Infinite-Dimensional Spectral Computations

Student Mechanics Seminar 26th March

Matthew Colbrook University of Cambridge Andrew Horning Cornell University

Outline

GOAL: compute spectral properties of operators in infinite-dimensions

Many applications: quantum mechanics, chemistry, matter physics, stat. mechanics, optics, number theory, PDEs, math. of info., quasicrystals,...

BUT: typically harder and more subtle than finite dimensions!

§ Problem		Main References	
Ι	Spectra	"How to compute spectra with error control"	
	Discusto Supertur	"C., Roman, Hansen, Physical Review Letters, 2019	
	Discrete Spectra	H., Townsend, SIAM J. on Num. Analysis. 2020	
111	Spectral Measures	"Computing spectral measures of self-adjoint operators" C., H., Townsend, SIAM Review, to appear "Computing spectral measures and spectral types" C., Communications in Mathematical Physics, to appear	

Program on Infinite-Dimensional Spectral Computations

How: Deal with operator A directly, instead of 'truncate-then-solve'

 \Rightarrow Compute many spectral properties for the <u>first time</u>.

Common tool: Compute properties of $(A - z)^{-1}$

Finite-dimensional NLA \rightsquigarrow Infinite-dimensional NLA

Foundations: Classify problems in a computational hierarchy measuring their intrinsic difficulty and the optimality of algorithms.

 \Rightarrow Optimal algorithms realising <u>boundaries</u> of what computers can achieve.

Part I: How to compute spectra with error control With a case study on quasicrystals

The infinite-dimensional spectral problem

In many applications, we are given an operator acting on $\ell^2(\mathbb{N})$ $(\ell^2(\mathbb{N}) = \text{canonical inner product space in infinite dimensions})$:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots \\ a_{21} & a_{22} & a_{23} & \dots \\ a_{31} & a_{32} & a_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad \begin{bmatrix} A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \end{pmatrix} \end{bmatrix}_i = \sum_{k \in \mathbb{N}} a_{jk} x_k.$$

Finite Case	\Rightarrow	Infinite Case
Eigenvalues	\Rightarrow	Spectrum, $\operatorname{Sp}(A)$
$\{z \in \mathbb{C} : \det(A - zI) = 0\}$	\Rightarrow	$\{z\in\mathbb{C}: A-zI \text{ not invertible}\}$

GOAL: compute spectrum of A from matrix elements

Fundamental challenges:

- Miss parts of the spectrum.
- Approximate false $z \notin \operatorname{Sp}(A)$ "spectral pollution".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Fundamental challenges:

- Miss parts of the spectrum.
- Approximate false $z \notin \operatorname{Sp}(A)$ "spectral pollution".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we know what part of approximation to trust?
- Methods can be inefficient and slow to converge.

Fundamental challenges:

- Miss parts of the spectrum.
- Approximate false $z \notin \operatorname{Sp}(A)$ "spectral pollution".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we know what part of approximation to trust?
- Methods can be inefficient and slow to converge.

Fundamental challenges:

- Miss parts of the spectrum.
- Approximate false $z \notin \operatorname{Sp}(A)$ "spectral pollution".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we know what part of approximation to trust?
- Methods can be inefficient and slow to converge.

Method of this talk:

ullet Converges without missing parts of spectrum. \checkmark

Fundamental challenges:

- Miss parts of the spectrum.
- Approximate false $z \notin Sp(A)$ "spectral pollution".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we know what part of approximation to trust?
- Methods can be inefficient and slow to converge.

- Converges without missing parts of spectrum.
- Avoids spectral pollution.

Fundamental challenges:

- Miss parts of the spectrum.
- Approximate false $z \notin Sp(A)$ "spectral pollution".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we know what part of computation to trust?
- Methods can be inefficient and slow to converge.

- Converges without missing parts of spectrum.
- Avoids spectral pollution.
- Provides error control (guaranteed certificate of accuracy)
 - \Rightarrow computations reliable and useful in applications. \checkmark

Fundamental challenges:

- Miss parts of the spectrum.
- Approximate false z ∉ Sp(A) "spectral pollution".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we know what part of computation to trust?
- Methods can be inefficient and slow to converge.

- Converges without missing parts of spectrum.
- Avoids spectral pollution.
- Provides error control (guaranteed certificate of accuracy)
 - \Rightarrow computations reliable and useful in applications. \checkmark
- Computationally efficient.

Quasicrystals: aperiodic structures with long-range order.

Left: D. Shechtman, **Nobel Prize in Chem. 2011** for discovering quasicrystals. Right: Penrose tile, canonical model used in physics.

Vertex model: site at each vertex and bonds along edges of tiles.

Motivation:

- We understand periodic systems really well but not aperiodic.
- Long range order & short range disorder everywhere in nature.
- What's the analogy of periodic physics for aperiodic systems?
- Many exotic physical properties and beginning to be used in
 - heat insulation
 - LEDs, solar absorbers, and energy coatings
 - reinforcing materials, e.g. low-friction gears
 - bone repair (hardness, low friction, corrosion resistance)...
- Understanding spectral properties key for physical insight.

Motivation:

- We understand periodic systems really well but not aperiodic.
- Long range order & short range disorder everywhere in nature.
- What's the analogy of periodic physics for aperiodic systems?
- Many exotic physical properties and beginning to be used in
 - heat insulation
 - LEDs, solar absorbers, and energy coatings
 - reinforcing materials, e.g. low-friction gears
 - bone repair (hardness, low friction, corrosion resistance)...
- Understanding spectral properties key for physical insight.

BUT: Aperiodic nature of quasicrystals has made it a considerable challenge to approximate spectrum of full infinite-dimensional operator.

Vertex model: site at each vertex and bonds along edges of tiles. **Model 1:** Perpendicular magnetic field (of strength *B*).

$$[A\psi]_i = -\sum_{i\sim j} e^{\mathrm{i}\theta_{ij}(B)}\psi_j,$$

Model 2: Graph Laplacian (electronic properties)

$$[A\psi]_i = \sum_{i\sim j} (\psi_j - \psi_i),$$

Very hard problems - no previous method even converges to spectrum.

Model 1: Magnetic field

Finite truncations

Spectral pollution.

New method

First convergent computation.

Idea I: Rectangular truncations

Idea I: Rectangular truncations

Idea I: Rectangular truncations

Locally compute distance function and minimisers

Rectangular truncation $P_{f(n)}(A - zI)P_n$ \Downarrow smallest singular values $\sigma_1(P_{f(n)}(A - zI)P_n)$ Approximate distance dist $(z, \operatorname{Sp}(A))$ \Downarrow local minimisers

Output $\Gamma_n(A) \to \operatorname{Sp}(A)$ and error bound $\sup_{z \in \Gamma_n(A)} E(n, z) \to 0$

Model 2: Graph Laplacian (electronic properties)

Model 2: Graph Laplacian (electronic properties)

Advantages

- First method that always converges to correct solution.
 (e.g. no spectral pollution)
- Local and parallelisable ⇒ FAST!
- Explicitly bounds the error:

Error $\leq E_n \downarrow 0$.

- Can prove it is OPTIMAL (see paper).
- Rigorously compute approximate states...

Background

Periodic systems have extended states (not localised), but add disorder...

Left: P. Anderson, **Nobel Prize in Phys. 1977** for discovering Anderson localisation. Right: Examples in 1D and 2D photonic lattices.

What happens in aperiodic systems? Do we need disorder?

- Bulk Localised States (BLSs): New states for magnetic quasicrystals
 - localised
 - "in-gap" (confirmed via comp. of inf-dim (topological) Chern numbers)
 - support transport
- Cause (also confirmed with toy models): Interplay of magnetic field with incommensurate areas of building blocks of quasicrystal.
- Not due to an internal edge, impurity or defect in the system.

→ NEW EXCITING PHYSICS!

Transport: **<u>Error control</u>** allows us to be <u>certain</u> of this phenomenon.

Conclusion of Part I

- Can now compute spectra of large class of operators.
- Computation has explicit error control.
- New method does not suffer from spectral pollution.
- New algorithm is fast, local and parallelisable.
- Extensions: <u>non-Hermitian</u> operators, general infinite matrices, <u>PDEs</u>, etc.
- New type of Bulk Localised State (BLS) for magnetic quasicrystals that support localised transport within the bulk.

Part II: Discrete Spectrum

H. and Townsend, **FEAST for differential eigenvalue problems**, SIAM Journal on Numerical Analysis, 2020.

The infinite-dimensional *eigenvalue* problem (IDEP)

$$\mathcal{L}u = \lambda u, \qquad u \in \mathcal{D}(\mathcal{L}) \subset \mathcal{H}$$

For example...

Integral operator

$$[\mathcal{L}u](x) = a(x)u(x) + \int_{-1}^{1} k(x,y)u(y) \, dy$$

Ordinary differential operator

$$[\mathcal{L}u](x) = a_K(x)u^{(k)}(x) + \dots + a_1(x)u'(x) + a_0(x)u(x)$$

Partial differential operator

$$[\mathcal{L}u](x) = -\nabla \cdot (A(x)\nabla u) + \mathbf{b}(x) \cdot \nabla u + c(x)u$$

*Domain $\mathcal{D}(\mathcal{L})$ usually encodes smoothness, integrability, and/or boundary conditions

Droplet formation

Linear

stability

$$u_t = \partial_x^4 u + \partial_x (u \partial_x u)$$

Laugesen and Pugh (2000)[,] H. and Townsend (2019)

$$-\frac{d^4u}{dx^4} - \frac{d}{dx}\left(u_{ss}\frac{du}{dx}\right) = \lambda u,$$
$$u(0) = u(l) = 0, \quad u''(0) = u''(l) = 0$$

L=chebop(0,P); L.op=@(x,u) -diff(u,4)-diff(uss(x)*diff(u)); L.lbc=@(u) [u; diff(u,2)]; L.rbc=@(u) [u; diff(u,2)]; [V,D]=contFEAST(L, 'half_plane', 'right');

contFEAST() – a computational framework for IDEP

$$\mathcal{L}u = \lambda u, \qquad u \in \mathcal{D}(\mathcal{L}) \subset \mathcal{H}$$

GOAL: Given a search region Ω , compute all eigenvalues of L in Ω , and associated eigenfunctions.

Key ingredients:

1) Solve shifted linear equations

 $(\mathcal{L} - z)v = f$ where $v \in \mathcal{D}(\mathcal{L}), f \in \mathcal{H}$

2) Compute inner products

 $\langle f, g \rangle_{\mathcal{H}}$ where $f, g \in \mathcal{H}$

contFEAST() – a computational framework for IDEP

$$\mathcal{L}u = \lambda u, \qquad u \in \mathcal{D}(\mathcal{L}) \subset \mathcal{H}$$

GOAL: Given a search region Ω , compute all eigenvalues of L in Ω , and associated eigenfunctions.

Key results:

- 1) If solutions to linear systems and inner products are computed with accuracy $0 < \epsilon < 1$, then* $|\lambda_k \hat{\lambda}_k| \le C\epsilon |\lambda_k|$
- 2) Constant C depends only on \mathcal{L} and $\partial\Omega$, but is **independent** of underlying discretization or approximation scheme

*See [H. and Townsend, 2020]

contFEAST() – Compute eigenvalues of operator in target region.

Spectral Projection

Range Sketching

Build basis for target eigenspace

Small eigenvalue problem for target eigenvalues and eigenvectors

Rayleigh—**Ritz Step**

contFEAST() – Compute eigenvalues of operator in target region.

Spectral Projection

2

Range Sketching

Rayleigh—Ritz Step

3

 $\operatorname{Real}(z)$

4

5

6

contFEAST() – Compute eigenvalues of operator in target region.

Spectral Projection

Range Sketching

Rayleigh—**Ritz Step**

$$P_{\Omega}(\mathcal{L}) = \sum_{\ell=1}^{M} w_k (\mathcal{L} - z_k)^{-1}$$

lar filter
$$r(\lambda) = \sum_{\ell=1}^M w_k (\lambda - z_k)^{-1}$$

Filter
$$r(\mathcal{L}) = \sum_{k=1}^{\infty} \sum_{\ell=1}^{M} w_{\ell} (\lambda_k - z_{\ell})^{-1} P_k$$

$$= \sum_{\ell=1}^{M} w_{\ell} (\mathcal{L} - z_{\ell})^{-1}$$

contFEAST() - Compute eigenvalues of operator in target region.

Spectral Projection

Range Sketching

Rayleigh—Ritz Step

 $V = P_{\Omega}(\mathcal{L})Y$

 v_1, \ldots, v_m approximates a basis for the target eigenspace

contFEAST() – Compute eigenvalues of operator in target region.

Spectral Projection

Range Sketching

Rayleigh—Ritz Step

$$L = Q^* \mathcal{L} Q$$

Orthonormalize basis v_1, \ldots, v_m using $\langle \cdot, \cdot
angle$

New orthonormal basis q_1, \ldots, q_m

 $u_j = \sum_{i=1}^m c_k^{(j)} q_k$

Eigenvector coordinates satisfy

$$\begin{pmatrix} L_{1,1} & \cdots & L_{1,m} \\ \vdots & \ddots & \vdots \\ L_{m,1} & \cdots & L_{m,m} \end{pmatrix} \begin{pmatrix} c_1^{(j)} \\ \vdots \\ c_m^{(j)} \end{pmatrix} = \lambda_j \begin{pmatrix} c_1^{(j)} \\ \vdots \\ c_m^{(j)} \end{pmatrix}$$
$$L_{i,j} = \langle q_i, \mathcal{L}q_j \rangle$$

Target regions and rational filters

Use any closed, piecewisesmooth curve. For example...

```
%FEAST with a circular search region
cntr=22.5; rad=6;
circle=chebfun(@(t) cntr+rad*exp(2*pi*1i*t),[0 1]);
[V,D]=contFEAST(L,circle);
```

Leveraging adaptive spectral methods

Part III: Spectral Measures

Colbrook, H., and Townsend, Computing spectral measures of self-adjoint operators, SIAM Review (to appear).

Diagonalizing an operator

$$-u''(x) = f(x), \qquad u(\pm 1) = 0$$

Diagonalizing an operator

Spectral measures

 $+\infty$

$$-u''(x), \qquad -1 \le x \le 1$$

$$\begin{array}{c|c} & \bullet & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \\ \end{array} \\ \hline 0 & \bullet & \bullet & \bullet \\ \hline 0 & \bullet \\ 0 & \bullet \\ \hline 0 & \bullet \\ 0 & \bullet \\ \hline 0 & \bullet \\ 0 & \bullet \\$$

$$\mathcal{E}([a,b])f = \sum_{a \le \lambda_k \le b} \hat{f}_k \, e^{2\pi i k x}$$

$$-u^{\prime\prime}(x), \qquad -\infty < x < \infty$$

continuous spectrum

11/

0

 $\mathcal{E}([a,b])f = \int_{a \le 2\pi k^2 \le b} \hat{f}(k) \, e^{2\pi i kx} \, dk$

Smoothed spectral measures: Stone's theorem

A simple framework

$$\mu_f^{\epsilon}(\lambda) = \frac{1}{\pi} \operatorname{Im} \langle \mathcal{R}(\lambda + i\epsilon, \mathcal{L}) f, f \rangle$$

Given $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$

Fix $\epsilon > 0$ and choose $f \in \mathcal{H}$ For k = 1, ..., n1) Solve $(\mathcal{L} - (\lambda_k + i\epsilon)\mathcal{I})u_k = f$ 2) Compute $\mu_f^{\epsilon}(\lambda_k) = \frac{1}{\pi} \text{Im}\langle u_k, f \rangle$

Convergence of smoothed measures

1) Solve
$$(\mathcal{L} - (\lambda_k + i\epsilon)\mathcal{I})u_k = f$$

singular in the limit $\epsilon \to 0$

Convergence of smoothed measures

1) Solve
$$(\mathcal{L} - (\lambda_k + i\epsilon)\mathcal{I})u_k = f$$

singular in the limit $\epsilon \to 0$

Rational kernels

Stone's theorem

$$\int_{\mathbb{R}} \frac{1}{\pi} \frac{\epsilon^2}{(\lambda - x)^2 + \epsilon^2} \, d\mu_f(\lambda) = \frac{1}{\pi} \operatorname{Im} \langle \mathcal{R}(x + i\epsilon, \mathcal{L}) f, f \rangle$$

"Generalized" Stone's theorem

$$[K_{\epsilon}^{(m)} * \mu_f](x) = \frac{-1}{\pi} \sum_{k=1}^m \operatorname{Im}\left(r_k \langle \mathcal{R}(x - \epsilon p_k), \mathcal{L})f, f \rangle\right)$$

 $p_1 = +i$ $\overline{p_1} = -i$

Rational kernels

Rational kernels

Theorem [Colbrook, H., and Townsend, 2020]

If μ_f is absolutely continuous in $I = [a - \delta, b + \delta]$ with Radon-Nikodym derivative $\rho_f \in W^{m,p}(I)$, then

$$\|\rho_f(x) - [K_{\epsilon}^{(m)} * \mu_f](x)\|_{L^p(a,b)} = \mathcal{O}(\epsilon^m \log(1/\epsilon)) \quad \text{as} \quad \epsilon \downarrow 0$$

Example I: Magnetic graphene

Example I: Magnetic graphene

Example I: Add a defect

Add potential
$$V(\mathbf{x}) = rac{\cos(\|\mathbf{x}\|_2 \pi)}{(\|\mathbf{x}\|_2 + 1)^2}$$
. Slice at $\Phi = 0.25$, $\epsilon = 0.01$:

Example II: Eigenvalue hunting

Example: Dirac operator.

- Describes the motion of a relativistic electron.
- Essential spectrum given by $\mathbb{R} \backslash (-1,1) \Rightarrow$ spectral pollution!
- Consider radially symmetric potential, coupled system on half-line:

$$\mathcal{D}_{V} = \begin{pmatrix} 1 + V(r) & -\frac{d}{dr} + \frac{-1}{r} \\ \frac{d}{dr} + \frac{-1}{r} & -1 + V(r) \end{pmatrix}, \quad V(r) = \frac{\gamma}{r}$$

• Map to [-1,1] and solve shifted linear systems using sparse spectral methods.

Example II: Eigenvalue hunting

NB: Previous state-of-the-art achieves a few digits for a few excited states.

Example III: Chern numbers

Finite dimensionsInfinite dimensions
$$\hat{P}^n = \sum_{m=1}^n |m\rangle\langle m|, \ \hat{Q}^n = I - \hat{P}^n$$
 $\hat{P}^E = \int_{(-\infty,E]} d\mathcal{E}(\lambda)$ $\hat{P}^n = \hat{Q}^n \hat{x} \hat{P}^n, \ \hat{y}^n = \hat{P}^n \hat{y} \hat{Q}^n$ $\hat{P}^E = \int_{-\infty}^E [\mathcal{K}_{\epsilon} * \mathcal{E}](\lambda) d\lambda, \ \hat{Q}^E_{\epsilon} = I - \hat{P}^E_{\epsilon}$ $\hat{x}^n = \hat{Q}^n \hat{x} \hat{P}^n, \ \hat{y}^n = \hat{P}^n \hat{y} \hat{Q}^n$ $\hat{z}^E_{\epsilon} = \hat{Q}^E_{\epsilon} \hat{x} \hat{P}^E_{\epsilon}, \ \hat{y}^E_{\epsilon} = \hat{P}^E_{\epsilon} \hat{y} \hat{Q}^E_{\epsilon}$ $\mathcal{C}^n_i = -\frac{4\pi}{A_c^2} \mathrm{Im} \{\langle i | \hat{x}^n \hat{y}^n | i \rangle\}$ $\mathcal{C}^E_i = -\frac{4\pi}{A_c^2} \mathrm{Im} \{\langle i | \hat{x}^E_{\epsilon} \hat{y}^E_{\epsilon} | i \rangle\}$

Round and take maximal count over site *i*.

Intuition: Topological index to detect in-gap (conducting) state.

Example III: Chern numbers

Conclusion of Part III

- **Diagonalisation:** General framework for computing spectral measures and projections of self-adjoint operators.
- Convolution with **rational kernels**:
 - Can be evaluated using resolvent. ALL you need to be able to do is solve linear systems and compute inner products.
 - High-order kernels \Rightarrow high-order convergence.
- Fast, local and parallelisable ⇒ State-of-the-art results for PDEs, integral operators and discrete operators.
- Example: Chern numbers of BLSs showing they are in-gap.

Code: https://github.com/SpecSolve.

References

- M.J. Colbrook, B. Roman, and A.C. Hansen. "How to compute spectra with error control." *Physical Review Letters* 122.25 (2019).
- A. Horning, and A. Townsend. "FEAST for differential eigenvalue problems." *SIAM Journal on Numerical Analysis* 58.2 (2020).
- A. Horning, and Y. Nakatsukasa. "Twice is enough for dangerous eigenvalues." *preprint*.
- M.J. Colbrook, A. Horning, and A. Townsend. "Computing spectral measures of self-adjoint operators." *SIAM Review*, to appear.
- M.J. Colbrook. "Computing spectral measures and spectral types." *Communications in Mathematical Physics*, to appear.
- M.J. Colbrook, A.C. Hansen. "The foundations of spectral computations via the Solvability Complexity Index hierarchy." *preprint*.
- M.J. Colbrook. "On the computation of geometric features of spectra of linear operators on Hilbert spaces." *preprint*.
- M.J. Colbrook, A.C. Hansen. "On the infinite-dimensional QR algorithm." *Numerische Mathematik* 143.1 (2019).
- M.J. Colbrook. "Computing semigroups with error control." preprint.