Computing semigroups and solutions of time-fractional PDEs with error control

Matthew Colbrook (University of Cambridge + École Normale Supérieure)

M. Colbrook, "*Computing semigroups with error control*", SIAM Journal on Numerical Analysis, to appear. M. Colbrook and L. Ayton, "*A contour method for time-fractional PDEs*", Journal of Computational Physics, under revision.

The finite-dimensional case

$$\frac{du}{dt} = \mathbb{A}u, \quad \mathbb{A} \in \mathbb{C}^{n \times n}, \quad u(0) = u_0 \in \mathbb{C}^n \quad \Rightarrow \quad u(t) = \exp(t\mathbb{A})u_0 = \sum_{j=0}^{\infty} \frac{t^j}{j!} \mathbb{A}^j u_0.$$

E.g., if $\mathbb{A} = PDP^{-1}$, $D = \operatorname{diag}(d_1, ..., d_n)$ diagonal, then

L

$$u(t) = P egin{pmatrix} e^{d_1t} & & & \ & e^{d_2t} & & \ & & \ddots & \ & & & \ddots & \ & & & e^{d_nt} \end{pmatrix} P^{-1} u_0.$$

(Usually much better ways to compute this, but that's a different story...)

· C. Moler, C. Van Loan, "Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later," SIAM review, 2003.

· N. Higham, "*The scaling and squaring method for the matrix exponential revisited*," SIAM Journal on Matrix Analysis and Applications, 2005.

• A. Frommer and B. Hashemi, "Computing enclosures for the matrix exponential," SIAM Journal on Matrix Analysis and Applications, 2020.

The infinite-dimensional case

Linear operator A on an infinite-dimensional Hilbert space \mathcal{H} ,

$$\frac{du}{dt}=Au,\quad u(0)=u_0\in\mathcal{H}.$$

Common examples:

- Time-dependent PDEs.
- Infinite discrete systems.

<u>GOAL</u>: Compute the solution u(t) at time t > 0. Ideally with <u>error control</u>.

Some common techniques

- **Domain truncation and absorbing boundary conditions:** B. Engquist and A. Majda, "Absorbing boundary conditions for numerical simulation of waves," PNAS, 1977.
- Rational approximations: M. Crouzeix, S. Larsson, S. Piskarev and V. Thomé, "The stability of rational approximations of analytic semigroups," BIT, 1993.
- Splitting methods: R. McLachlan and G. R. Quispel, "Splitting methods," Acta Numerica, 2002.
- Exponential integrators: M. Hochbruck and A. Ostermann, "*Exponential integrators*," Acta Numerica, 2010.
- Krylov methods: J. Liesen and Z. Strakos, "Krylov subspace methods," OUP, 2013.
- Galerkin methods: C. Lasser and C. Lubich, "Computing quantum dynamics in the semiclassical regime," Acta Numerica, 2020.
- Contour methods (in this talk): A. Talbot, "The accurate numerical inversion of Laplace transforms," IMA Journal of Applied Mathematics, 1979.
 N. Guglielmi, M. López-Fernández and M. Manucci, "Pseudospectral roaming contour integral methods for convection-diffusion equations," Journal of Scientific Computing, 2021.

Each area has hundreds of papers and many great mathematicians who have written them!

3/34

Previous approaches: A is discretised to $\mathbb{A} \in \mathbb{C}^{n \times n}$ and we use some sort of finite-dimensional solver – "**truncate-then-solve**"

Typical difficulties:

- Can be very difficult to bound the error when we go from A to \mathbb{A} .
- \bullet Sometimes $\mathbb A$ does not respect key properties of the system.
- \bullet Sometimes $\mathbb A$ is more complicated to study (e.g., where are its eigenvalues?).
- PDEs on unbounded domains two truncations: the physical domain, then the operator restricted to this domain. How do we rigorously deal with domain truncation?

Previous approaches: A is discretised to $\mathbb{A} \in \mathbb{C}^{n \times n}$ and we use some sort of finite-dimensional solver – "**truncate-then-solve**"

Typical difficulties:

- Can be very difficult to bound the error when we go from A to \mathbb{A} .
- \bullet Sometimes $\mathbb A$ does not respect key properties of the system.
- \bullet Sometimes $\mathbb A$ is more complicated to study (e.g., where are its eigenvalues?).
- PDEs on unbounded domains two truncations: the physical domain, then the operator restricted to this domain. How do we rigorously deal with domain truncation?

Previous approaches: A is discretised to $\mathbb{A} \in \mathbb{C}^{n \times n}$ and we use some sort of finite-dimensional solver – "**truncate-then-solve**"

Typical difficulties:

- Can be very difficult to bound the error when we go from A to A.
- \bullet Sometimes $\mathbb A$ does not respect key properties of the system.
- Sometimes \mathbb{A} is more complicated to study (e.g., where are its eigenvalues?).
- PDEs on unbounded domains two truncations: the physical domain, then the operator restricted to this domain. How do we rigorously deal with domain truncation?

Previous approaches: A is discretised to $\mathbb{A} \in \mathbb{C}^{n \times n}$ and we use some sort of finite-dimensional solver – "**truncate-then-solve**"

Typical difficulties:

- Can be very difficult to bound the error when we go from A to A.
- Sometimes A does not respect key properties of the system.
- Sometimes \mathbb{A} is more complicated to study (e.g., where are its eigenvalues?).
- PDEs on unbounded domains two truncations: the physical domain, then the operator restricted to this domain. How do we rigorously deal with domain truncation?

Previous approaches: A is discretised to $\mathbb{A} \in \mathbb{C}^{n \times n}$ and we use some sort of finite-dimensional solver – "**truncate-then-solve**"

Typical difficulties:

- Can be very difficult to bound the error when we go from A to A.
- Sometimes A does not respect key properties of the system.
- Sometimes A is more complicated to study (e.g., where are its eigenvalues?).
- PDEs on unbounded domains two truncations: the physical domain, then the operator restricted to this domain. How do we rigorously deal with domain truncation?

Previous approaches: A is discretised to $\mathbb{A} \in \mathbb{C}^{n \times n}$ and we use some sort of finite-dimensional solver – "**truncate-then-solve**"

Typical difficulties:

- Can be very difficult to bound the error when we go from A to A.
- Sometimes A does not respect key properties of the system.
- Sometimes A is more complicated to study (e.g., where are its eigenvalues?).
- PDEs on unbounded domains two truncations: the physical domain, then the operator restricted to this domain. How do we rigorously deal with domain truncation?

Example: discrete Laplacian

Finite portion of the aperiodic infinite Ammann–Beenker tile - red dots correspond to u_0 .

Very interesting transport properties but notoriously difficult to compute. Graph Laplacian:

$$[\Delta_{\mathrm{AB}}\psi]_i = \sum_{i\sim j} (\psi_j - \psi_i), \quad \{\psi_j\}_{j\in\mathbb{N}} \in \ell^2(\mathbb{N}).$$

Schrödinger equation and wave equation:

$$iu_t = -\Delta_{
m AB} u$$
 and $u_{tt} = \Delta_{
m AB} u_{tt}$

Quasicrystals

Quasicrystal: Aperiodic material with long-range order.

- Discovered by Dan Shechtman in 1982 (awarded Nobel prize in Chemistry 2011).
- Luca Bindi and Paul Steinhardt discovered icosahedrite, first natural quasicrystal (awarded 2018 Aspen Institute Prize for scientific collaboration between Italy and US).
- Many exotic physical properties and beginning to be used in
 - heat insulation
 - LEDs, solar absorbers, and energy coatings
 - reinforcing materials, e.g., low-friction gears
 - bone repair (hardness, low friction, corrosion resistance)...
- E.g., what's the analogy of periodic physics for aperiodic systems?

[·] D. Johnstone, M. Colbrook, A. Nielsen, P. Öhberg, C. Duncan, "Bulk localised transport states in infinite and finite quasicrystals via magnetic aperiodicity," arXiv preprint. 6/34

Computed solutions with guaranteed accuracy $\epsilon = 10^{-10}$

Top row: log10(|u(t)|) for Schrödinger equation. Bottom row: u(t) for wave equation.

Standard truncation methods

 $\mathit{u}_{\rm FS}=\,$ solution by direct diagonalisation of 10001 \times 10001 truncation.

As t increases, we need more vertices (basis vectors) to capture the solution. The method of this talk allows this to be done rigorously and adaptively.

When is our equation well-posed?

$$\frac{du}{dt} = Au, \quad u(0) = u_0 \in \mathcal{H}.$$
(1)

Eq. (1) well-posed $\Leftrightarrow A$ generates a strongly continuous semigroup $(u(t) = \exp(tA)u_0)$ Spectrum: $\operatorname{Sp}(A) = \{z : A - zI \text{ not invertible}\}$

Theorem (Hille–Yosida Theorem)

A generates a strongly continuous semigroup if and only if A is densely defined and there exists $\omega \in \mathbb{R}$, M > 0 such that

$$\textit{if } \operatorname{Re}(z) > \omega, \textit{ then } z \notin \operatorname{Sp}(A) \textit{ and } \|(A - zI)^{-n}\| \leq \frac{M}{(\operatorname{Re}(z) - \omega)^n}, \quad \forall n \in \mathbb{N}.$$

Two open foundations problems

- **Q.1:** Computing semigroups with error control: Does there exist an algorithm with input:
 - a generator A of a strongly continuous semigroup on \mathcal{H} ,
 - *a time t* > 0,
 - an arbitrary initial condition $u_0 \in \mathcal{H}$,
 - an error tolerance $\epsilon > 0$,

that computes an approximation of $\exp(tA)u_0$ to accuracy ϵ in \mathcal{H} ?

Q.2: For $\mathcal{H} = L^2(\mathbb{R}^d)$ is there a large class of partial differential operators A on the unbounded domain \mathbb{R}^d where the answer to Q.1 is yes?

Two open *foundations* problems

- **Q.1:** Computing semigroups with error control: Does there exist an algorithm with input:
 - a generator A of a strongly continuous semigroup on \mathcal{H} ,
 - *a time t* > 0,
 - an arbitrary initial condition $u_0 \in \mathcal{H}$,
 - an error tolerance $\epsilon > 0$,

that computes an approximation of $\exp(tA)u_0$ to accuracy ϵ in \mathcal{H} ?

Q.2: For $\mathcal{H} = L^2(\mathbb{R}^d)$ is there a large class of partial differential operators A on the unbounded domain \mathbb{R}^d where the answer to Q.1 is yes?

We will provide resolutions to both problems!

Two open foundations problems

- **Q.1:** Computing semigroups with error control: Does there exist an algorithm with input:
 - a generator A of a strongly continuous semigroup on \mathcal{H} ,
 - *a time t* > 0,
 - an arbitrary initial condition $u_0 \in \mathcal{H}$,
 - an error tolerance $\epsilon > 0$,

that computes an approximation of $\exp(tA)u_0$ to accuracy ϵ in \mathcal{H} ?

Q.2: For $\mathcal{H} = L^2(\mathbb{R}^d)$ is there a large class of partial differential operators A on the unbounded domain \mathbb{R}^d where the answer to Q.1 is yes?

We will provide resolutions to both problems!

We will also extend the techniques to other scenarios such as time-fractional PDEs!

$$\frac{du}{dt} = Au, \quad u(0) = u_0 \in \mathcal{H}.$$
Take Laplace transform (denoted $\hat{}) \Rightarrow \hat{u}(z) = \int_0^\infty e^{-zt} u(t) dt = -(A - zI)^{-1} u_0.$

$$\int_{\frac{1}{30}}^{\frac{40}{20}} \frac{\gamma}{10} \operatorname{Re}(z) \qquad \text{``Invert'': } \exp(tA)u_0 = \left[\frac{-1}{2\pi i}\int_{\gamma} e^{zt}(A - zI)^{-1} dz\right]u_0$$

$$\frac{du}{dt} = Au, \quad u(0) = u_0 \in \mathcal{H}.$$
Take Laplace transform (denoted $\hat{\cdot}$) $\Rightarrow \hat{u}(z) = \int_0^\infty e^{-zt} u(t) dt = -(A - zI)^{-1} u_0.$

$$\int_{30}^{40} \frac{\gamma}{\frac{1}{20}} \frac{1}{10} \frac{\varphi}{\frac{1}{10}} \frac{\varphi}{\frac{1}{1$$

Problems:

$$\frac{du}{dt} = Au, \quad u(0) = u_0 \in \mathcal{H}.$$

Take Laplace transform (denoted $\hat{}) \Rightarrow \hat{u}(z) = \int_0^\infty e^{-zt} u(t) dt = -(A - zI)^{-1} u_0.$

"Invert":
$$\exp(tA)u_0 = \left[\frac{-1}{2\pi i}\int_{\gamma}e^{zt}(A-zI)^{-1}\,dz\right]u_0$$

Problems:

• Integrand does not decay!

$$\frac{du}{dt}=Au, \quad u(0)=u_0\in \mathcal{H}.$$

Take Laplace transform (denoted $\hat{\cdot}$) $\Rightarrow \hat{u}(z) = \int_{0}^{\infty} e^{-zt} u(t) dt = -(A - zI)^{-1} u_{0}.$

"Invert":
$$\exp(tA)u_0 = \left[\frac{-1}{2\pi i}\int_{\gamma}e^{zt}(A-zI)^{-1}\,dz\right]u_0$$

Problems:

- Integrand does not decay!
- How do we compute $(A zI)^{-1}$?

$$\frac{du}{dt}=Au,\quad u(0)=u_0\in\mathcal{H}.$$

Take Laplace transform (denoted $\hat{\cdot}$) $\Rightarrow \hat{u}(z) = \int_{0}^{\infty} e^{-zt} u(t) dt = -(A - zI)^{-1} u_0.$

"Invert":
$$\exp(tA)u_0 = \left[\frac{-1}{2\pi i}\int_{\gamma}e^{zt}(A-zI)^{-1}\,dz\right]u_0$$

Problems:

- Integrand does not decay!
- How do we compute $(A zI)^{-1}$?
- How do we bound error of approximating the integral?

Q.1: $\mathcal{H} = \ell^2(\mathbb{N})$ with inner product $\langle \cdot, \cdot \rangle$

Input $(\Omega_{\ell^2(\mathbb{N})})$: (A, u_0, t) s.t. A generates strongly continuous semigroup, $u_0 \in \ell^2(\mathbb{N})$, t > 0. Allow access to:

• Arbitrary precision approximations of:

(Matrix evaluations) $\langle Ae_k, e_j \rangle$, $\langle Ae_k, Ae_j \rangle$, $\forall j, k \in \mathbb{N}$, (Coefficient evaluations) $\langle u_0, u_0 \rangle$, $\langle u_0, e_i \rangle$, $\forall j \in \mathbb{N}$.

• Constants M, ω satisfying conditions in Hille–Yosida Theorem.

Q.1: $\mathcal{H} = \ell^2(\mathbb{N})$ with inner product $\langle \cdot, \cdot \rangle$

Input $(\Omega_{\ell^2(\mathbb{N})})$: (A, u_0, t) s.t. A generates strongly continuous semigroup, $u_0 \in \ell^2(\mathbb{N})$, t > 0. Allow access to:

• Arbitrary precision approximations of:

(Matrix evaluations) $\langle Ae_k, e_j \rangle$, $\langle Ae_k, Ae_j \rangle$, $\forall j, k \in \mathbb{N}$, (Coefficient evaluations) $\langle u_0, u_0 \rangle$, $\langle u_0, e_i \rangle$, $\forall j \in \mathbb{N}$.

• Constants M, ω satisfying conditions in Hille–Yosida Theorem.

Theorem 1 (Strongly continuous semigroups on $\ell^2(\mathbb{N})$ computed with error control)

There exists a universal algorithm $\Gamma_{\ell^2(\mathbb{N})}$ using the above, such that

 $\| \mathsf{\Gamma}_{\ell^2(\mathbb{N})}(A, u_0, t, \epsilon) - \exp(tA) u_0 \|_{\ell^2(\mathbb{N})} \leq \epsilon, \quad \forall \epsilon > 0 \text{ and } (A, u_0, t) \in \Omega_{\ell^2(\mathbb{N})}.$

• Regularisation (a standard trick from functional analysis):

$$\exp(tA)u_0 = (A - (\omega + 2)I)^2 \left[\frac{-1}{2\pi i} \int_{\omega+1-i\infty}^{\omega+1+i\infty} \underbrace{\frac{e^{zt}(A - zI)^{-1}}{(z - (\omega + 2))^2}}_{\text{now decays}} dz \right] u_0.$$

• Regularisation (a standard trick from functional analysis):

$$\exp(tA)u_0 = (A - (\omega + 2)I)^2 \left[\frac{-1}{2\pi i} \int_{\omega+1-i\infty}^{\omega+1+i\infty} \underbrace{\frac{e^{zt}(A - zI)^{-1}}{(z - (\omega + 2))^2}}_{\text{now decays}} dz \right] u_0.$$

• A few reductions (using Hille-Yosida theorem) to approximating the operator

$$\left[\frac{1}{2\pi i}\int_{\omega+1-i\infty}^{\omega+1+i\infty}\frac{\exp(zt)(A-zI)^{-1}}{(z-(\omega+2))^2}\,dz\right].$$

• Regularisation (a standard trick from functional analysis):

$$\exp(tA)u_0 = (A - (\omega + 2)I)^2 \left[\frac{-1}{2\pi i} \int_{\omega+1-i\infty}^{\omega+1+i\infty} \underbrace{\frac{e^{zt}(A - zI)^{-1}}{(z - (\omega + 2))^2}}_{\text{now decays}} dz \right] u_0.$$

• A few reductions (using Hille-Yosida theorem) to approximating the operator

$$\left[\frac{1}{2\pi i}\int_{\omega+1-i\infty}^{\omega+1+i\infty}\frac{\exp(zt)(A-zI)^{-1}}{(z-(\omega+2))^2}\,dz\right].$$

• Truncation + quadrature for decaying integrand.

• Regularisation (a standard trick from functional analysis):

$$\exp(tA)u_0 = (A - (\omega + 2)I)^2 \left[\frac{-1}{2\pi i} \int_{\omega+1-i\infty}^{\omega+1+i\infty} \underbrace{\frac{e^{zt}(A - zI)^{-1}}{(z - (\omega + 2))^2}}_{\text{now decays}} dz \right] u_0.$$

• A few reductions (using Hille-Yosida theorem) to approximating the operator

$$\left[\frac{1}{2\pi i}\int_{\omega+1-i\infty}^{\omega+1+i\infty}\frac{\exp(zt)(A-zI)^{-1}}{(z-(\omega+2))^2}\,dz\right]$$

- Truncation + quadrature for decaying integrand.
- Apply $(A zI)^{-1}$ using least-squares and adaptive truncations by controlling residuals.

Q.2: $\mathcal{H} = L^2(\mathbb{R}^d)$

$$[Au](x) = \sum_{k \in \mathbb{Z}_{\geq 0}^d, |k| \leq N} a_k(x) \partial^k u(x).$$

Input (Ω_{PDE}): (A, u_0, t) such that A generates a strongly continuous semigroup on $L^2(\mathbb{R}^d)$, $u_0 \in L^2(\mathbb{R}^d)$ and t > 0

Allow access to:

- Arbitrary precision pointwise evaluations $a_k(q), u_0(q), q \in \mathbb{Q}^d$.
- Bounds on growth rate and 'oscillations' of coefficients.
- Sequence $c_n \to 0$ with $\|u_0|_{[-n,n]^d} u_0\|_{L^2(\mathbb{R}^d)} \leq c_n$.
- Constants M, ω satisfying conditions in Hille–Yosida Theorem.

Q.2: $\mathcal{H} = L^2(\mathbb{R}^d)$

$$[Au](x) = \sum_{k \in \mathbb{Z}_{\geq 0}^d, |k| \leq N} a_k(x) \partial^k u(x).$$

Input (Ω_{PDE}): (A, u_0, t) such that A generates a strongly continuous semigroup on $L^2(\mathbb{R}^d)$, $u_0 \in L^2(\mathbb{R}^d)$ and t > 0

Allow access to:

- Arbitrary precision pointwise evaluations $a_k(q), u_0(q), q \in \mathbb{Q}^d$.
- Bounds on growth rate and 'oscillations' of coefficients.
- Sequence $c_n \to 0$ with $\|u_0|_{[-n,n]^d} u_0\|_{L^2(\mathbb{R}^d)} \leq c_n$.
- Constants M, ω satisfying conditions in Hille–Yosida Theorem.

Theorem 2 (PDE semigroups on $L^2(\mathbb{R}^d)$ computed with error control)

There exists a universal algorithm Γ_{PDE} using the above, such that $\|\Gamma_{\text{PDE}}(A, u_0, t, \epsilon) - \exp(tA)u_0\|_{L^2(\mathbb{R}^d)} \le \epsilon, \quad \forall \epsilon > 0 \text{ and } (A, u_0, t) \in \Omega_{\text{PDE}}$

14/34

• Reduce to Q.1 using (tensor product) Hermite basis

$$\psi_m(x) = (2^m m! \sqrt{\pi})^{-1/2} e^{-x^2/2} H_m(x), \quad H_m(x) = (-1)^m e^{x^2} \frac{d^m}{dx^m} e^{-x^2}.$$

• Reduce to Q.1 using (tensor product) Hermite basis

$$\psi_m(x) = (2^m m! \sqrt{\pi})^{-1/2} e^{-x^2/2} H_m(x), \quad H_m(x) = (-1)^m e^{x^2} \frac{d^m}{dx^m} e^{-x^2}.$$

• Compute inner products (with error control)

$$\langle Ae_k, Ae_j \rangle = \int_{\mathbb{R}^d} (A\psi_{m(k)}) \overline{(A\psi_{m(j)})} dx, \quad \langle Ae_k, e_j \rangle = \int_{\mathbb{R}^d} (A\psi_{m(k)}) \psi_{m(j)} dx,$$

using quasi-Monte Carlo numerical integration.

• Reduce to Q.1 using (tensor product) Hermite basis

$$\psi_m(x) = (2^m m! \sqrt{\pi})^{-1/2} e^{-x^2/2} H_m(x), \quad H_m(x) = (-1)^m e^{x^2} \frac{d^m}{dx^m} e^{-x^2}.$$

• Compute inner products (with error control)

$$\langle Ae_k, Ae_j \rangle = \int_{\mathbb{R}^d} (A\psi_{m(k)}) \overline{(A\psi_{m(j)})} dx, \quad \langle Ae_k, e_j \rangle = \int_{\mathbb{R}^d} (A\psi_{m(k)}) \psi_{m(j)} dx,$$

using quasi-Monte Carlo numerical integration.

• Similar techniques deal with u_0 .

Analytic semigroups

Analytic semigroups

Analytic semigroups

$$\exp(tA)u_0 = \left[\frac{-1}{2\pi i}\int_{\gamma} e^{zt}(A-zI)^{-1} dz\right]u_0$$

$$\gamma(s) = \mu(1+\sin(is-\alpha)), \quad \mu > 0, \quad 0 < \alpha < \frac{\pi}{2} - \delta \quad (s \in \mathbb{R}).$$

16/34

Instability

$$\gamma(s) = \mu(1 + \sin(is - \alpha)), \quad \mu > 0, \quad 0 < \alpha < \frac{\pi}{2} - \delta \quad (s \in \mathbb{R}).$$
$$\exp(tA)u_0 = \left[\frac{-1}{2\pi i}\int_{\gamma} e^{zt}(A - zI)^{-1} dz\right]u_0 \approx \frac{-h}{2\pi i}\sum_{j=-N}^{N} e^{z_j t}(A - z_jI)^{-1}\gamma'(jh), \quad z_j = \gamma(jh).$$

Æ

[·] J. Weideman, L.N. Trefethen, "Parabolic and hyperbolic contours for computing the Bromwich integral," Mathematics of Computation, 2007.

Instability

$$\gamma(s) = \mu(1 + \sin(is - \alpha)), \quad \mu > 0, \quad 0 < \alpha < \frac{n}{2} - \delta \quad (s \in \mathbb{R}).$$
$$\exp(tA)u_0 = \left[\frac{-1}{2\pi i}\int_{\gamma} e^{zt}(A - zI)^{-1} dz\right]u_0 \approx \frac{-h}{2\pi i}\sum_{j=-N}^{N} e^{z_j t}(A - z_jI)^{-1}\gamma'(jh), \quad z_j = \gamma(jh).$$

 π

17/34

Compute $\exp(tA)$ for $t \in [t_0, t_1]$ where $0 < t_0 \le t_1$, $\Lambda_t = t_1/t_0$.

Leads to 'optimal' h, μ and α as functions of N, Λ_t and δ .

[·] J. Weideman, L.N. Trefethen, "Parabolic and hyperbolic contours for computing the Bromwich integral," Mathematics of Computation, 2007.

Instability

$$\gamma(s) = \mu(1 + \sin(is - \alpha)), \quad \mu > 0, \quad 0 < \alpha < \frac{\pi}{2} - \delta \quad (s \in \mathbb{R}).$$
$$\exp(tA)u_0 = \left[\frac{-1}{2\pi i}\int_{\gamma} e^{zt}(A - zI)^{-1} dz\right]u_0 \approx \frac{-h}{2\pi i}\sum_{j=-N}^{N} e^{z_j t}(A - z_jI)^{-1}\gamma'(jh), \quad z_j = \gamma(jh).$$

 π

Compute $\exp(tA)$ for $t \in [t_0, t_1]$ where $0 < t_0 \le t_1$, $\Lambda_t = t_1/t_0$.

Leads to 'optimal' h, μ and α as functions of N, Λ_t and δ .

Problem: Numerical instability since $\max(\operatorname{Re}(z_i)) \to \infty$ as $N \to \infty$.

[·] J. Weideman, L.N. Trefethen, "Parabolic and hyperbolic contours for computing the Bromwich integral," Mathematics of Computation, 2007.

Instability (even in scalar case)

$$1=\frac{1}{2\pi i}\int_{\gamma}\frac{e^{zt}}{z}dz.$$

$$M_N = max$$
 error for $t \in [t_0, t_1]$.

18/34

Instability (even in scalar case)

$$1 = \frac{1}{2\pi i} \int_{\gamma} \frac{e^{zt}}{z} dz.$$

$$M_{N}=$$
 max error for $t\in [t_{0},t_{1}].$

Enforcing stability

$$\exp(tA)u_0 \approx \frac{-h}{2\pi i} \sum_{j=-N}^N e^{z_j t} (A-z_j I)^{-1} \gamma'(jh), \quad z_j = \gamma(jh).$$

Idea: Enforce $\max(\operatorname{Re}(z_j))t_1 \leq \beta$ as $N \to \infty$ for stability.

Enforcing stability

$$\exp(tA)u_0 pprox rac{-h}{2\pi i} \sum_{j=-N}^N e^{z_j t} (A-z_j I)^{-1} \gamma'(jh), \quad z_j = \gamma(jh).$$

Idea: Enforce $\max(\operatorname{Re}(z_j))t_1 \leq \beta$ as $N \to \infty$ for stability.

$$h = \frac{1}{N} W \Big(\Lambda_t N \frac{\pi(\pi - 2\delta)}{\beta \sin\left(\frac{\pi - 2\delta}{4}\right)} \Big(1 - \sin\left(\frac{\pi - 2\delta}{4}\right) \Big) \Big), \quad \mu = \frac{\beta/t_1}{1 - \sin((\pi - 2\delta)/4)}, \quad \alpha = \frac{h\mu t_1 + \pi^2 - 2\pi\delta}{4\pi}.$$

Enforcing stability

$$\exp(tA)u_0 pprox rac{-h}{2\pi i} \sum_{j=-N}^N e^{z_j t} (A-z_j I)^{-1} \gamma'(jh), \quad z_j = \gamma(jh).$$

Idea: Enforce $\max(\operatorname{Re}(z_j))t_1 \leq \beta$ as $N \to \infty$ for stability.

$$h = \frac{1}{N} W \Big(\Lambda_t N \frac{\pi(\pi - 2\delta)}{\beta \sin\left(\frac{\pi - 2\delta}{4}\right)} \Big(1 - \sin\left(\frac{\pi - 2\delta}{4}\right) \Big) \Big), \quad \mu = \frac{\beta/t_1}{1 - \sin((\pi - 2\delta)/4)}, \quad \alpha = \frac{h\mu t_1 + \pi^2 - 2\pi\delta}{4\pi}.$$

Algorithm: Stable and rapidly convergent algorithm for analytic semigroups.

Input: A (generator of an analytic semigroup with angle $\delta \in [0, \pi/2)$), $u_0 \in \mathcal{H}$, $0 < t_0 \leq t_1 < \infty$, $\beta > 0$, $N \in \mathbb{N}$ and $\eta > 0$.

1: Let γ be defined as above with α, μ and h given by above, where $\Lambda_t = t_1/t_0$. 2: Set $z_j = \gamma(jh)$ and $w_j = \frac{h}{2\pi i}\gamma'(jh)$. 3: Solve $(A - z_jI)R_j = -u_0$ for $-N \leq j \leq N$ to an accuracy η . **Output:** $u_N(t) = \sum_{j=-N}^N e^{z_j t} w_j R_j$ for $t \in [t_0, t_1]$.

Recovery theorem

Theorem 3 (Stable & rapidly convergent algorithm for analytic semigroups)

Explicit constant C such that for any $t_0 \leq t \leq t_1$,

$$\begin{aligned} \|\exp(tA)u_{0} - u_{N}(t)\|_{\mathcal{H}} &\leq \underbrace{\left(2\mu e^{\frac{\beta}{1-\sin(\alpha)}}\pi^{-1}\int_{0}^{\infty} e^{x-\mu t\sin(\alpha)\cosh(x)}dx\right)\eta}_{numerical\ error\ due\ to\ inexact\ resolvent} \\ &+ \underbrace{Ce^{\frac{\beta}{1-\sin(\alpha)}}\cdot\exp\left(-\frac{N\pi(\pi-2\delta)/2}{\log(\Lambda_{t}\frac{\sin(\pi/4-\delta/2)^{-1}-1}{\beta}N\pi(\pi-2\delta))\right)}_{quadrature\ error} \\ &= \mathcal{O}(\eta) + \mathcal{O}(\exp(-cN/\log(N))). \end{aligned}$$

Example on $L^2(\mathbb{R})$ demonstrating convergence

.

$$u_t = [(1.1 - 1/(1 + x^2))u_x]_x, \quad u_0(x) = e^{-\frac{(x-1)^2}{5}}\cos(2x) + 2[1 + (x+1)^4]^{-1}.$$

Basis: $\phi_n(x) = \pi^{-1/2}(1 + ix)^n(1 - ix)^{-(n+1)}, \quad n \in \mathbb{Z}.$

What about fractional derivatives?

$$\left[\mathcal{D}_t^{\nu}g\right](t) = \begin{cases} \frac{1}{\Gamma(n-\nu)} \int_0^t (t-\tau)^{n-\nu-1} g^{(n)}(\tau) d\tau, & \text{if } n-1 < \nu < n, \\ g^{(n)}(t), & \text{if } \nu = n. \end{cases}$$

Time-fractional equation: $\sum_{j=1}^{M} \mathcal{D}_{t}^{\nu_{j}} A_{j} u = f(t)$ for $t \geq 0$, $n_{j} - 1 < \nu_{j} \leq n_{j}$.

Applications: Solid mechanics, biology, electrochemistry, finance, signal processing, anomalous diffusion, statistics, astrophysics, etc. (Explosion of interest over last \approx 15 years.)

What about fractional derivatives?

$$\left[\mathcal{D}_{t}^{\nu}g\right](t) = \begin{cases} \frac{1}{\Gamma(n-\nu)} \int_{0}^{t} (t-\tau)^{n-\nu-1} g^{(n)}(\tau) d\tau, & \text{if } n-1 < \nu < n, \\ g^{(n)}(t), & \text{if } \nu = n. \end{cases}$$

Time-fractional equation: $\sum_{j=1}^{M} \mathcal{D}_t^{\nu_j} A_j u = f(t)$ for $t \ge 0$, $n_j - 1 < \nu_j \le n_j$.

Applications: Solid mechanics, biology, electrochemistry, finance, signal processing, anomalous diffusion, statistics, astrophysics, etc. (Explosion of interest over last ≈ 15 years.)

Common challenges:

- Non-local time derivative.
- Hard to get high accuracy.
- Large memory consumption.
- Singularities as $t \downarrow 0$.

What about fractional derivatives?

$$\left[\mathcal{D}_t^{\nu}g\right](t) = \begin{cases} \frac{1}{\Gamma(n-\nu)} \int_0^t (t-\tau)^{n-\nu-1} g^{(n)}(\tau) d\tau, & \text{if } n-1 < \nu < n, \\ g^{(n)}(t), & \text{if } \nu = n. \end{cases}$$

Time-fractional equation: $\sum_{j=1}^{M} \mathcal{D}_{t}^{\nu_{j}} A_{j} u = f(t)$ for $t \geq 0$, $n_{j} - 1 < \nu_{j} \leq n_{j}$.

Applications: Solid mechanics, biology, electrochemistry, finance, signal processing, anomalous diffusion, statistics, astrophysics, etc. (Explosion of interest over last \approx 15 years.)

Common challenges:

- Non-local time derivative.
- Hard to get high accuracy.
- Large memory consumption.
- Singularities as $t \downarrow 0$.

Contour method in this talk:

- Global approximation.
- Exponential convergence and linear complexity.
- No time-stepping needed, parallelisable, reuse computations at different times.
- Avoids singularities (looks straight ahead to t > 0).

Laplace transform

$$\sum_{j=1}^M \mathcal{D}_t^{
u_j} A_j u = f(t) ext{ for } t \geq 0, \quad n_j-1 <
u_j \leq n_j.$$

Operator: $T(z) = \sum_{j=1}^{M} z^{\nu_j} A_j, \qquad T(z) : \mathcal{D}(T) \subset \mathcal{H} \to \mathcal{H}.$

Known function: $K(z) = \hat{f}(z) + \sum_{j=1}^{M} A_j \sum_{k=1}^{n_j} z^{\nu_j - k} u^{(k-1)}(0), \qquad K : \mathbb{C} \to \mathcal{H}.$

Aside on causality: Can replace $\hat{f}(z)$ by $\int_0^t e^{-zs} f(s) ds$ and approximate via quadrature.

 $T(z)\hat{u}(z) = K(z) \text{ (posed in } \mathcal{H}) \Rightarrow u(t) = \frac{1}{2\pi i} \int_{\gamma} e^{zt} [T(z)^{-1}K(z)] dz$

Laplace transform

Method: Apply the above stable and exponentially convergent quadrature rule.

Laplace transform

Method: Apply the above stable and exponentially convergent quadrature rule.

Challenges:

Must analyse generalised spectrum Sp(T) = {z ∈ C : T(z) is not invertible}.
 NB: Often easier for infinite-dimensional operator as opposed to discretisation:

 $\|T(z)^{-1}\| \leq [\operatorname{dist}(0, \mathcal{N}(T(z)))]^{-1}, \quad \mathcal{N}(T(z)) := \{\langle T(z)v, v \rangle : v \in \mathcal{D}(T(z)), \|v\| = 1\}.$

• For high accuracy, need generalised spectrum contained in sector to deform contour.

Fractional beam equations

Fractional beam equations

Modern materials (e.g., embedded polymers, biomaterials) have exotic structural properties. Elastic and viscous properties captured experimentally

Numerical validation (100s of papers)

Models used to fit stress-strain relationships. Time-fractional derivatives popular (accurate with few parameters).

Problem: Numerical methods typically suffer from (1) limited accuracy and high computational cost, or (2) restricted to the constant beam parameters that allow semi-analytical results.

Fast and accurate numerical method crucial for interaction between theory and experiments!

Quasi-linearisation of
$$[T(z)]y = z^2y + \frac{1}{\rho(x)}\frac{\partial^2}{\partial x^2} \left[a(x)\frac{\partial^2 y}{\partial x^2} + z^{\nu}b(x)\frac{\partial^2 y}{\partial x^2}\right]$$

 $\mathcal{H}^2_{\rm BC1}\text{, }\mathcal{H}^2_{\rm BC2}\text{:}$ Sobolev subspaces of $H^2(-1,1)$ capturing BCs.

$$\mathcal{H} = \mathcal{H}_{\rm BC1}^2 \times L_{\rho}^2(-1,1), \quad \langle (u_0, u_1), (v_0, v_1) \rangle_{\mathcal{H}} = \int_{-1}^1 a(x) u_0''(x) \overline{v_0''(x)} dx + \int_{-1}^1 \rho(x) u_1(x) \overline{v_1(x)} dx.$$

Linearise quadratic term:

$$\begin{split} [\mathcal{A}(z)] \left(u_0, u_1 \right) &= z \left(u_0, u_1 \right) + \left(-u_1, \frac{1}{\rho} (au_0'' + z^{\nu - 1} bu_1'')'' \right), \\ \mathcal{D}(\mathcal{A}(z)) &= \left\{ (u_0, u_1) \in \mathcal{H}_{\mathrm{BC1}}^2 \times \mathcal{H}_{\mathrm{BC1}}^2 : au_0'' + z^{\nu - 1} bu_1'' \in \mathcal{H}_{\mathrm{BC2}}^2 \right\}. \\ [\mathcal{A}(z)]^{-1} \left(0, v \right) &= \left([\mathcal{T}(z)]^{-1} v, z [\mathcal{T}(z)]^{-1} v \right), \quad \forall v \in L^2_\rho(-1, 1). \end{split}$$

Key point: Generalised spectrum of $\mathcal{A}(z)$ much easier to study.

28/34

Solve the ODEs using sparse spectral methods (expanded in n Chebyshev polynomials).

- Computation of $T(z)^{-1}$ converges exponentially in *n* with $\mathcal{O}(n)$ complexity.
- Quadrature error bounded by $\mathcal{O}(\exp(-cN/\log(N)))$ for N quadrature points.
- Solutions of ODEs computed in parallel and reused for different times $t \in [t_0, t_1]$.
- Avoids the large memory consumption/computation time of time stepping methods.
- Solution computed with explicit error control (10^{-8} in what follows).

[·] S. Olver, A. Townsend, "A fast and well-conditioned spectral method," SIAM Review, 2013.

Toy example

$$\begin{aligned} a &= \cosh(x), \quad b = \sin(\pi x) + 2, \quad \rho = \tanh(x) + 2, \quad F(x, t) = \cos(20t)\sin(\pi x), \\ y(x, 0) &= \sin(2\pi x)(1 - x^2)(1 - x), \quad \frac{\partial y}{\partial t}(x, 0) = 0. \end{aligned}$$

Physical example

a = 1, b = 1.01 + tanh(10x) (weakly damped for x < 0, strongly damped for x > 0),

$$ho=1, \quad F(x,t)=\cos(\pi t)(24-\pi^2(1-x^2)^2), \quad y(x,0)=(1-x^2)^2, \quad rac{\partial y}{\partial t}(x,0)=0.$$

Physical example

Energy (computed with error control): $E(t) = \frac{1}{2} \int_{-1}^{1} a(x) |y_{xx}(x,t)|^2 + \rho(x) |y_t(x,t)|^2 dx.$

Wider framework

How: Deal with operators <u>directly</u>, instead of previous 'truncate-then-solve'. (e.g., adaptive truncations to compute the resolvent with error control)

 \Rightarrow Compute many properties for the <u>first time</u>.

Framework: Classify problems in a computational hierarchy measuring intrinsic difficulty.

 \Rightarrow Algorithms realise <u>boundaries</u> of what computers can achieve.

Other recent examples:

- Computing spectra Sp(A) of operators.
- Computing spectral measures of operators.
- Koopman operators (cf. Koopmania)
- Optimisation and neural networks (finite-dimensional problems!).
- · Colbrook, "The Foundations of Infinite-Dimensional Spectral Computations," PhD diss., 2020.
- · Colbrook, Roman, Hansen, "How to compute spectra with error control" Physical Review Letters, 2019.
- · Colbrook, "Computing spectral measures and spectral types" Communications in Mathematical Physics, 2021.

33/34

· Colbrook, Horning, Townsend, "Computing spectral measures of self-adjoint operators" SIAM Review, 2021.

· Colbrook, Townsend, "*Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems*" arXiv, out this morning!

· Colbrook, Antun, Hansen "Can stable and accurate neural networks be computed?," PNAS, to appear.

Conclusion

Key points:

- Q.1: Semigroups can be computed with error control via a universal algorithm.
- **Q.2:** Extends to PDEs (e.g., on unbounded domain $L^2(\mathbb{R}^d)$).
- New stable and rapidly convergent quadrature rule for analytic semigroups.
- Extends to time-fractional PDEs via Laplace transform (need to bound gen. spectrum).
- Methods are part of a wider framework (e.g., deals with inf-dim operators directly).

Future work:

- Non-autonomous cases and non-linear cases (e.g., splitting).
- Other time-fractional PDEs can now be tackled. E.g., 2D fractional beam equations.

Conclusion

Key points:

- Q.1: Semigroups can be computed with error control via a universal algorithm.
- **Q.2:** Extends to PDEs (e.g., on unbounded domain $L^2(\mathbb{R}^d)$).
- New stable and rapidly convergent quadrature rule for analytic semigroups.
- Extends to time-fractional PDEs via Laplace transform (need to bound gen. spectrum).
- Methods are part of a wider framework (e.g., deals with inf-dim operators directly).

Future work:

- Non-autonomous cases and non-linear cases (e.g., splitting).
- Other time-fractional PDEs can now be tackled. E.g., 2D fractional beam equations.

A question for Mattia and Nicola: What if $||(A - zI)^{-1}||$ can't be studied analytically? Can we combine with roaming methods and new infinite-dimensional methods for computing pseudospectra with error control?

Conclusion

Key points:

- Q.1: Semigroups can be computed with error control via a universal algorithm.
- **Q.2:** Extends to PDEs (e.g., on unbounded domain $L^2(\mathbb{R}^d)$).
- New stable and rapidly convergent quadrature rule for analytic semigroups.
- Extends to time-fractional PDEs via Laplace transform (need to bound gen. spectrum).
- Methods are part of a wider framework (e.g., deals with inf-dim operators directly).

Future work:

- Non-autonomous cases and non-linear cases (e.g., splitting).
- Other time-fractional PDEs can now be tackled. E.g., 2D fractional beam equations.

A question for Mattia and Nicola: What if $||(A - zI)^{-1}||$ can't be studied analytically? Can we combine with roaming methods and new infinite-dimensional methods for computing pseudospectra with error control?

For papers and code: http://www.damtp.cam.ac.uk/user/mjc249/home.html