Infinite-Dimensional Spectral Computations

Student Mechanics Seminar 26th March

Matthew Colbrook University of Cambridge

Andrew Horning
Cornell University

Outline

GOAL: compute spectral properties of operators in infinite-dimensions Many applications: quantum mechanics, chemistry, matter physics, stat. mechanics, optics, number theory, PDEs, math. of info., quasicrystals,...

BUT: typically harder and more subtle than finite dimensions!

Problem		Main References
I	Spectra	"How to compute spectra with error control" C., Roman, Hansen, Physical Review Letters, 2019
II	Discrete Spectra	"FEAST for differential eigenvalue problems"" H., Townsend, SIAM J. on Num. Analysis. 2020
III	Spectral Measures	"Computing spectral measures of self-adjoint operators" C., H., Townsend, SIAM Review, to appear "Computing spectral measures and spectral types" C., Communications in Mathematical Physics, to appear

Program on Infinite-Dimensional Spectral Computations

How: Deal with operator A directly, instead of 'truncate-then-solve'
\Rightarrow Compute many spectral properties for the first time.
Common tool: Compute properties of $(A-z)^{-1}$
Finite-dimensional NLA \rightsquigarrow Infinite-dimensional NLA

Foundations: Classify problems in a computational hierarchy measuring their intrinsic difficulty and the optimality of algorithms.
\Rightarrow Optimal algorithms realising boundaries of what computers can achieve.

Part I:

How to compute spectra with error control With a case study on quasicrystals

The infinite-dimensional spectral problem

In many applications, we are given an operator acting on $\ell^{2}(\mathbb{N})$ $\left(\ell^{2}(\mathbb{N})=\right.$ canonical inner product space in infinite dimensions):

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \cdots \\
a_{21} & a_{22} & a_{23} & \cdots \\
a_{31} & a_{32} & a_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad\left[A\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots
\end{array}\right)\right]_{j}=\sum_{k \in \mathbb{N}} a_{j k} x_{k} .
$$

Finite Case	\Rightarrow	Infinite Case
Eigenvalues	\Rightarrow	Spectrum, $\operatorname{Sp}(A)$
$\{z \in \mathbb{C}: \operatorname{det}(A-z I)=0\}$	\Rightarrow	$\{z \in \mathbb{C}: A-z I$ not invertible $\}$

GOAL: compute spectrum of A from matrix elements

Things that typically go wrong

Fundamental challenges:

- Miss parts of the spectrum.
- Approximate false $z \notin \operatorname{Sp}(A)$ - "spectral pollution".

Open problem (even for Schrödinger operators) for > >50 years:
Can we overcome these issues in the general case?

Things that typically go wrong

Fundamental challenges:

- Miss parts of the spectrum.
- Approximate false $z \notin \operatorname{Sp}(A)$ - "spectral pollution".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we know what part of approximation to trust?
- Methods can be inefficient and slow to converge.

Things that typically go wrong

Fundamental challenges:

- Miss parts of the spectrum.
- Approximate false $z \notin \operatorname{Sp}(A)$ - "spectral pollution".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we know what part of approximation to trust?
- Methods can be inefficient and slow to converge.

Method of this talk:

Things that typically go wrong

Fundamental challenges:

- Aliss parts of the specturne
- Approximate false $z \notin \operatorname{Sp}(A)$ - "spectral pollution".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we know what part of approximation to trust?
- Methods can be inefficient and slow to converge.

Method of this talk:

- Converges without missing parts of spectrum.

Things that typically go wrong

Fundamental challenges:

- Ahiss parts of the spectratre

Open problem (even for Schrödinger operators) for > >50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we know what part of approximation to trust?
- Methods can be inefficient and slow to converge.

Method of this talk:

- Converges without missing parts of spectrum.
- Avoids spectral pollution.

Things that typically go wrong

Fundamental challenges:

- Nives parts of the spectratre
- Appioximate faise \& \& SP(A) "spectiai poimuivi".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we krrovv vitat part of computation to trast?
- Methods can be inefficient and slow to converge.

Method of this talk:

- Converges without missing parts of spectrum.
- Avoids spectral pollution.
- Provides error control (guaranteed certificate of accuracy) \Rightarrow computations reliable and useful in applications.

Things that typically go wrong

Fundamental challenges:

- Nios parts of the spectratr.
- Appioximate faise \& \& SP(A) "spectiai poimuivi".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- Hewn do wve Antow witat part of computation to trast?

Method of this talk:
- Converges without missing parts of spectrum.
- Avoids spectral pollution.
- Provides error control (guaranteed certificate of accuracy) \Rightarrow computations reliable and useful in applications.
- Computationally efficient.

Case study: Quasicrystals

Quasicrystals: aperiodic structures with long-range order.

Left: D. Shechtman, Nobel Prize in Chem. 2011 for discovering quasicrystals. Right: Penrose tile, canonical model used in physics.

Vertex model: site at each vertex and bonds along edges of tiles.

Case study: Quasicrystals

Motivation:

- We understand periodic systems really well but not aperiodic.
- Long range order \& short range disorder everywhere in nature.
- What's the analogy of periodic physics for aperiodic systems?
- Many exotic physical properties and beginning to be used in
- heat insulation
- LEDs, solar absorbers, and energy coatings
- reinforcing materials, e.g. low-friction gears
- bone repair (hardness, low friction, corrosion resistance)...
- Understanding spectral properties key for physical insight.

Case study: Quasicrystals

Motivation:

- We understand periodic systems really well but not aperiodic.
- Long range order \& short range disorder everywhere in nature.
- What's the analogy of periodic physics for aperiodic systems?
- Many exotic physical properties and beginning to be used in
- heat insulation
- LEDs, solar absorbers, and energy coatings
- reinforcing materials, e.g. low-friction gears
- bone repair (hardness, low friction, corrosion resistance)...
- Understanding spectral properties key for physical insight.

BUT: Aperiodic nature of quasicrystals has made it a considerable challenge to approximate spectrum of full infinite-dimensional operator.

Case study: Quasicrystals

Vertex model: site at each vertex and bonds along edges of tiles.
Model 1: Perpendicular magnetic field (of strength B).

$$
[A \psi]_{i}=-\sum_{i \sim j} e^{\mathrm{i} \theta_{i j}(B)} \psi_{j}
$$

Model 2: Graph Laplacian (electronic properties)

$$
[A \psi]_{i}=\sum_{i \sim j}\left(\psi_{j}-\psi_{i}\right)
$$

Very hard problems - no previous method even converges to spectrum.

Model 1: Magnetic field

Finite truncations Spectral pollution.

Unreliable
Does not converge No error control

New method

First convergent computation.

Reliable
Converges
Error control

Idea I: Rectangular truncations

Idea I: Rectangular truncations

Idea I: Rectangular truncations

Locally compute distance function and minimisers

> Rectangular truncation $P_{f(n)}(A-z l) P_{n}$ $$
\Downarrow \text { smallest singular values } \sigma_{1}\left(P_{f(n)}(A-z I) P_{n}\right)
$$

Approximate distance $\operatorname{dist}(z, \operatorname{Sp}(A))$
\Downarrow local minimisers
Output $\Gamma_{n}(A) \rightarrow \operatorname{Sp}(A)$ and error bound $\sup _{z \in \Gamma_{n}(A)} E(n, z) \rightarrow 0$

Model 2: Graph Laplacian (electronic properties)

Model 2: Graph Laplacian (electronic properties)

Advantages

- First method that always converges to correct solution. (e.g. no spectral pollution)
- Local and parallelisable \Rightarrow FAST!
- Explicitly bounds the error:

$$
\text { Error } \leq E_{n} \downarrow 0
$$

- Can prove it is OPTIMAL (see paper).
- Rigorously compute approximate states...

Published by
American Physical Society $\underset{\text { DPS }}{\text { Qhysics }}$
Volume 122, Number 25

Background

Periodic systems have extended states (not localised), but add disorder...

Left: P. Anderson, Nobel Prize in Phys. 1977 for discovering Anderson localisation. Right: Examples in 1D and 2D photonic lattices.

What happens in aperiodic systems? Do we need disorder?

Bulk Localised States: A new state for quasicrystals

- Bulk Localised States (BLSs): New states for magnetic quasicrystals
- localised
- "in-gap" (confirmed via comp. of inf-dim (topological) Chern numbers)
- support transport
- Cause (also confirmed with toy models): Interplay of magnetic field with incommensurate areas of building blocks of quasicrystal.
- Not due to an internal edge, impurity or defect in the system.

Transport: Error control allows us to be certain of this phenomenon.

Conclusion of Part I

- Can now compute spectra of large class of operators.
- Computation has explicit error control.
- New method does not suffer from spectral pollution.
- New algorithm is fast, local and parallelisable.
- Extensions: non-Hermitian operators, general infinite matrices, PDEs, etc.
- New type of Bulk Localised State (BLS) for magnetic quasicrystals that support localised transport within the bulk.

Part II: Discrete Spectrum

H. and Townsend, FEAST for differential eigenvalue problems, SIAM Journal on Numerical Analysis, 2020.

The infinite-dimensional eigenvalue problem (IDEP)

$$
\mathcal{L} u=\lambda u, \quad u \in \mathcal{D}(\mathcal{L}) \subset \mathcal{H}
$$

For example...

Integral operator

$$
[\mathcal{L} u](x)=a(x) u(x)+\int_{-1}^{1} k(x, y) u(y) d y
$$

Ordinary differential operator

$$
[\mathcal{L} u](x)=a_{K}(x) u^{(k)}(x)+\cdots+a_{1}(x) u^{\prime}(x)+a_{0}(x) u(x)
$$

Partial differential operator

$$
[\mathcal{L} u](x)=-\nabla \cdot(A(x) \nabla u)+\mathbf{b}(x) \cdot \nabla u+c(x) u
$$

*Domain $\mathcal{D}(\mathcal{L})$ usually encodes smoothness, integrability, and/or boundary conditions

Droplet formation

$u_{t}=\partial_{x}^{4} u+\partial_{x}\left(u \partial_{x} u\right)$

Linear
 stability

$$
\begin{aligned}
& -\frac{d^{4} u}{d x^{4}}-\frac{d}{d x}\left(u_{s s} \frac{d u}{d x}\right)=\lambda u, \\
& u(0)=u(l)=0, \quad u^{\prime \prime}(0)=u^{\prime \prime}(l)=0
\end{aligned}
$$

L=chebop ($0, \mathrm{P}$);
L.op=@(x,u) -diff(u,4)-diff(uss(x)*diff(u));
L. lbc=@(u) [u; diff(u,2)];
L.rbc=@(u) [u; diff(u,2)];
$[\mathrm{V}, \mathrm{D}]=\mathrm{contFEAST}(\mathrm{L}$, 'half_plane', 'right');
contFEAST() - a computational framework for IDEP

$$
\mathcal{L} u=\lambda u, \quad u \in \mathcal{D}(\mathcal{L}) \subset \mathcal{H}
$$

GOAL: Given a search region Ω, compute all eigenvalues of L in Ω, and associated eigenfunctions.

Key ingredients:

1) Solve shifted linear equations

$$
(\mathcal{L}-z) v=f \quad \text { where } \quad v \in \mathcal{D}(\mathcal{L}), f \in \mathcal{H}
$$

2) Compute inner products
$\langle f, g\rangle_{\mathcal{H}} \quad$ where $\quad f, g \in \mathcal{H}$

contFEAST() - a computational framework for IDEP

$$
\mathcal{L} u=\lambda u, \quad u \in \mathcal{D}(\mathcal{L}) \subset \mathcal{H}
$$

GOAL: Given a search region Ω, compute all eigenvalues of L in Ω, and associated eigenfunctions.

Key results:

1) If solutions to linear systems and inner products are computed with accuracy $0<\epsilon<1$, then*

$$
\left|\lambda_{k}-\hat{\lambda}_{k}\right| \leq C \epsilon\left|\lambda_{k}\right|
$$

2) Constant C depends only on \mathcal{L} and $\partial \Omega$, but is independent of underlying discretization or approximation scheme

How it works: a continuous analogue of FEAST

contFEAST() - Compute eigenvalues of operator in target region.

Spectral Projection
Range Sketching

Build basis for target eigenspace

Rayleigh—Ritz Step

Small eigenvalue problem for target eigenvalues and eigenvectors

How it works: a continuous analogue of FEAST

contFEAST() - Compute eigenvalues of operator in target region.

Spectral Projection

$$
P_{\Omega}(\mathcal{L})=\sum_{\ell=1}^{M} w_{k}\left(\mathcal{L}-z_{k}\right)^{-1}
$$

Rayleigh-Ritz Step

How it works: a continuous analogue of FEAST

contFEAST() - Compute eigenvalues of operator in target region.

Spectral Projection

$$
P_{\Omega}(\mathcal{L})=\sum_{\ell=1}^{M} w_{k}\left(\mathcal{L}-z_{k}\right)^{-1}
$$

Rayleigh-Ritz Step

How it works: a continuous analogue of FEAST

contFEAST() - Compute eigenvalues of operator in target region.

Spectral Projection

Range Sketching

Rayleigh—Ritz Step

$$
V=P_{\Omega}(\mathcal{L}) Y
$$

 eigencomponents
v_{1}, \ldots, v_{m} approximates a basis for the target eigenspace

How it works: a continuous analogue of FEAST

contFEAST() - Compute eigenvalues of operator in target region.

Spectral Projection
Range Sketching

Orthonormalize basis v_{1}, \ldots, v_{m} using $\langle\cdot, \cdot\rangle$
New orthonormal basis q_{1}, \ldots, q_{m}

$$
u_{j}=\sum_{i=1}^{m} c_{k}^{(j)} q_{k}
$$

$$
L=Q^{*} \mathcal{L} Q
$$

Eigenvector coordinates satisfy

$$
\left(\begin{array}{ccc}
L_{1,1} & \cdots & L_{1, m} \\
\vdots & \ddots & \vdots \\
L_{m, 1} & \cdots & L_{m, m}
\end{array}\right)\left(\begin{array}{c}
c_{1}^{(j)} \\
\vdots \\
c_{m}^{(j)}
\end{array}\right)=\lambda_{j}\left(\begin{array}{c}
c_{1}^{(j)} \\
\vdots \\
c_{m}^{(j)}
\end{array}\right)
$$

$$
L_{i, j}=\left\langle q_{i}, \mathcal{L} q_{j}\right\rangle
$$

Target regions and rational filters

$\log |r(z)|$

Use any closed, piecewise-

 smooth curve. For example...```
%FEAST with a circular search region
cntr=22.5; rad=6;
circle=chebfun(@(t) cntr+rad*exp(2*pi*1i*t),[0 1]);
[V,D]=contFEAST(L,circle);
```


## Leveraging adaptive spectral methods



ApproxFun (Julia)


Chebfun (Matlab)

ultraSEM (Matlab)


## Part III: Spectral Measures

Colbrook, H., and Townsend, Computing spectral measures of self-adjoint operators, SIAM Review (to appear).

## Spectral measures in QM

$$
\mathcal{L} u=-\frac{d^{2} u}{d r^{2}}+(\underbrace{\frac{\ell(\ell+1)}{r^{2}}}_{\text {centrifugal term }}+\frac{1}{r}\left(e^{-r}-1\right)) u
$$



$$
f_{r_{0}}(r)=C_{r_{0}} e^{-\left(r-r_{0}\right)^{2}}
$$

Wave function

## Specsolve code

```
normf = sqrt(pi/8)*(2-igamma(1/2,8)/gamma(1/2)); % Normalization
f = @(r) exp(-(r-2).^2)/sqrt(normf);
 % Measure wrt f(r)
V={@(r) 0, @(r) exp(-r)-1, 1};
 % Potential, l=1
[xi, wi] = chebpts(20, [1/2 2]);
 % Quadrature rule
mu = rseMeas(V, f, xi, 0.1, 'Order', 4) % epsilon=0.1, m=4
ion_prob = wi * mu; % Ionization prob
```


## Diagonalizing an operator

$$
-u^{\prime \prime}(x)=f(x), \quad u( \pm 1)=0
$$

$$
f(x)=\exp \left(-\cos ^{2}(\pi x)\right)
$$




## Diagonalizing an operator

$$
-u^{\prime \prime}(x)=f(x), \quad \int_{-\infty}^{\infty}\left|u^{\prime}(x)\right|^{2} d x<\infty
$$



$$
\hat{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i k x} d x
$$



## Spectral measures

$\mathcal{L}: \mathcal{D}(\mathcal{L}) \rightarrow \mathcal{H}$ self-adjoint operator


projection-valued measure

$$
-u^{\prime \prime}(x), \quad-1 \leq x \leq 1
$$



$$
\mathcal{E}([a, b]) f=\sum_{a \leq \lambda_{k} \leq b} \hat{f}_{k} e^{2 \pi i k x}
$$

$$
-u^{\prime \prime}(x), \quad-\infty<x<\infty
$$

$$
\mathcal{E}([a, b]) f=\int_{a \leq 2 \pi k^{2} \leq b} \hat{f}(k) e^{2 \pi i k x} d k
$$

## Spectral measures



## Smoothed spectral measures: Stone's theorem

$$
\mathcal{R}_{\mathcal{L}}(z)=(\mathcal{L}-z)^{-1}
$$

Spectral identity for resolvent

$$
\left\langle\mathcal{R}_{\mathcal{L}}(z) f, f\right\rangle=\int_{\mathbb{R}} \frac{d \mu_{f}(\lambda)}{\lambda-z}
$$

Look at "jump" across real axis

$$
\frac{1}{\pi}(\underbrace{\left\langle\mathcal{R}_{\mathcal{L}}(x+i \epsilon) f, f\right\rangle-\left\langle\mathcal{R}_{\mathcal{L}}(x-i \epsilon) f, f\right\rangle}_{\operatorname{Im}\left\langle\mathcal{R}_{\mathcal{L}}(z) f, f\right\rangle})=\int_{\mathbb{R}} \frac{1}{\frac{1}{\pi}} \underbrace{\frac{\epsilon^{2}}{(\lambda-x)^{2}+\epsilon^{2}}}_{\text {Poisson kernel (shifted and scaled) }} d \mu_{f}(\lambda)
$$

## A simple framework

$$
\mu_{f}^{\epsilon}(\lambda)=\frac{1}{\pi} \operatorname{Im}\langle\mathcal{R}(\lambda+i \epsilon, \mathcal{L}) f, f\rangle
$$

Given $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$
Fix $\epsilon>0$ and choose $f \in \mathcal{H}$
For $k=1, \ldots, n$

1) Solve $\left(\mathcal{L}-\left(\lambda_{k}+i \epsilon\right) \mathcal{I}\right) u_{k}=f$
2) Compute $\mu_{f}^{\epsilon}\left(\lambda_{k}\right)=\frac{1}{\pi} \operatorname{Im}\left\langle u_{k}, f\right\rangle$

## Convergence of smoothed measures

1) Solve $\left(\mathcal{L}-\left(\lambda_{k}+i \epsilon\right) \mathcal{I}\right) u_{k}=f$
singular in the limit $\epsilon \rightarrow 0$


## Convergence of smoothed measures

1) Solve $\left(\mathcal{L}-\left(\lambda_{k}+i \epsilon\right) \mathcal{I}\right) u_{k}=f$
singular in the limit $\epsilon \rightarrow 0$


## Rational kernels

Stone's theorem
$\int_{\mathbb{R}} \frac{1}{\pi} \frac{\epsilon^{2}}{(\lambda-x)^{2}+\epsilon^{2}} d \mu_{f}(\lambda)=\frac{1}{\pi} \operatorname{Im}\langle\mathcal{R}(x+i \epsilon, \mathcal{L}) f, f\rangle$
$\square$

"Generalized" Stone's theorem

$$
\left.\left[K_{\epsilon}^{(m)} * \mu_{f}\right](x)=\frac{-1}{\pi} \sum_{k=1}^{m} \operatorname{Im}\left(r_{k}\left\langle\mathcal{R}\left(x-\epsilon p_{k}\right), \mathcal{L}\right) f, f\right\rangle\right)
$$

## Rational kernels

$$
\int_{\mathbb{R}} \frac{1}{\pi} \frac{\epsilon^{2}}{(\lambda-x)^{2}+\epsilon^{2}} d \mu_{f}(\lambda)=\frac{1}{\pi} \operatorname{Im}\langle\mathcal{R}(x+i \epsilon, \mathcal{L}) f, f\rangle
$$


"Generalized" Stone's theorem

$$
\left.\left[K_{\epsilon}^{(m)} * \mu_{f}\right](x)=\frac{-1}{\pi} \sum_{k=1}^{m} \operatorname{Im}\left(r_{k}\left\langle\mathcal{R}\left(x-\epsilon p_{k}\right), \mathcal{L}\right) f, f\right\rangle\right)
$$



## Rational kernels



L1 relative error


Theorem [Colbrook, H., and Townsend, 2020]
If $\mu_{f}$ is absolutely continuous in $I=[a-\delta, b+\delta]$ with Radon-Nikodym derivative $\rho_{f} \in W^{m, p}(I)$, then

$$
\left\|\rho_{f}(x)-\left[K_{\epsilon}^{(m)} * \mu_{f}\right](x)\right\|_{L^{p}(a, b)}=\mathcal{O}\left(\epsilon^{m} \log (1 / \epsilon)\right) \quad \text { as } \quad \epsilon \downarrow 0
$$

## Example I: Magnetic graphene




## Example I: Magnetic graphene



Spectral measure of magnetic graphene, computed to high precision (see log scale) using $m=4$ kernel.

## Example I: Add a defect

Add potential $V(\mathbf{x})=\frac{\cos \left(\|\mathbf{x}\|_{2} \pi\right)}{\left(\|\mathbf{x}\|_{2}+1\right)^{2}}$. Slice at $\Phi=0.25, \epsilon=0.01$ :



## Example II: Eigenvalue hunting

Example: Dirac operator.

- Describes the motion of a relativistic electron.
- Essential spectrum given by $\mathbb{R} \backslash(-1,1) \Rightarrow$ spectral pollution!
- Consider radially symmetric potential, coupled system on half-line:

$$
\mathcal{D}_{V}=\left(\begin{array}{cc}
1+V(r) & -\frac{d}{d r}+\frac{-1}{r} \\
\frac{d}{d r}+\frac{-1}{r} & -1+V(r)
\end{array}\right), \quad V(r)=\frac{\gamma}{r} .
$$

- Map to $[-1,1]$ and solve shifted linear systems using sparse spectral methods.


## Example II: Eigenvalue hunting




NB: Previous state-of-the-art achieves a few digits for a few excited states.

## Example III: Chern numbers

Finite dimensions

$$
\begin{gathered}
\hat{P}^{n}=\sum_{m=1}^{n}|m\rangle\langle m|, \quad \hat{Q}^{n}=I-\hat{P}^{n} \\
\hat{x}^{n}=\hat{Q}^{n} \hat{x} \hat{P}^{n}, \hat{y}^{n}=\hat{P}^{n} \hat{y} \hat{Q}^{n} \\
\mathcal{C}_{i}^{n}=-\frac{4 \pi}{A_{c}^{2}} \operatorname{Im}\left\{\langle i| \hat{x}^{n} \hat{y}^{n}|i\rangle\right\}
\end{gathered}
$$

## Infinite dimensions

$$
\begin{gathered}
\hat{P}^{E}=\int_{(-\infty, E]} d \mathcal{E}(\lambda) \\
\hat{P}_{\epsilon}^{E}=\int_{-\infty}^{E}\left[K_{\epsilon} * \mathcal{E}\right](\lambda) d \lambda, \hat{Q}_{\epsilon}^{E}=I-\hat{P}_{\epsilon}^{E} \\
\hat{x}_{\epsilon}^{E}=\hat{Q}_{\epsilon}^{E} \hat{x} \hat{P}_{\epsilon}^{E}, \hat{y}_{\epsilon}^{E}=\hat{P}_{\epsilon}^{E} \hat{y} \hat{Q}_{\epsilon}^{E} \\
\mathcal{C}_{i}^{E}=\frac{-4 \pi}{A_{\epsilon}^{2}} \operatorname{Im}\left\{\langle i| \hat{x}_{\epsilon}^{E} \hat{y}_{\epsilon}^{E}|i\rangle\right\}
\end{gathered}
$$

Round and take maximal count over site $i$. Intuition: Topological index to detect in-gap (conducting) state.

## Example III: Chern numbers





## Conclusion of Part III

- Diagonalisation: General framework for computing spectral measures and projections of self-adjoint operators.
- Convolution with rational kernels:
- Can be evaluated using resolvent. ALL you need to be able to do is solve linear systems and compute inner products.
- High-order kernels $\Rightarrow$ high-order convergence.
- Fast, local and parallelisable $\Rightarrow$ State-of-the-art results for PDEs, integral operators and discrete operators.
- Example: Chern numbers of BLSs showing they are in-gap.

Code: https://github.com/SpecSolve.

## References

- M.J. Colbrook, B. Roman, and A.C. Hansen. "How to compute spectra with error control." Physical Review Letters 122.25 (2019).
- A. Horning, and A. Townsend. "FEAST for differential eigenvalue problems." SIAM Journal on Numerical Analysis 58.2 (2020).
- A. Horning, and Y. Nakatsukasa. "Twice is enough for dangerous eigenvalues." preprint.
- M.J. Colbrook, A. Horning, and A. Townsend. "Computing spectral measures of self-adjoint operators." SIAM Review, to appear.
- M.J. Colbrook. "Computing spectral measures and spectral types." Communications in Mathematical Physics, to appear.
- M.J. Colbrook, A.C. Hansen. "The foundations of spectral computations via the Solvability Complexity Index hierarchy." preprint.
- M.J. Colbrook. "On the computation of geometric features of spectra of linear operators on Hilbert spaces." preprint.
- M.J. Colbrook, A.C. Hansen. "On the infinite-dimensional QR algorithm." Numerische Mathematik 143.1 (2019).
- M.J. Colbrook. "Computing semigroups with error control." preprint.

