reused
to computed spectral measures with respect to different observable functions g.

The following lemma will be used to build mth order rational kernels. It provides sufficient conditions

for a family of integrable functions to be an mth order kernel.

Lemma 9.3.6. Let {K. : ¢ € (0,1]} be a family of integrable functions on the periodic interval [—T, 7] per
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that integrate to 1. Suppose that there exists a constant C such that for any integer n with 0 < n <m — 1,

/ K (—0)e™dg — 1| < Ce™log(e™ ), (9.3.20)
[~ 7] per
and such that
Ce™m
K e, 9.3.21
|[K(0)] < (e o)™ ( )

forany 0 € [—m,T|per and € € (0,1]. Then { K.} is an mth order kernel for [—m, T|per-

Exercise: Prove Lemma

We begin by considering a unitary extension K’ of K, which is defined on a Hilbert space ' that is an
extension of L?(Q,w). Let z € C with |z| > 1 and g € L?*(Q,w). Since ||K|| = 1 < |z| for z € Sp(K),
(K'—2)"lg=(K—-2)"'gand

e
———dyy(0), (9.3.22)

e —z

(00 =) 0%0) = 00 = =) g0 = [ T2 g = [

[_7‘—777]]>er
where the last equality follows from a change-of-variables. If z # 0 with |z| < 1, then z may be in Sp(K)
since K is not necessarily unitary. However, since 27! > 1, 27! ¢ Sp(K) and hence (K’ —z71)71g =

(K —z7')~1g. Since v, is a real-valued measure, we find that

i0
<9a(’C_2_1)_19>=<g,(/C/—z_1)_1g>H/:/[ | dl’g(e)lz—z/[ | M (9.3.23)

e —7 e — 2

The leftmost and rightmost sides of (9.3:22)) and (9.3:23)) are independent of X', so we can safely dispense

with the extension and have an expression for a generalised Cauchy transform of vy, i.e.,

i6 K—2)"1g,K*g), if |z| > 1,
Cyg(z)_1/[ | efdv, () 1 J(( )"19.K*g) E

g ez Tl =2y, (K—2"1)"g), ifz#0with|z| <1.
The importance of (9.3.24) is that it relates C,, to the resolvent operator (K — z)~! for |z| > 1. Below, we
show how to compute the resolvent operator from snapshot data for |z| > 1. Since |z| > 1, we can provide

convergence results and stability results even when we replace C by a discretisation.

To recover v, from C,,, a derivation motivated by the Sokhotski—Plemelj formula shows that

Cy, (e (1+e)7") —Cp, (e (1+¢)) = / K (0o — 0) dvy(0), (9.3.25)
[_”v”]per

where K. is the Poisson kernel for the unit disc (see (9:3.3)). The Poisson kernel for the unit disc is a
first-order kernel. We can generalise the Sokhotski-Plemelj-like formula in (9:3.23)) to develop high-order

rational kernels. Let {z;}'2; be distinct points with positive real part and consider the rational function:

—ig m
e cj d;
K.(0) = , ! - — J . 9.3.26
©) 27 Z [e“’ —(14+ezm)t e —(1+4ez) ( )
A short derivation using (9.3.24) shows that
/[ | Ko (00— 0)dug(0) =Y [¢;Cu, (€ (1 + €55)7") = d;Cy, (¢ (1 + €2;))]
T, per j=1
-1 - —i i — i - *
= 2 D [ege (1 ), (6 — (1 +e2)) ' g) + (K — 1+ 7)) g, K0)
j=1

(9.3.27)
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It follows that we can compute the convolution [/, * v/4](6y) by evaluating the resolvent at the m points
{et (1 +ez;) 1. We use rational kernels because they allow us to compute smoothed approximations of
the spectral measure by applying the resolvent operator to functions.

However, for (9.3.27) to be a good approximation of v,, we must carefully select the points z; and the
coefficients {c;,d;} in (9.3:26). In particular, we would like { K.} to be an mth order kernel. First, we
define (;(€) by the relationship 1 + €C;(€) = (1 + €z;) " and use Cauchy’s Residue Theorem to show that

for any integer n > 1,

) 1 m Cs m d:
/[ﬂ,ﬂ]per 2w Jp ; A—(1+ez) ! Z A—(1+ez)

j=1
m m n n m
S (e S (1) Segor
j=1 j=1 k=1 j=1
It follows that condition (9.3.20) in Lemma[9.3.6 holds if
1 . 1 01(6)

¢i(e) Cm(€)

Q

)
-~

N
~—
S

= | (9.3.28)

Glem™t .o Cu(emt cm(€) 0
Note also that, if this holds, the coefficients c; = cj(e) remain bounded as € | 0. To ensure that the decay
condition in (9.3:21) is satisfied, let w = (e~* — 1) /e. The kernel in (9.3.26) can then be re-written as
—1,-i6 ™

€ ‘e I d;
K.(0) = o Z [w—é( 7™ w_ﬂzj] . (9.3.29)

Jj=1

Therefore, we have

—1p—if ™ e diz:
WK () = =2 {cj poable g diz }
2 = w—(i(e) W — z;
— e (c; —dj) + e $ [ ¢;Gi(e) djz; ]
27 = J J 2T el ¢ile) Cw— 2
By repeating the same argument m times, we arrive at
ele? |’ 1—k o~ (¢iG(e djzj"
WK (0) = Zwm Z ;¢ (€) +Z< 2] - 0 > . (9.3.30)
S\w— QJ € W=z
This means that we should select the d}.’s so that
1 1 dy 1
Z1 Zm d2 0
) =1 1. (9.3.31)
21 Zm—1 dm 0

We conclude that if the coefficients {c;}72; and {d;}"., satisfy (9.3.28) and (9.3.31)), respectively, then

m—1 m

. m C'C‘(E)m d zm _
S e i) =0, [ (29 B
J

k=0 j=1 =1\ T Gile)
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Re(K1(0))

Figure 9.2: The mth-order kernels (9.3.26) constructed with the choice (9.3.32) fore = 1and 1 < m < 6.

m {dl,...7d[m/2'|} {cl(e),...,qm/ﬂ(e)},ez0.1
1=3i 3410¢

2 {57} {757}

i —2024797 121
3 {-2-14,5} {=2%7 %
4 { —394-65¢ 17—85% } { —1165710—2944643: 513570+3570527i}

24 ’ 8 750000 ’ 250000
5 { 154105 —39—13i 65 4052283—1460282¢ —23931574+4865517 190333

4 2 ’ 2 648000 ’ 81000 > 4000
6 725—10151 —2775+464757i 1073—75114 24883929805+815890720627 —19967590755—935969421827 78987703974-1024245047461
{ 192 192 ’ 96 } 8067360000 ) 1613472000 ’ 806736000 }

Table 9.1: Coefficients in the rational kernels in (9.3.26)) for 1 < m < 6, the choice (9.3.32)), and ¢ = 0.1.
We give the first [m/2] coefficients as ¢, 41— = ¢ and dp 11— = d;.

By (9:3:30), this means that |w|™ |K.(0)| <
|K.(0)] < min{e™t, e |9~ (m+tD} < em(e + |9])~ (D). Using Lemma(9.3.6, we have proved the fol-

lowing proposition.

e lw|~t. Moreover, since |K .(0)] < e ! we see that

Proposition 9.3.7. Let {z;}", be distinct points with positive real part and let K. be given by (9:3:26).
Then, {K.} is an mth order kernel for [—m, 7| e; if the coefficients {c;}-, and {d;}}™, satisfy 0.3.28)

and (9:331), respectively.

The choice of rational kernel

We are free to choose the points {2;}72; in (0.3.7) subject to Re(z;) > 0, after which the linear systems
(©:328) and ([©.3.31) provide suitable {c;}7-, (dependent on ¢) and {d;}7-, (independent of ¢). As a
natural extension of the Poisson kernel in (9.3.5), we select the points {z;}7, as

)
zj=1+<mi1—1>i, 1<j<m

(9.3.32)

The kernels that we have developed are typically not real-valued. Since v, is a probability measure and
hence real-valued, we often gain better accuracy for a particular € by considering the kernel Re(K.), and
this is what we do throughout this chapter. The convolution with Re(K.) can be computed by taking the
real part of the right-hand side of (9.3.27). The first six kernels with the choice € = 1 are shown in Figure
The exact coefficients {c;, d;}7L, for e = 0.1 are shown in Table9.1|for the first six kernels.
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An algorithm for evaluating a smoothed spectral measure

To evaluate [K, * 14| at a single point 6y € [—7, T|per, We use the setup of ResDMD so that we can
obtain rigorous a posteriori error bounds on the computed resolvents, allowing us to adaptively select the
dictionary size Nk based on the smoothing parameter €. Since K is an isometry, we only need to compute

(K — 2)~1 for |z| > 1 = ||K|| and so we can achieve our goal with standard Galerkin truncations of /.

Theorem 9.3.8. Suppose that KC is an isometry and X\ € C with |A| > 1. Let 11,a, ... be a dictionary
of observables and Vi, = span {1, ..., Ny }, 50 that Uy, enV, is dense in L (2, w). Then, for any
sequence of observables g, € Vi, such thatlimy, oo gn, = g € L*(Q,w),

—1
lim Py KPr, = Ange ) gne = (K=,

NK—)OO

where Py, is the orthogonal projection operator onto Vi, and I, is the N X N identity matrix.

Exercise: Prove Theoremusing a Neumann series argument.
We now apply Theoremto evaluate [/ * /4] at 6. Recall from that there are two types of
inner products to compute: (i) (g, (K —\)~"1g) and (ii) ((KX — X)~1g, K*g) for some observable g. We form
a sequence of observables g, € Vi, by setting gy, = Py, _g, which can be approximately computed

from snapshot data as

1
g(fl)(() ))

N
Ny = iaﬂpj, a= (T WUyx) 'O W : e CNx, (9.3.33)
- e
Under suitable conditions, such as those already discussed in Section limpar—so0 GNg = gNg - Since
1 Nk
(PVNK KPyy, — )JNK) v = Jim SO [(WW Wy — NV W Ux) UKW Txal 1,

M—o00 <
Jj=1

it follows that our two types of inner products satisfy

-1

<gNK, (Pvv Py, = A ) gNK> = lim @ WU (T Wy — AW W) 05 Wxa,

(9.3.34)
-1
<(PVNK ’CPVNK — AIN}() gNK”C*gNK> = Z\Jh—r{looa*\P}W\Ily(\I/}W\I/Y — )\\I/}W\Ifx)_l\l’}w\llxa
(9.3.35)

For a given value of M, the right-hand side of (9.3.34) and (9.3.35) can then be substituted into

to evaluate [K * v4(6y). Often we can estimate the error between these computed inner products and the

limiting value as M — oo by comparing the computations for different M or by using a priori knowledge
of the convergence rates. Ny can be adaptively chosen (by approximating the error in the large data
limit and adding observables to the dictionary if required) so that the left-hand sides of (9.3.34) and (9.3.33))
approximate the inner products (g, (X —\)~tg) and (K —\)~1g, K*g), respectively, to a desired accuracy.

Thus, for a given smoothing parameter €, we have a principled way of selecting (a) the sample size M and

(b) the truncation size N to ensure that our approximations of the inner products in are accurate.
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Algorithm 6 A computational framework for evaluating an approximate spectral measure with respect to

g € L3(Q,w) at {0, }F_, C [, 7] per Of an isometry K using snapshot data.

M

Input: Snapshot data {.'):(j),y(j)}é-‘i1 (such that y) = F(z())), quadrature weights {w; 1L, a dic-

tionary of observables {1; };V:‘Kl m € N, smoothing parameter 0 < e < 1 (accuracy goal is €™), dis-
tinct points {z;}7, C C with Re(z;) > 0 (recommended choice is (9.3.32)), and evaluation points

{ek}kP=1 - [_77’ 7T.]pel“

1: Solve (9.3:28) and (9.3.37)) for ¢1(¢), ..., cm(e) € Cand dy, ..., d,, € C, respectively.
2: Compute U5 WU x and U5, W Wy, where ¥ x and Wy are given in (9.2.3).
3: Compute a generalised Schur decomposition of W5 W Wy and U5 WV¥x, ie., V5 WW¥y = QSZ*

and VS, WV y = QT Z*, where (), Z are unitary and .S, T" are upper triangular.
4: Compute @ in (9.3.33) and v; = T Z*a, v, = T*Q*a, and v3 = S*Q*a.
5: Fork=1,...,P

6: Compute I; = (S — % (1 + €z;)T) "1y for 1 < j < m.
7: Compute v5(0y) = 31 >-7-; Re[ej(€)e ™ (1 + ez;) (I v2) + d; (v31;)] .
8: end for

Output: Values of the approximate spectral measure, i.e., {v§(0x)}/_; -

In general, the cost of point evaluation of [K, * v,] using these formulas is O(NN}) operations as it requires
m solutions of Nx x Nk dense linear systems.

To evaluate [K, * vg] at 6q,...,0p € [—m, T|per, ONe can be more computationally efficient than in-
dependently computing each of the inner products in (9.3.34) and (9.3.33) for each 0 for 1 < k < P.
Instead, one can compute a generalised Schur decomposition and use it to speed up the evaluation. Let
U WUy = QSZ* and U, WW¥ xy = QT'Z* be a generalised Schur decomposition, where  and Z are

unitary matrices and .S and 7" are upper-triangular matrices. With this decomposition in hand,

a* W WU (T WUy — AT W))W ya =a*QT(S — \T) " 'TZ*a,
a* VS WUy (W Wy — AW ) W WU va =a*QS(S — \T) ' TZ%a.

Now, after computing the generalised Schur decomposition costing O(N3.) operations, each evaluation
requires solving N X N upper-triangular linear systems in O(N?.) operations. Additional computational
savings can be realised if one is willing to do each evaluation at 64, ..., 0p in parallel. We summarise the

evaluation scheme in Algorithm [6]

9.4 Numerical Examples
9.4.1 Non-linear pendulum (d = 2)
Letz = (1, 22) = (6, ) be the state variables governed by the following equations of motion:
Tl =x2, &g =—sin(xy), with Q= [—7, 7|per X R, 9.4.1)

where w is the standard Lebesgue measure. We consider the corresponding discrete-time dynamical system

by sampling with a time-step A; = 0.5. For the dictionary of observables 91, . .., ¥ N, , we use a hyperbolic
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Figure 9.3: The e-pseudospectra for the non-linear pendulum and ¢ = 0.25 (shaded region) computed
using Algorithm [2] with discretisation sizes N . Discretisation sizes correspond to a hyperbolic cross
approximation. The computed e-pseudospectra converge as Nxg — oo. The unit circle (red line) is shown
with the EDMD eigenvalues (magenta dots), many of which are spurious. ResDMD removes spurious

eigenvalues by computing pseudospectra.

cross approximation with the standard Fourier basis (in 1 € [—, m]per) and Hermite functions (in zo € R).
We use the trapezoidal quadrature rule to compute W5 W x, U5 W Wy, and ¥§ Wy, where ¥ x and
Uy are given in (9.2.3). To simulate the collection of trajectory data, we compute trajectories starting at
each initial condition using the ode45 command in MATLAB. We stress that we only use ode45 as a
black-box integrator - all of our algorithms in this chapter are purely data driven.

The system is Hamiltonian and hence the Koopman operator is unitary. It follows that Sp (K) = {z €
C : dist(z,T) < €}. Figure shows the computed pseudospectrum for e = 0.25. The algorithm uses a
discretisation size of Nk to compute a set guaranteed to be inside Sp_(K) (i.e., no spectral pollution), that
also converges as N — co. We also show the corresponding EDMD eigenvalues. Some of these EDMD
eigenvalues are reliable, but the majority are not, demonstrating severe spectral pollution. Note that this
spectral pollution has nothing to do with any stability issues, but instead is due to the discretisation of the
infinite-dimensional operator /C by a finite matrix. Using the e-pseudospectrum for different €, we can detect
exactly which of these eigenvalues are reliable. Using Algorithm[2]and Ny = 964, we also compute some
approximate eigenfunctions corresponding to A = exp(0.4932¢), A = exp(0.97657), A = exp(1.44523),
and A = exp(1.89514) (see Figure[9.4). As A moves further from 1, we typically see increased oscillations
in the approximate eigenfunctions.

The Koopman operator associated with (9.4.T)) has a continuous spectrum. We now compute spectral
measures from autocorrelations using Algorithm [5] and consider a corresponding discrete-time system by
sampling with a time-step of A; = 1. We look at the following observable that involves non-trivial

dynamics in each coordinate:
g1, w9) = C(1+ isin(zy))(1 — V2wy)e *2/2,

where C' ~ 0.24466788518668 is a normalisation constant. Figure [9.5] shows high resolution approxima-
tions of the spectral measure v, for N = 100 and N = 1000. The spectral measure is purely continuous
(no atoms) away from 6 = 0, consistent with the general theory of integrable Hamiltonian systems with
one degree of freedom [Mez20]]. Note that the constant function 1 is not in L?([0, 27]per X R) and hence

cannot be an eigenfunction. We confirmed this by using Theorem [9.3.4] for larger N and observing that the
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A = exp(1.8951%)

Figure 9.4: The approximate eigenfunctions of the non-linear pendulum visualised as phase portraits, where
the color illustrates the complex argument of the eigenfunction. We also plot lines of constant modulus
as shadowed steps. All of these approximate eigenfunctions have residuals at most € = 0.05 as judged

by (9:2.3)), which can be made smaller by increasing N

VlOO (9) VlOOO(e)

Figure 9.5: Computed spectral measure using AlgorithmE with for the non-linear pendulum.

160



9.4. Numerical Examples CHAPTER 9. Data-driven Koopman Operators

Anechoic chamber

Flow from blower Velocity

l profile

hjet

;auy\—»u" U Om) T——> -

lined settling

chamber ][ Flat wall \
) X

Figure 9.6: Schematic of the TR-PIV experiments conducted in the Wall Jet Wind Tunnel of Virginia Tech.

peak at 0 = 0 seen in Figure[0.5|does not grow as fast as o< V.

9.4.2 Turbulent wall-jet boundary layer flow (d = 102, 300)

We now consider a turbulent wall-jet boundary layer flow [Ger15,|IGAE™00, KRH™19]]. For this example,
we assess the performance of the ResDMD algorithm on a set of time-resolved (TR) particle image ve-
locimetry (PIV) data. We consider the boundary layer generated by a thin jet (hj.; = 12.7mm) injecting
air onto a smooth flat wall. This case is challenging for regular DMD approaches due to multiple turbu-
lent scales expected within the boundary layer. This section demonstrates the use of ResDMD for a high
Reynolds number, turbulent, complex flow field.

Experiments using TR-PIV are performed at the Wall Jet Wind Tunnel of Virginia Tech, as schemati-
cally shown in Figure[9.6] A two-dimensional two-component TR-PIV system is used to capture the wall-jet
flow and the streamwise origin of the field-of-view (FOV) is & =1282.7mm downstream of the wall-jet noz-
zle. We use a jet velocity of U; =50m/s, corresponding to a jet Reynolds number of Reje; = hjeU; /v =
63.5 x 103. The length and height of the FOV is approximately 75mm x 45mm, and the spatial resolution
of the velocity vector field is 0.25mm. The high-speed cameras are operated in a double frame mode, with
a rate of 12,000 frame pairs per second, resulting in a fine temporal resolution of 0.083ms.

The flow consists of two main regions. Within the region bounded by the wall and the peak in the veloc-
ity profile, the flow exhibits the properties of a zero pressure gradient turbulent boundary layer. Above this
fluid portion, the flow is dominated by a two-dimensional shear layer consisting of rather large, energetic
flow structures. While the peak in the velocity profile is y,, ~ 18mm from the wall in our case, the overall
thickness of the wall-jet flow is on the order of 200mm. Clearly, the PIV experiments must compromise be-
tween a good spatial resolution or capturing the entire flow field. In our case, the FOV was not tall enough
to capture the entire wall-jet flow field. For this reason, the standard DMD algorithm under-predicts the
energies corresponding to the shear-layer portion of the wall-jet flow as the corresponding length scales fall
outside of the limits of the FOV.

We collect snapshot data of the velocity field from two separate realisations of the experiment. We use
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Figure 9.7: Left: Forecast of total kinetic energy (normalised by the time average of the kinetic energy),
averaged over the 12000 initial conditions. Values closer to 1 correspond to better predictions. Right: Pseu-
dospectral contours computed using Algorithm [2] for the wall-jet example, using a non-linear dictionary.
The eigenvalues of the finite Galerkin matrix Kgpyp are shown as red dots. The shape of the contours
reflect the transient modes. The blue curve corresponds to a fit = exp(—c|6|) of these contours and the
boundary of the eigenvalues, and represents successive powers of modes.

the first experiment to generate data {:i'(j ) , g}(j )}?4:/1 with M’ = 2000, corresponding to 121 boundary layer
turnover times. This data is used to select our dictionary of functions. We use the second experiment to
generate data {.’i:(j ) U )}jl‘i/i with M = 12000 (a single trajectory of one second of physical flow time
and 728 boundary layer turnover times), which we use to generate the ResDMD matrices, as outlined in
Section[9.2.3] To demonstrate the need for non-linear functions in our dictionary, we compute the Koopman
mode decomposition of the total kinetic energy of the domain. Using this decomposition, we compute
forecasts of the total energy from a given initial condition of the system. Figure[9.7] (left) shows the results,
where we average over the 12000 initial conditions in the data set and normalise by the true time-averaged
kinetic energy. We use Algorithms [3] and ] with N = 2000, which we refer to as a linear dictionary
and non-linear dictionary, respectively. The importance of including non-linear functions in the dictionary
is clear, and corresponds to a much better approximation of C’s spectral content near 0. For the rest
of this section, we therefore only use the non-linear dictionary. Figure [0.7] (right) shows pseudospectral
contours computed using Algorithm 2} The contours appear to be centered around a curve of the form
r = exp(—c|f|) (shown as blue in the plot), corresponding to successive powers of transient modes. This
is reflected in the eigenvalues of the finite N x Ny Galerkin matrix Kgpwmp, shown as red dots, some of
which correspond to spectral pollution. The eigenvalues of non-normal matrices can be severely unstable
to perturbations, particularly for large N, so we checked the computation of the eigenvalues of Kgpyp
by comparing to extended precision and predict a bound of ~ 10719 on the error in Figure(right).

To investigate the Koopman modes, we compute the ResDMD Koopman mode decomposition corre-
sponding to AlgorithmT]with the error tolerance ¢ = 0.5 to get rid of the most severe spectral pollution. The
total number of modes used is 656. Figure[0.8]illustrates a range of Koopman modes which are long-lasting
(left-hand column) and transient (right-hand column). Due to residual measures, we are able to accurately
select physical transient modes. Within each figure, the arrows dictate the unsteady fluid structure (com-
puted from the Koopman modes of the velocity fields), with the magnitude of the arrow indicating the local

flow speed, and the colourbar denotes the Koopman mode of the velocity magnitude. The corresponding
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approximate eigenvalues, A, and residual bound are provided for each mode.

The modes in the left column of Figure [0.8] illustrate the range of rolling eddies within the bound-
ary layer, with the smaller structures containing less energy than the largest structures. Interestingly, the
third mode in the left column resembles the shape of ejection-like motions within the boundary layer flow
(y/ym < 1) while larger-scale structures above the boundary layer (y/y,, > 1) are also visible. This may
be interpreted as a non-linear interaction in the turbulent flow field, which is efficiently captured using the
ResDMD algorithm. The transient modes in the right column of Figure [0.8]show a richer structure. Based
on our analysis, we interpret these modes as transient, short-lived behaviour of turbulence. The uppermost
panel may be seen as the shear layer traveling over the boundary layer (y/y,, > 1), with the following panel
potentially seen as the breakdown of this transient structure into smaller structures. The third panel may
be seen as an interaction between an ejection-type vortex and the shear layer, note the ejection-like shape
of negative contours below y/y,, = 1.5 with a height-invariant positive island of contour at y/y,,, =~ 1.75.
Finally the bottom-most panel could be seen as a flow uplift out of the boundary layer and further turbulent

streaks with counter-rotating properties.

9.4.3 MD simulation of the Adenylate Kinase enzyme (d = 20, 046)

Molecular dynamics (MD) analyses the movement of atoms and molecules by numerically solving New-
ton’s equations of motion for a system of interacting particles. Energies and forces between particles are
typically computed using potentials. MD is arguably one of the most robust approaches for simulating
macromolecular dynamics, in large part due to the availability of full atomistic detail [DDG™ 12]. Recently,
DMD-type and Koopman techniques are making an impact in MD [NKPH™ 14, [KNK™ 18| [SPT3] [SP13].
For example, [KSM20] applies kernel EDMD to the positions of the carbon atoms in n-butane (d = 12) and
shows that the EDMD eigenfunctions parametrise a dihedral angle that controls key dynamics.

Here, we study trajectory data from the dynamics of Adenylate Kinase (ADK), which is an enzyme (see
Figure that catalyses important phosphate reactions in cellular biology. ADK is a common benchmark
enzyme in MD and consists of 3341 atoms split into 214 residues (specific monomers that can be thought
of as parts). The trajectory data comes from an all-atom equilibrium simulation for 1.004 x 10~ s, with a
so-called CHARMM force field, that is produced on PSC Anton [SDST09] and publicly available [BEG™].
The data consists of a single trajectory of the positions of all atoms as ADK moves. To make the system
Hamiltonian, we append the data with approximations of the velocities computed using centered finite
differences. This leads to d = 6 x 3341 = 20046. We sample the trajectory data every 240 x 10~ '2s so
that M = 4184.

To apply the kernelized version of Algorithm @ we subselect M’ = 2000 initial conditions from the
trajectory data. We select N = 1000 EDMD eigenfunctions and append the dictionary with the four
observables of interest that are discussed below. Accuracy of the corresponding matrices in (9.2.6) is
verified by comparing to smaller A" and also computing pseudospectra with Algorithm

ADK has three parts of its molecule called CORE, LID, and NMP (see Figure @] (left)). The LID
and NMP domains move around the stable CORE. By computing root-mean-square-fluctuations, we select
the most mobile residue from the LID and NMP domains. These residues have canonical dihedral angles
(¢,) defined on the backbone atoms that determine the overall shape of the residue. Figure (middle,

left) shows the spectral measures with respect to these dihedral angles (where we have subtracted the mean
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Figure 9.8: Left: A range of long-lasting modes from the ResDMD Koopman mode decomposition. Right:

the arrow indicating the local flow speed, and the colourbar denotes the Koopman mode of the velocity

A range of transient modes from the ResDMD Koopman mode decomposition.The arrows dictate the un-
steady fluid structure (computed from the Koopman modes of the velocity fields), with the magnitude of

magnitude.
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Figure 9.9: Left: Structure of ADK which has three domains: CORE (green), LID (yellow) and NMP (red).
Middle and right: Spectral measures with respect to the dihedral angles of the selected residues.
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Figure 9.10: Schematic diagram of the laser beam setup to generate the laser-induced plasma.

angle value) for both selected residues. These spectral measures are computed using the sixth order rational
kernel with € = 0.1 (see Table 0.1)). The computed spectral measures are verified with higher order kernels
and smaller €, as well as comparison with a polynomial kernel S. The spectral measures for the angles in
the LID residue are much broader than for the NMP residue. This hints at a more complicated dynamical

interaction and may have biological consequences.

9.4.4 Shockwave propagation (d varies)

The computation of residuals allows an efficient compression of the Koopman mode decomposition by
discarding modes associated with spectral pollution. As our final example, we demonstrate the use of
ResDMD on an acoustic example where the sound source of interest exhibits highly non-linear properties.

We investigate a near-ideal acoustic monopole source that is generated using the laser optical setup il-
lustrated in Figure[0.10] When a high-energy laser beam is focused into a point, the air ionizes and plasma
is generated due to the extremely high electromagnetic energy density (on the order of 10*2W/m?). As a
result of the sudden deposit of energy, the volume of air undergoes a sudden expansion that generates a
shockwave. The initial propagation characteristics can be modeled using von Neumann’s point strong ex-
plosion theory, which was originally developed for nuclear explosion modeling. For our ResDMD analysis,
we use laser-induced plasma (LIP) sound signature data measured using an 1/8inch, Bruel & Kjaer (B&K)
type 4138 microphone operated using a B&K Nexus module [SDBT22]. The data from the microphone is
acquired using an NI-6358 module at a sampling rate of f, =1.25MS/s. With this apparatus, we can resolve
the high-frequency nature of the LIP up to 100kHz.

The important acoustic characteristic of the LIP is that it has a short time period of initial supersonic
propagation speed, which are shown as Schlieren images taken over a 1548 window in Figure[9.T1] When

observed from the far field, this initial supersonic propagation is observed as a non-linear characteristic
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Figure 9.11: Schlieren images of the initial laser-induced plasma illustrating the shock wave formation and
propagation.

despite that the wavespeed is supersonic only in a short radius around the source, namely, until about
3—4mm from the optical focal point. During the experiments, 65 realisations of LIP are captured using
microphones. Each realisation of LIP is then gated in time such that only the direct propagation path of the
LIP remains in the signal. We use this gated data for our ResDMD analysis.

For a positive integer d, we take the state at time 7 to be

an:(p(n) p(n—1) --- p(n—d—l—l))TGRd7

where p is acoustic pressure. This corresponds to time-delay embedding, which is a popular method for
DMD-type algorithms. There is a further interpretation of d when we make future state predictions using
the Koopman mode decomposition. The value of d corresponds to the initial time interval that we use to
make future state prediction. This is shown as vertical dashed lines in the plots below.

We split the data into three parts. The first 10 realisations of LIP correspond to {:i:(j ) , @(j ) }j\gl and are
used to train the dictionary. The next 50 realisations correspond to {& @ , Q(j ) } ;VI:/ i and are used to construct
the ResDMD matrices. The final 5 realisations are used to test the resulting Koopman mode decomposition.
We consider two choices of dictionary. The first is a linear dictionary computed using Algorithm 3] The
second is the union of the linear dictionary and the dictionary computed using Algorithm[@]with Ny = 200.
We refer to this combined dictionary as the non-linear dictionary.

Figure[9.12] (left) shows the results of the Koopman mode decomposition, applied to the first realisation

of the experiment in the test set, with d = 10. Namely, we approximate the state as

2, ~ Kiipup ¥ (20)V [V—meww(w @<M~>)T]
(9.4.2)
— W(zo)VA" [v—wmxww(ﬁm ﬁ<M~>)T]_

In particular, we test the Koopman mode decomposition on unseen data corresponding to the test set. The
values of p to the left of the vertical dashed line correspond to . It is clear that the non-linear dictionary
does a much better job of representing the non-linear behaviour of the system. While the linear dictionary
can predict the positive pressure peak, it fails to predict both the magnitude and shape of the negative peak,
and it also fails to capture the smaller, high-frequency oscillations following the fist two large oscillation.
These discrepancies between the linear and non-linear dictionary-based results also pinpoint where non-
linearity in the signal relies. In other words, the non-linear signature of the pressure wave relies in the
negative portion of the wave. Figure [9.12] (right) plots the relative mean squared error (RMSE) averaged
over the test set for different values of d. The non-linear dictionary allows an average relative L? error of

around 6% for d = 15.
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Figure 9.12: Left: Prediction using (9.4.2) on the first experiment in the test set. The values of p to the left
of the vertical dashed line correspond to zo. Right: Relative mean squared error (RMSE) averaged over the
test set for different values of d.
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Figure 9.13: Left: Pseudospectral contours, computed using Algorithmlﬂwith the non-linear dictionary and
d = 10. The eigenvalues of Kgpyp are shown as red dots. Right: Prediction on the first experiment in the
test set. The values of p to the left of the vertical dashed line correspond to xy. For each type of ordering,
we use 40 modes.

Figure [9.13] (left) shows the corresponding pseudospectral contours, computed using Algorithm [2] with
d = 10. We can use ResDMD to compress the representation of the dynamics, by ordering the Koopman
eigenvalues );, eigenfunctions g;, and modes according to their (relative) residual res()\j, gj) (defined
in (9:2.3)). For a prescribed value of N/, we can produce a Koopman mode decomposition of the N’
eigenfunctions with the smallest residual. In Figure [9.13] (right), we compare this to a compression based
on the modulus of the eigenvalues using 40 modes in each expansion. It is clear that ordering the eigenvalues
by their residuals gives a much better compression of the dynamics. To investigate this further, Figure[9.14]
shows the error curves of the two different compressions for various dictionary sizes and choices of d. This

suggests ResDMD may be effective in the construction of reduced order models.
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Figure 9.14: RMSE averaged over the test set for two types of compression. ‘residual ordering’ (black
curves) corresponds to ordering approximate eigenvalues based on their residual. ‘modulus ordering’ (red
curves) corresponds to ordering approximate eigenvalues based on their modulus.
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Chapter 10

Beyond Spectral Problems

In this final chapter we discuss work beyond spectral problems. The framework provided by this course
encompasses a vast number of areas in computational mathematics, including numerical solution of PDEs,
the foundations of Al and neural networks, optimisation, and computer-assisted proofs. Much of the work

below is ongoing. If you are interested in working on any of these projects, please do get in touch!

10.1 Numerical Solution of PDEs

10.1.1 Semigroups

The discussion in this section is based on [Col22]]. Given a linear operator A on an infinite-dimensional

separable Hilbert space H, can we numerically compute, with error control, the solution of
u'(t) = Au(t) fort > 0, with initial condition u(0) = ug € H? (10.1.1)

The desired solution is written as u(t) = exp(tA)ug and made rigorous through the theory of semigroups
[Paz12, [ABHNOI]. Equation (T0.I.T)) arises in numerous applications and there exist many numerical meth-
ods designed to approximate u(t), including but not limited to: contour methods [WT07, TW14. [SST03|
HHTOS]|; domain truncation and absorbing boundary conditions (e.g., when A represents a differential oper-
ator on an unbounded domain) [EM77,[AES03], [Tsy98| [Sze04!, |A"08]]; Galerkin methods [Lub08b} [KLY19,
LL20]J; Krylov methods [Gril2, IGG13b, [LS13]]; rational approximations [CLPT93| [BT79, [Pal93]; and
series expansions, splitting methods, and exponential integrators [Hig0O5} [Lub08al IKS18, [HO10, MQO02,
AMHII1].

The majority of convergence results in the literature concern specific cases of the operator A. If A is
unbounded with domain D(A), it is common to assume regularity on ug (e.g., uop € D(A") for some v > 0)

to obtain asymptotic rates of convergence. Instead, we consider the following question:

Q.1: Can we compute semigroups with error control? That is, does there exist an algorithm that
when given a generator A of a strongly continuous semigroup on ‘H, time t > 0, arbitrary ug € H

and error tolerance € > 0, computes an approximation of exp(tA)ug to accuracy € in H?

A prototypical example of (I0.1.1)) is when A is a partial differential operator (PDO) on some domain.

For unbounded domains, such as # = L?(R%), this is a well-studied yet notoriously difficult challenge.
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The methods listed above yield invaluable insight into many computational issues. However, the answer to
Q.1 for unbounded domains remains largely unknown in the general case. For example, only in specific
cases does one know how to truncate the domain and set appropriate boundary conditions. Even if one can
prove the existence of suitable truncations and boundary conditions, there may not be an algorithm that
does this (the original results of [EM79] reflect this). Moreover, difficulties are intensified in the case of

irregular geometry or variable coefficients. A motivating example is the Schrodinger equation,

i% = —Au+Vu, wuye L*RY), (10.1.2)

In light of this, a second question we consider is the following:

Q.2: For H = L*(RY), is there a large class of PDO generators A (more general than (10.1.2)) on

the unbounded domain R* where the answer to Q.1 is yes?

To have any hope of answering this question, we need the semigroup to be well-behaved, i.e., (T0.1.1)
to be well-posed. The following are standard [Paz12]].

Definition 10.1.1. A strongly continuous semigroup (Cy-semigroup) on a Banach space X is a map S :
[0,00) = L(X) such that

1. S(0)=1I
2. S(s+1t)=5(s)S(t), Vs, t>0
3. S(t) converges strongly to I ast | 0 (i.e., limy 0 S(t)z = x, forall x € X).

The infinitesimal generator A of S is defined as Az = limy o 1 (S(t) — I)x, where D(A) is all x € X such

that the limit exists, and we write S(t) = exp(tA).
Definition 10.1.2. A continuous function u : [0,00) = X isa

1. Classical solution of the Cauchy problem (10.1.1)) if it is continuously differentiable, u(t) € D(A)
forallt > 0, and (10.1.1) is satisfied,

2. Mild solution of the Cauchy problem (10.1.1)) if for all t > 0,

t t
/ u(s)ds € D(A) and A/ u(s)ds = u(t) — up.
0 0
The following theorem tells us precisely when a unique mild solution exists.

Theorem 10.1.3 (Theorem 3.1.12 of [ABHNOI1I)). Let A be a closed operator acting on the Banach space

X. The following assertions are equivalent:
(a) Forany ug € X, there exists a unique mild solution of (10.1.1).
(b) p(A) # 0 and for every uy € D(A), there is a unique classical solution of (10.1.1).
(c) The operator A generates a Cy-semigroup S.

When these conditions hold, the solution is given by u(t) = S(t)ug = exp(tA)uo.

The Hille—Yosida theorem tells us precisely when an operator A generates a strongly continuous semi-

group, and thus, by Theorem [10.1.3] when (10.1.1)) admits a unique solution.
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Theorem 10.1.4 (Hille—Yosida theorem). A closed operator A on X generates a Cy-semigroup if and only
if A is densely defined and there exists w € R, M > 0 with

(1) {INeR:A>w} Cp(A).
(2) Forall A > wandn € N, (A — w)"||R(\, A)"|| < M.

Under these conditions,

exp(tA)|| < M exp(wt) and if Re(\) >w then A € p(A) with

M

RN, A" <

Example results

First, consider the canonical separable Hilbert space I?(N) of square summable sequences, using ej, e, . . .
to denote the canonical orthonormal basis. Let C(I?(N)) denote the set of closed and densely defined linear
operators A such that span{e,, : n € N} forms a core of A and its adjoint A*. If A € C(I*(N)), then we
can associate an infinite matrix with the operator A through the inner products A; , = (Aey, e;). Given
(A, ug) € C(I*(N)) x I2(N), we consider the following evaluation functions (recall that this is the readable

input to our algorithm), denoted by A1, which include the case of inexact input:

* Matrix evaluation functions: { f;l) f]@k) m  J» k,m € N} such that

Jk,m>

£ (A) = (Ae,e)| <27™, £ (A) — (Aex, Aej)| <27™, W), k,m € N.

J.k.m

* Coefficient and norm evaluation functions: { f; : j € NU {0}, m € N} such that

|f0,m(u0) - <’U,0,7_L0>‘ < 27m’ |fj7m(u0) - <u036j>| < 2im7 V],m € N. (10.1.4)

Let Q¢, denote the set of triples (A, uo,t) where A € C(I*(N)) generates a strongly continuous
semigroup, uy € [?(N) and t > 0. We define the set of evaluation functions for such triples to be
Acy, = M U{M(A),w(A)}, where M = M(A) and w = w(A) are constants satisfying the condi-
tions in Theorem for the generator A. Finally, we consider the problem function Z¢, : Q¢, —
12(N), (A, ug, t) — exp(tA)ug. In other words, the computation of the solution of (T0.1.1). The following

theorem provides a positive answer to Q.1.

Theorem 10.1.5 (Cy-semigroups on /% (N) computed with error control). There exists an algorithm T using

Ac, such that for any € > 0 and (A, ug,t) € Qc¢,,
IT(A, ug, t,€) — exp(tA)ug|| < e.
It follows that {Z¢,, Qc, } € AfL

We now extend the above to PDOs. Consider the closure, denoted by A, of the initial operator

[Au)(z) = Z ar(z)0 u(x), D(A) = {u smooth with compact support}. (10.1.5)
keZd o, |k|<N
We use multi-index notation with |k| = max{|ki|, ..., |kq|} and 9% = 0F10¥2...9%¢. We assume that A is

closable and that the coefficients ay () are complex-valued measurable functions on R?. For dimension d

and r > 0, consider the space

A”‘ = {f € Meas([—r, T]d) : ||f||oo + TV[—r,r]d(f) < OO},
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where Meas([—r, 7]%) denotes the set of measurable functions on the hypercube [—r,7]% and TV|_, ,ja the
total variation norm in the sense of Hardy and Krause [Nie92]. This space becomes a Banach algebra when

equipped with the norm [BT89]

||fH.A7 = Hf|[—'r,7‘]dHOO + (3d + 1)TV[—7',7']d(f)'

We let Qppgr be all such (A, ug,t) with ug € L?*(R?) and ¢t > 0, for which A generates a strongly

continuous semigroup on L?(R%) and the following hold:

(1) The set of smooth, compactly supported functions forms a core of A and A*.

(2) At most polynomial growth: There exist positive constants C, and integers By, such that almost ev-

erywhere on R?, |a(2)| < Ci(1 + |x[?Bx).

(3) Locally bounded total variation: For all r > 0, g |[_ 4, Gk|[—p ¢ € Ay

These assumptions are very mild as the class of functions with locally bounded variation includes dis-
continuous functions and functions with arbitrary wild oscillations at infinity. For input (A, ug,t) € Qppg,
we define Appg as the set of evaluation functions (where ranges of indices have been suppressed for nota-

tional convenience):

(a) Pointwise coefficient evaluations: {S 4. } such that for all m € N,

|Sk,qm(A) —ar(q) <27™, Vg€ Qd-

(b) Pointwise initial condition evaluations: {.S; ,,, } such that for all m € N,

|Sg.m(uo) —uo(q)| <27™, Vqe€ Q<.

(c) Bounds on growth and total variation: {C}, By} such that the bound in (2) holds and positive se-

quences {by, }, <y and {c, },, <y such that for all n € N,

mase x|y, < bu. ol < cn

(d) Decay of initial condition: A positive sequence {d,, } such that

neN?

Hu0|[—n,n]d - u0||L2(Rd') < dna nh—{go d, = 0,

together with constants M = M (A) > 0 and w = w(A) > 0 satisfying the conditions in Theorem |10.1.4
for the generator A. We consider the problem function Zppg : Qppg — L?(R%), (A, ug,t) + exp(tA)ug.
In other words, the computation of the solution of (T0.1.1)) for PDOs A on L?(R?). The following theorem

provides a positive answer to Q.2.

Theorem 10.1.6 (PDO Cj-semigroups on L?(R?) computed with error control). There exists an algorithm

I using Appg such that for any € > 0 and (A, up,t) € QppE,
IT(A, wo, t, €) —exp(tA)ug| < e.
Itfollows that {EPDE7 QPDE} S Af

Exercise: Assuming Theorem|10.1.5| prove Theorem (10.1.6|using the techniques of Chapter
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The idea of the method

The solution of (T0.1.T)) is, at least formally, the Bromwich complex contour integral

_1 0’+iOO
exp(tA)ug = [27”/ e*(A —2zI)" dz| ug, for sufficiently large o € R, (10.1.6)

—ico

and computing solutions of (T0.I1.T) is a special case of inverting an operator-valued Laplace transform.
However, there are two challenges with using (I0.1.6). First, the integrand need not decay (special cases
when it does after a contour deformation include analytic semigroups). Second, how do we compute the
inverses (A—2zI)~1? To overcome these challenges, our method combines a regularised functional calculus,
suitable contour quadrature rules, and the adaptive computation of resolvents in infinite dimensions. We
compute the resolvent in an adaptive manner, providing explicit error control.

Dealing with the operator A directly, as opposed to a truncation or discretisation, allows us to provide
rigorous convergence results under quite general assumptions. In many problems, there is an additional
practical benefit in that it is easier to bound the resolvent. In contrast, previous approaches to (T0.1.1)) are
typically of the flavor “truncate-then-solve.” A truncation/discretisation of A is adopted and methods for
computing the exponential of a finite matrix are used. In rigorously answering Q.1, it is vital to adopt a

“solve-then-discretise” approach.

10.1.2 Non-linear Schrodinger equations

The discussion in this subsection follows [BH20]. We consider the situation of a single particle described
by a self-adjoint Schrodinger operator Hy = —A + V : D(Hy) C L?(R?) — L?*(R%) with static pinning
potential V. Apart from the static pinning potential, we also allow the presence of an additional control
potential Ve with time-dependent control function u € Wi, (0,T) (piecewise W''). Thus, writing

Virp(t) := u(t)Veon for the time-dependent potential, we cover time-dependent Schrodinger equations

The non-linear Schrodinger equations we consider are

i0)(x,t) = Hop(x, t) + Vrp (x, t))p(x, t) + vF, (Y(x,t)), (z,t) € Rx (0,T)
"/}('a O) = %o

(10.1.7)

with scattering length v = 1 and non-linearity F, (¢(z,t)) = |1 (z, )| 19 (z,t) where we consider o = 3
(cubic NLS) and o = 5 (quintic NLS). The choice v = 1 yields a defocussing non-linearity and v = —1 a
focussing one.

Numerical methods are often used to analyse if the solution of a NLS blows up in finite time or not
[DS11]]. While the solution to the quintic NLS in exists for all times if the non-linearity is defo-
cussing, this is no longer the case if (I0.1.7) has a focussing quintic non-linearity. In greater generality, we
study whether it is possible to numerically decide whether a solution to a NLS will blow up in finite time or

not? We show that this is impossible in great generality.

Definition 10.1.7 (Initial state with controlled local boundedness and bounded variation and (CLBBYV)).
Given an initial state pg € BVloC(Rd) we say that @ has controlled local boundedness and bounded varia-
tion (CLBBV) by w : N — Nifforevery R € Nthen K = w(R) is such that || , TV (o
K, where Cr(0) is the closed cube of length R centered at zero.[ﬂ

lenoy = cr(0) <

'We emphasize that bounded total variation already implies a possibly weak L estimate by ||¢0|CR(O)||LOQ < |eo(0)] +
TV(QPO}CR(O))
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Remark 10.1.8 (Input to the algorithms). We assume that
{((po(xk), Vi (g, t5)) | {xk brken, {t;}jen are dense in R? and [0,TY, xk, t; have coordinates € (@} ,
are accessible to the algorithm.

At least from a physics perspective, the most prominent example of a NLS with non-trivial blow-up

dichotomy is the focussing (v = —1) cubic NLS
0p(@,t) + Ap(z,t) = v|y(z, O)P(x,t), (t,z) € RXR?,

Choose any fixed C' > 0 and g as in Def. Then, we define, for p, v > 1, the set of initial data as

(10.1.8)

Qpua) = {vo € HY(R)| llpoll g @) < € and @o has CLBV by g}.
We consider the computational problem

Yes if (T0.1.8) blows up in finite time,
Epu() : BUQ) D Yo €M, (10.1.9)
No if (I0.1.8) does not blows up in finite time

where M = {Yes,No} = {1,0}. Next, we consider the focussing (v = —1) mass-critical NLS with
o =1+ 4/d, in particular,
0 (1) + Mp(a, 1) = vl (z, 1) 7 (. t),  (t,x) €RxRY,
$(0,2) = po(x).

Choose any fixed C' > 0 and g as in Def. [I0.1.7] Then, we define, for p, v > 1, the set of initial data as

(10.1.10)

Qsue) = {0 € HL(RY)| [lpoll gz may < C and pg has CLBV by g}.
We consider the computational problem

Yes if (T0.1.10) blows up in finite time,
EBU(Z) : QBU(Q) S Yo — ) ) ) ) e M. (10111)
No if (I0.1.10) does not blows up in finite time

Our main result on the computability of blow-ups is then Theorem [T0.1.9]

Theorem 10.1.9 (Blow up cannot be decided, in fact not verified nor falsified). Consider the decision

problems {Zgu (1), Qsu)} and {Egu(a), Qsu(2)} defined in (1I0.1.9) and (I0.1.T1) concerning the blow
up of the NLS. Then, there do not exist sequences of algorithms {T';.}, {T'2}, with T}, : Qpy(1y — M and

r?: Qu(2) — M such that
kllrrgo F,lc(goo) = Egu(1)(o), such that F,lc(goo) = No = Egy(1)(¢o) = No,

kh—{go Fi((po) = EBU(Q)(<,00), such that Fi ((po) = Yes = EBU(2) ((po) = Yes.

These statements are universal independent of the computational model.

Let us consider norms | f|z2 := || f||z2, [ flar := || fI|T= Hf||11;1a for some fixed o € (0,1), and | f|, =

| fIl ;1 a non-trivial function f. We then let X e {LZ(Q),HI(Q),Hl(Q)} and Q@ C R? a domain. Let
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C > 0 be given and let Qpy(x) be the set of functions v € X N C(Q) with [v[x < C and v has controlled

local bounded variation by h. We then consider the condition

luo|x < |flx. (10.1.12)
To define the computational problem we define for f € Qpy(x) the set
QBU(X,f) = {Uo € QBU(X); |u0|X 7& |f|X} S M= {NO,YGS} = {O, 1} and

Epucx.p) (o) = Does (T0-1.12) hold?.

Proposition 10.1.10. Given the above setup, we have that

(10.1.13)

{EBu(r.x) Wu(s,x), M, A} ¢ ¢

Proof. To show that {Egu (s x), QBu(s,x), M, A} & »§ we argue by contradiction and assume the con-
trary. Let therefore {I',,} be a sequence of general algorithms such that T';,(00) — ZEgu(s,x)(¥o) as
n — oo, and with ', (o) = 1 = Epu(s,x)(@o) = 1. Let g € Qpuy(y,x) denote a function satisfying
(TO.T.T2) and note that, by the reasoning above Zguy (s, x)(¢o) = 1. Thus, there is an N € N such that
I'n(po) = 1forall n > N. Choose any such n > N and let B C 2 be an open ball such that for all
fj € Ar, (po) we have w; ¢ B. Choose a ¢y € € such that supp() C B and

[@olx > [flx - (10.1.14)

Note that such a choice is easy to justify by using bump functions. Note that, by the choice of ¢y we have
that f;(¢o) = fi(wo) Vf; € Ar, (¢o0). Hence, by assumption (iii) in (ii) in Definition[2.1.1|it follows that
1 = T'n(wo) = T'n(@o). However, by (10.1.14)), it follows that ZEgy(y,x)($o) = 0, which contradicts that

[y (Po) = 1 = Epu(s,x)(Po) = 1, and we have reached the desired contradiction. O
Proposition 10.1.11 (Mass critical NLS). Given the setup as in (I0.1.10), we have that

{Zpu(2): U2, M, A} ¢ 7.

Proof. The ground state soliton () satisfying
—AQ-QIQI"+Q =0

for the 1d-quintic NLS is known explicitly Q(z) = (m) v and exists for all d > 1. For d > 1 and
o = 1+4/d, itis known [Dod15] that if ||¢]| 2 < ||@Q||~2 then the solution to (TI0.1.10) exists globally and
scatters whereas for |[pgl/zz > ||@Q]|z2 there exist solutions that exist only for finite time. The statement
then follows from Proposition [T0.1.10] O

Showing that {Egu(2), QBu(2), M, A} ¢ II§ is in general more subtle. To see this, observe that by
Sobolev’s embedding in dimension one, we have ||@o||L~ < |@ol/g1. This implies that if an algorithm
samples a sufficiently large value of ¢y it follows that ||o|| 71 is large as well.

For our next proposition we consider a bump function

2
1+—2o"0
Xe,zo (l‘) = la—oll*—e® ]IB(IU,E) (l‘)

We then have that
[ Xe.zoll2 = O(e?) and || Xe o || ;1 = O(e¥72). (10.1.15)

If we impose stronger conditions on X and the dimension, we obtain the following result:
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Proposition 10.1.12. For the setup as above, it follows that {Zgy s x), QBuU(f,x), M, A} ¢ 10§ under the

following conditions on the space X and the dimension d with open domain Q C R¢
s Ifd=1and X € {L*(Q) NC(Q),H (Q) N C(Q)} with e < 1/2.
e Ifd=2and X € {LQ(Q) NCQ), H (Q)NC()}.
e d>3.

Proof. We argue again by contradiction. Assuming the contrary, let {I",,} be a sequence of general algo-
rithms such that ', (09) — Epu(r,x)(®0) as n — oo, and with I';, (¢o) = 0 = Epu(s,x)(@o) = 0. Let
o € Qu(s,x) be a function that does not satisfy (TO.I12). In this case EBu(f,X)(sﬂo) = 0 and hence
there is an N € N such that ', (¢g) = 0 for all n > N. Let ¢ be small enough such that B(@,, ) are
disjoint.

Choose any such n and choose @g := ) o(w;)Xew,; such that Gy interpolates ¢q at the points @;,
where f;(¢0) = po(@;) and f; € Ar, (¢o). Let € be sufficiently small, then by (T0.I.13) it follows that
|@o|x < |f|x. Then, as argued as above, we have f;(®o) = f;(vo) Vf; € Ar,(@o), and hence by by
assumption (iii) in (ii) in Definition it follows that 0 = I';, (¢o) = I',,(Po). However, since |@o| 5 <
|f|x we have that Egy(f,x)(Po) = 1, which contradicts that I';,(Pg) = 0 = Epuy(ys,x)($o) = 0. O

We continue with our result on the cubic NLS:
Proposition 10.1.13. Given the setup in (10.1.8) we have that
{EBua): Wuay, M, A} ¢ I,

Proof. For (T0.1.8) one has the following blow up dichotomy [HROS8, [HPR0O9]: Let ¢o € H{(R?) be an
initial state to the focusing NLS (T0.1.8)) with ground state soliton @ satisfying

-AQ-QIQP*+Q=0.
o If |ooll 12 Vool 2 < |Qll 12 V@I 12 , then the solution to (T0-1.8) exists globally in time in the
space H'(R?).

o If |poll 2 Vol 2 > [1Qll 12 IVQIl 2 , then the solution to (T0.1.8) blows up in finite time, i.e.
the solution to (T0.I.8) exists only in a maximum time interval [0, Tyax) in H'(R?). The result then
follows from Proposition[T0.1.12}

Proof of Theorem[I0.1.9, Theorem[T0.1.9]follows immediately from the analysis above. O

The phenomenon of undecidability is, for the blow-up dichotomy, not due to the unboundedness of the

domain as the following example shows:

Example 10.1.14 (Cubic NLS on bounded domain). Let @ C RZ be a bounded and smooth domain:
Consider the cubic NLS with Dirichlet data ¢y € H?(Q) N H} (2)

i0p(, t) + A(z,t) + (2, t)*h(z, t) = 0, (z,t) € 2 x (0,T),
P(x,t) =0, (x,t) € 00 x (0,T), (10.1.16)

P(x,0) = po(x), € Q.
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This equation has a unique positive ground state to the equation

—Q(z) + AQ(z) + |Q(2)]? Q(z) =0, =z eR>.

Then, there exists a solution with the same L? norm as @ that blows up in finite time [BGT03, Theorem 1],
whereas [BGT03, Lemma 2.3] shows that for Dirichlet initial data oo € H?(Q)NHg () with ||¢o]| r2(0) <

|Q[ 2 (g2) the solution exists globally in time, see also [Wei82].

10.1.3 Future work

* Fractional PDEs: The above results on semigroups can be extended to certain time-fractional PDEs
[CA22]. So far this has only be done in one space variable. Higher dimensions would be of interest.
Further, classifying exactly which type of fractional PDEs lead to A{' classifications would be an

interesting direction.

* Practical computation: On the practical side, it should be relatively straightforward (and very use-
ful) to develop a finite element implementation of the above results. NB: The results themselves were

proven using spectral methods.

¢ Foundations of non-linear PDEs: It may be possible to use the Af‘ algorithm for semigroups as part
of exponential integrators to certain solve non-linear PDEs with error control. Currently classifying
non-linear PDEs that lend themselves to A4! results is an open and challenging, yet fundamental,
problem. Undoubtedly, this would lead to a theory as rich as that for infinite-dimensional spectral

computations.

10.2 Foundations of AI and Smale’s 18th Problem

The relevant paper for this is [CAH22b]. For ease of exposition, I will go through this article:

sinews.siam.org/mathematical-paradoxes—unravel—-limits—-of—-ai

This is a hot topic. For example, some news pieces on this paradox can be found here:
https://spectrum.ieee.org/deep—neural-network

www.cam.ac.uk/news/mathematical -paradox—demonstrates—the-limits—-of—-ai

10.3 Optimisation

This discussion in based on [BHV21].

10.3.1 Background

Finding minimisers for linear and semidefinite programming, regularisation techniques such as basis pur-
suit, Lasso etc. has become a main focus over the last decades. These approaches have in many areas
of mathematics, statistics, learning and data science changed the state of the art from linear to non-linear

approaches, typically via obtaining minimisers of convex problems. Key examples include
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(i) Linear Programming (LP)

z € argmin(z, ¢) subjectto Az =y, x>0, (10.3.1)

T

(ii) Basis Pursuit (BP)

z € argmin J (z) subject to ||Az — y||2 < 6, § €10,1], (10.3.2)
x

(iii) Unconstrained Lasso (UL)

z € argmin || Az — y||3 + A T (z), A€ (0,1], (10.3.3)

(iv) Constrained Lasso (CL)

z € argmin || Az — y||2 subject to ||z|; <7, 7 >0, (10.3.4)
T

(v) Semidefinite Programming (SDP)

Z € argmin(C, X )g» subjectto (Ap, X)sn =bp, X =0, k=1,...,m. (10.3.5)
Xesn

In the above notation we have
AcR™N ycR™ ce RN, J(z)=|z|1 or T(x) = |||V,
where the TV semi-norm is defined as x|ty = Z;V;ll |z; — 2;41|. For SDP, the notation is
C, Ay € S™ (real n x n symmetric matrices), by € R, (C, X)g» = trace(CTX).

All of the problems above may have multi-valued solutions in certain cases. Whenever this occurs, the

computational problem of interest is to compute any of these solutions. We use the notation
2: Q= M, (10.3.6)

to denote the multivalued solution map, mapping an input ¢ € Q to a metric space (M, dnq), allowing
measurement of error. The metric space is typically RY or C¥ equipped with the || - ||z norm, however,
any metric can be considered. Even though the solution map = may be multivalued, in our theory the
output of an algorithm will always be single-valued. Thus, if I : @ — M is an algorithm we measure the

approximation error by

dist v (I'(e), E(2)) = gehaﬂ;g dpm (T (), §)-

Remark 10.3.1 (Objective function vs minimisers). We are primarily concerned with the problem of
obtaining minimisers that are vectors and not the real-valued minimum value of the objective function.
There is a very rich literature on how to compute the objective function, and, in particular, the minimum
value f(x*) = min{f(z)|x € X}, for some convex function f : R? — R, convex set X C R%, and
minimiser x* € X. The traditional problem of interest is as follows. Given ¢ > 0, compute an . € R?

such that f(z.) — f(z*) < e. Note that f(z.) — f(x*) < € does not necessarily mean that
|ze — 2| < e. (10.3.7)

Our main focus is the problem of computing x. satisfying (10.3.7). The motivation behind this is self-evident
as there are vast areas of mathematics of information, regularisation, estimation, learning, compressed

sensing and data sciences where the object of interest is the minimiser and not the minimum value.
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The question: “is LP in P?” [Kha80, IGL81),[Law80] was a fundamental problem whose solution, proven
by L. Khachiyan — based on work by N. Shor, D. Yudin, A. Nemirovski — reached the front page of The New
York Times [GLS88]. The affirmative answer has been refined several times and is now typically stated in

the following form. One can solve LPs with rational inputs in runtime is bounded by
O(n35L* -log L -loglog L), (10.3.8)

where n denotes the number of variables and L is the number of bits or digits required in the representation
of the inputs. The problem, however, is that in an overwhelming number of problems in computational
mathematics and scientific computing the input contains irrational numbers. This leads to the following

basic question:

Given a class of LPs that contain irrational numbers which can be computed in polynomial
time, what is the computational cost of computing a K-digit accurate approximate minimiser?

Is that problem in P (solvable in polynomial time in the number of variables n)?

Note that the estimate (10.3.8) will not answer this question as L. = oo for an irrational number.

10.3.2 Inexact input and the extended model

Given that the input is inexact, the output of an algorithm will come with an error as well. The model, both
in the Turing and the BSS case, where one measures the computational cost of running the algorithm in
terms of the number of variables n and the error (or the number of correct digits K = | log(e)|, where € is
the error) is well established. See, for example [BCSS98! p. 29], [GLS88, p. 34] and [Vall3l p. 131]). We

thus arrive at the following extension of Smale’s 9th problem.

Problem 10.3.2 (The extended Smale’s 9th problem). Given any of the problems in (10.3.1) - (10.3.4),
represented by the solution map = mapping a class of inputs §) into a metric space (M, d ), is there an
algorithm which decides the feasibility of the problem, and if so, produces an output that is correct up to K
digits (where the error is measured via dist pq) and whose computational cost is bounded by a polynomial

in K and the number of variables n?

This question can be asked both in the Turing model, where the computational cost can be expressed
either in terms of the number of steps performed by the Turing machine, or alternatively in terms of the
total number of arithmetic operations and comparisons as well as the space complexity. In the BSS model,
the computational cost is given by the total number of arithmetic operations and comparisons executed by

the BSS machine. We will consider all these cases.

10.3.3 Example Theorem

Theorem 10.3.3 (The extended Smale’s 9th problem - computing solutions). Let = denote the solution

map to any of the problems (10.3.1) - (10.3.4) with the regularisation parameters satisfying § € [0,1],
A€ (0,1/3], and T € [1/2,2] (and additionally being rational in the Turing case) and consider the | - ||,-

norm for measuring the error, for an arbitrary p € [1,00]. Let K > 2 be an integer. There exists a class )

of “well-conditioned” feasible inputs so that, simultaneously, we have the following.

179



10.3. Optimisation CHAPTER 10. Beyond Spectral Problems

(i) No algorithm can produce K correct digits on each input in ). Moreover, for any p > no

1
2
randomised algorithm can produce K correct digits with probability greater than or equal to p on

each input in €.

(ii) There does exist an algorithm (a Turing or a BSS machine) that produces K — 1 correct digits for
all inputs in Q). However, any such algorithm will need an arbitrarily long time to achieve this. In
particular, for any T > 0, and any algorithm T, there exists an input v € ) such that either T on
input ¢ does not produce K — 1 correct digits for Z(1) or the runtime of T on ¢ exceeds T. Moreover,

Sor any randomised algorithm T™® and p < 1/2 there exists an input 1 € § such that

P(I"*" (1) does not produce K — 1 correct digits for (v)

or the runtime of T on 1 exceeds T) > p.

(iii) There exists a polynomial pol : R — R, as well as a Turing machine and a BSS machine that both
produce K — 2 correct digits for all inputs in ), so that the number of arithmetic operations for both
machines is bounded by pol(n), where n = m + mN is the number of variables, and the number of
digits required from the input oracle is bounded by pol(log(n)). Moreover, the space complexity of

the Turing machine is bounded by pol(n).

(iv) If one only considers (i) - (iii), 2 can be chosen with any fixed dimensions m and N provided that

m > 4 and N > m. Moreover, if one only considers (i) then K can be chosen to be 1.

The problem of computing e-approximations to the objective function of NP-hard optimisation problems
often leads to phase transitions at the approximation threshold ex > 0. Indeed, assuming that P # NP we

often have the following:

Classical phase ] ]
L Computing ca>e Computing e-approx
transition in hardness p—
L e-approx € P ca<e is NP-Hard (thus ¢ P)
of approximation

(10.3.9)

The fact that e5 > 0 often follows from the PCP theorem [BGS98], I ALM™ 98| [FGL"96], for overviews
see S. Arora and B. Barak [AB09] and references therein. The extended Smale’s 9th problem leads to similar
— yet more complex — phase transitions for the problem of computing e-approximations to minimisers in the
extended model for classical combinatorial optimisation problems such as LP and problems in continuous
optimisation such as BP. This phenomenon is characterised by the strong breakdown-epsilon €3, and the

weak breakdown-epsilon €fj, yielding phase transitions in several directions for LP (the computational cost
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is measured as a function of the number of variables) independent of the P vs NP question:

New phase
Computing e-approx ¢ k-EXPTIME V k

but € R (computable)

transitions due to the

extended Smale’s 9th

AN
<
GV%W
] . Computing
Computing ep=ep>€
e-approx ¢ R
e-approx € P ep=cp <¢
(non-computable)

(10.3.10)

The above integers (K, K — 1, K — 2) can be viewed as ‘quantised’ phase transition thresholds. In
particular, we consider the integers [|log(ef;)|] and [|log(eg)|], but one can easily state our main results
with the actual breakdown-epsilons describing the *unquantised’ phase transition threshold as in (10.3.10).

10.3.4 Computing the exit flag - can correctness of algorithms be certified?

A crucial topic in computational mathematics is the reliability of algorithms and certification of their cor-
rectness. It is therefore natural to test whether the built-in algorithms in, for example MATLAB are reliable.

We consider two concrete examples: the linear program

m]iR% x1 + x2 subjectto 1 + (1 —d)ze =1, r1, T > 0, (10.3.11)
EAS

where § > 0 is a parameter, and the centred and standardised (so that the columns of the design matrix are
normalised) Lasso problem

min |45 D5~y + Al (103.12
where m =3, N =2, A € (0,1/V/3],

1—6 1

7 7 .
Ay=| L5 | e y=(1/ﬁ NG o) €3, (10.3.13)
26 0

and Dj is the unique diagonal matrix such that each column of A5 Dy has norm +/m.

In order to compute a solution to (T0.3.11), we consider MATLAB’s linprog command; a well-
established optimisation solver for linear programs. This is a general purpose solver, which offers three
different algorithms: ‘dual-simplex’ (the default), ‘interior-point’, and ‘interior-point-legacy’. Besides a
minimiser, 1linprog also computes an additional output — EXITFLAG — which is an integer value corre-
sponding to the reason for why the algorithm halted. Note that +1 indicates convergence to a minimiser,
all other values indicate some form of failure. In Table we apply the three 1inprog algorithms
(with default settings) to the problem (I0.3.11)) with different values of §. The results are fascinating. Not
only does 1inprog completely fail to compute a minimiser accurately, it also fails to recognise that the
computed minimiser is incorrect: in all cases, the EXITFLAG returns the value +1 indicating a successful
termination.

To compute a solution to (I0.3.12), we consider Matlab’s 1asso command. We test it with default

settings as well as the tolerance parameter set to machine epsilon €y, = 2752 and also the maximum
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‘dual-simplex’ ‘interior-point’ ‘interior-point-legacy’

) Error EXITFLAG | Error EXITFLAG Error EXITFLAG
21 0 1 0 1 6.0-10712 1
215 0 1 0 1 3.0-107° 1
27201 0 1 0 1 7.0-1077 1
2~ 0 1 0 1 7.1-1078 1
2726 | 14 1 14 1 1.2-1071 1
272 | 14 1 14 1 4.6-1071 1
27301 1.4 1 1.4 1 7.1-1071 1

Table 10.1: Testing the output of 1inprog applied to the problem in (I0.3.11)) for the algorithms ‘dual-
simplex’, ‘interior-point’ and ‘interior-point-legacy’. The table shows the error ||Z — Z||,2 and the value of
EXITFLAG (1 means successful output), where 2 is the true minimiser of (10.3.11)) and Z is the computed

approximate minimiser. Note that machine epsilon is €acn = 27°2.

2—28 1.17 < 0.01s
230 1.17 < 0.01s

1.17 < 0.01s
1.17 < 0.01s

1.17 < 0.01s
1.17 < 0.01s

Default settings ‘RelTol’ = €mach ‘RelTol’ = €mach
‘MaxIter = e;lich
) Error Runtime Warn Error Runtime Warn Error Runtime Warn

271 1 1-107% < 0.01s 0 1-10716 < 0.01s 0 1-1076  <0.01s 0
277 0.68 < 0.01s 0 |2-107'%  0.02s 0 2-1071%  0.02s 0
2-15 1.17 < 0.01s 0 1.17 0.33s 1 1-10~  1381.5s 0
2-20 1.17 < 0.01s 0 1.17 0.33s 1 nooutput > 12h 0
224 1.17 < 0.01s 0 1.17 0.34s 1 no output > 12h 0
2726 1.17 < 0.01s 0 1.17 0.34s 1 nooutput > 12h 0
0 0 0
0 0 0

Table 10.2: The output of lasso applied to (10.3.12)) with inputs as in (I0.3.13) and A = 0.1. The table
shows the error ||& — Z||,2 (where & is the true minimiser and Z is the computed minimiser), the CPU

runtime, and a boolean value indicating whether a Warning was issued.
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spgll on basis pursuit with § = 0 MATLAB’s lasso on Lasso with A = 1072
Exp(1)

"4
ATy U TRU T Y

09

0.8 N(1,10°?) N(1,107%)

r v

0 2x 10% 4 % 10 6 x 10* 8x 10 108 O 2x 10° 4% 10° 6 x 10° 8x 10° 10%

Figure 10.1: (Random matrices — Non-computability is not rare). The vertical axis represents the success

# of successes
# of trials

digits (|| - ||c norm). The horizontal axis shows the dimension N. In all cases, A € R™*¥ in (10.3.2) and
(T0.3:3) is iid — as described in §10.3.5|- according to the distributions U(a, b), Exp(v) and N (i1, 02), being

the uniform distribution on [a, b], the exponential distribution with parameter v and the normal distribution

rate , where # of trials = 1200. Success < computed solution is accurate to at least K = 2

with mean p and variance o.

number of iterations to ¢!

mach- Ihe lasso routine does not have an ‘exit flag’, however, it provides a

Warning if it considers the output to be untrustworthy. The results of this experiment are summarised in
Table[10.2] where we display 1 under the Warn column if a Warning was issued, or 0 if no warning was
issued. As is evident, the failure of 1asso is similar to the failure of 1inprog, however, an interesting
observation is that the Warning parameter is occasionally able to verify the wrong solution, yet, most of

the time, no warning is issued despite completely inaccurate outputs.

10.3.5 Non-computability is not rare

Theorem|[10.3.3|demonstrates that for any integer &, there are — for all problems (T0.3.1)) - (T0.3:5) — classes
of inputs for which no algorithm can compute a correct K digit approximate solution. This statement, as
is typical for a result regarding non-computability, describes a worst case scenario. However, the proof
techniques of our theorems reveal much more. Indeed, for random matrix ensembles, one can characterise
the probability of failure of algorithms. This is because our proof of Theorem [10.3.3]is constructive.

To be more precise, Figure[T0.1]displays experiments with well-established algorithms such as spg11
[vdBFO8|] and MATLAB’s 1asso. We have tested these algorithms on BP (10.3.2)) with 6 = 0 and Lasso
(T0:33) with A = 1072. In both cases, all accuracy parameters in the algorithms were set to machine
precision €51, in MATLAB, and the number of iterations in spgl1 and lasso were set to 1000 and the
default parameter respectively. We executed these algorithms on inputs A € R™*~ and y € R™, where the
entries of A are iid according to a distribution D and y = Ae; where i € {1,..., N} is chosen uniformly
at random. In particular, we examine the cases where D is a normal distribution N (u, 02) with mean 1

and variance o, D is a uniform distribution U(a, b) on the interval [a, b], or D is an exponential distribution
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Exp(v) with parameter v. Figure displays the results for m = 1 and varying Ns, where we plot the

‘success rate’ given by
# of successes

# of trials

as a function of the dimension N. In all cases # of trials = 1200. Given a distribution D, let t;y = (y, A)

Success rate = € [0,1],

be such that y €' and A €'*" are randomly chosen as described above. For any choice of algorithm I"
that solve Basis Pursuit or Lasso implemented in floating point arithmetic and any K € N define (when the
limit exists)

lim P(I(cy) provides K correct digits) =: P (D).

N—oc0

One can show that, for example, when I' represents the spgl1 algorithm we have
PL (D) =0for D = U(a,b).

Note that this asymptotic behaviour is already visible in Figure [I0.1] For the Gaussian and Exponential
distributions, the issue is more complicated and there may be transient behaviour. Indeed, let = denote the
solution map to the Lasso problem in Figure [I0.1] (so that = outputs a solution to (T0.3.3)) and assume that
D is N'(u,02) or that D is Exp(v). Then P(||[Z(tn)|loc < 107%) — 1, as N — oo for all k£ € N. Thus,
an algorithm that always outputs zero will eventually become correct with high probability. However, in

Figure[10.1] there is behaviour of the following form: there exists an M so that
P(T'(¢n) provides K correct digits ) > P(I'(tn41) provides K correct digits) N < M,

for some large M € N, yet for any algorithm I" — such that the objective function applied to I'(¢x) is € (in
this example € = 1077 suffices) away from the true minimum — we have PL (D) = 1. The latter is typically
true for both spgll and lasso, thus Figure demonstrates a transient behaviour for both the normal
and exponential distributions. These phenomena can be mathematically analysed and proven by using the

specific techniques used in the proof of Theorem [10.3.3]

10.4 Computer-assisted Proofs
Computer-assisted proofs are rapidly becoming an important part of modern pure mathematics:

“During the next century computers will become sufficiently good at proving theorems that the

practice of pure mathematical research will be completely revolutionized.”

— Sir W.T. Gowers (Fields medal 1998), Cambridge [Gow00|]

Recent examples given in Hales’ proof of Kepler’s conjecture (Hilbert’s 18th problem) [Hal05, HAB™17]]
and Fefferman (Fields medal 1978) and Seco’s proof of the Dirac—Schwinger conjecture [FS90, [FS92|
FS93| [FS94b, [FS94c, [FS95. [FES96b, [FS96a, [ES94al], see also the discussion of Fefferman’s 2017 Wolf Prize
[CST™17]]. A potentially surprising result is that both of these examples are computer-assisted proofs that
use non-computable problems. This can be understood via the precise notions of error control in §2.2] The
theory of computer-assisted proofs has not yet been developed, since, in general, it is not known which
computational problems can be used in computer-assisted proofs.

Any computation that arises in a proof must be performed reliably with 100% verification. At first,

one might expect that this can only be achieved with Af' computational problems, i.e., problems that are
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computable in the classical Turing sense. However, this is not the case and bears a resemblance to the notion
of recursively enumerable sets in classical computation theory. For example, the computer-assisted proof

of Kepler’s conjecture is based on problems that are in ¥4 but not A{'. There are several such examples:

* Kepler’s Conjecture (Hilbert’s 18th problem) - SCI classification: € ¢, ¢ A¢ : Kepler conjec-
tured that no packing of congruent balls in Euclidean three space has density greater than that of
the face-centred cubic packing. The Flyspeck programme, led by Hales [Hal05, [ HAB™ 17]], provides
a fully computer-assisted verification. The key computational part relies on deciding about 50000
linear programs with irrational inputs. More specifically, to decide whether there exists an z € RY
such that

(x,c)k < M subjectto Ax =y, x>0, (10.4.1)

(x,¢)g = [10%(z,c)[1075, KeN, MecQ.

Since A and y can be irrational, one can think of this as a decision problem with inexact input (a
Turing machine or a BSS machine that can access A € R™*¥ in the form of an oracle O 4 such that
|0a(i,7,k) — Ai ;| < 27%). The following facts about the problem (T0.4.1) and its classification
hold:

(i) For any integer K > 1 there exists a class of inputs € such that the problem (10.4.1) with
K = K is ¢ ©¢. However, with the same input class {2, we have that the problem (T0.4.1)),
with K = K — 1is € A{,

(ii) The raises the question of how the computer-assisted proof of Kepler’s conjecture was at all
possible, given that @]) must be decided for K = 6. Given the class © in (i), if the
inequality (z,c)x < M in (I0.4.1) is replaced by a strict inequality (x,c)x < M, then the
problem is in ¥¢'. A similar (though much more complicated) analysis occurs, and leads to a

series of ¥4' problems which are solved in the Flyspeck programme.

* Dirac-Schwinger conjecture - SCI classification: € ¥4, ¢ A§: The Dirac-Schwinger conjecture
was proven in a series of papers by Fefferman and Seco [ES90, [FS92| [FS93| [ES94b\, [ES94c| [FS95.
ES96bl |[FS964a, [FS94al]. Consider the Hamiltonian

d
Hiz =Y (=Dg, = Zlap| ™)+ > oy — i
k=1 1<j<k<d
acting on antisymmetric functions in L2(R3?). The ground state energy E(d, Z) for d electrons and
a nucleus of charge Z is then defined by

E(d, Z) := inf{\ € Sp(Haz)}.

The ground state energy of an atom is then defined as E(Z) := ming>1 E(d, Z). The key result is
asymptotic behaviour of E(Z) for large Z:

1 5
E(Z) = —co 273 + §22 AL 0(20/3—1/2835)7

for some explicitly defined constants ¢ and ¢;. In order to show this, the proof verified that F" (w) <
¢ < 0 for some specific function F', for some c and for all w € (0, w,.) where w,. is specifically defined.

A full discussion of the details is beyond the scope of this thesis, but the intricate computer-assisted
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proof hinges on several problems that are ¢ A§ but € £ (see, for example, Algorithm 3.7 and
Algorithm 3.8 in [ES96bl)).

* Boolean Pythagorean triples problem - SCI classification: € 117}, ¢ A{': The Boolean Pythagorean
triples problem asks if it is possible to colour each of the positive integers either red or blue, so that no

Pythagorean triple of integers a, b, c, satisfying a? + b? = ¢?

are all the same colour. This is true up
to n = 7824, and the proof, performed by Heule, Kullmann, and Marek (2016) [HKM16], is based
on computations showing that this is not true for n = 7825. Clearly, for any finite set of integers,
the combinatorial problem lies € A{', but it is not € A§ for the whole set N. However, by checking
each successive integer, it is clear that the problem does lie € IT{*. Such proofs for counterexamples

are common for disproving conjectures within number theory.

* Group theory: Aut(Fs) has property (T) - SCI classification : € Y1, ¢ A§: The fact that the
automorphism group of the free group on five generators has Kazhdan’s property (7'), was shown
by Kaluba, Nowak and Ozawa [KNO19]. The key computational problem involves a (root of a)
minimiser of a semi-definite program. This is computed using floating-point arithmetic, which, at
best, is equivalent to solving the semi-definite program with inexact input. This problem is ¢ A{ but
is € A4'. There is no concept of X' for minimisers of semi-definite programs, but the reasoning in

the paper [KNO19] regarding the verification implies that the final decision problem is € %,

A key part in all of the examples above is that one must prove either ¥4 or IT{! classifications in order
to demonstrate that the verification is possible. This is trivial in the Boolean Pythagorean triples problem,
but is very technical in the proof of the Dirac—Schwinger conjecture. Regarding spectral problems, many
of the results in this course led to 34! or I1{' classifications. It follows that such computations could be
used as part of a proof. Figuring out exactly which problems can similarly be used will be a key part of

mathematics in the coming decades.
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