Computing semigroups and solutions of time-fractional PDEs with error control

Matthew Colbrook
 (University of Cambridge + École Normale Supérieure)

M. Colbrook, "Computing semigroups with error control", SIAM Journal on Numerical Analysis, to appear. M. Colbrook and L. Ayton, "A contour method for time-fractional PDEs", Journal of Computational Physics, under revision.

The finite-dimensional case

$$
\frac{d u}{d t}=\mathbb{A} u, \quad \mathbb{A} \in \mathbb{C}^{n \times n}, \quad u(0)=u_{0} \in \mathbb{C}^{n} \quad \Rightarrow \quad u(t)=\exp (t \mathbb{A}) u_{0}=\sum_{j=0}^{\infty} \frac{t^{j}}{j!} \mathbb{A}^{j} u_{0}
$$

E.g., if $\mathbb{A}=P D P^{-1}, D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ diagonal, then

$$
u(t)=P\left(\begin{array}{llll}
e^{d_{1} t} & & & \\
& e^{d_{2} t} & & \\
& & \ddots & \\
& & & e^{d_{n} t}
\end{array}\right) P^{-1} u_{0} .
$$

(Usually much better ways to compute this, but that's a different story...)

- C. Moler, C. Van Loan, "Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later," SIAM review, 2003.
- N. Higham, "The scaling and squaring method for the matrix exponential revisited," SIAM Journal on Matrix Analysis and Applications, 2005.
A. Frommer and B. Hashemi, "Computing enclosures for the matrix exponential," SIAM Journal on Matrix Analysis and Applications, 2020.

The infinite-dimensional case

Linear operator A on an infinite-dimensional Hilbert space \mathcal{H},

$$
\frac{d u}{d t}=A u, \quad u(0)=u_{0} \in \mathcal{H} .
$$

Common examples:

- Time-dependent PDEs.
- Infinite discrete systems.

GOAL: Compute the solution $u(t)$ at time $t>0$. Ideally with error control.

Some common techniques

- Domain truncation and absorbing boundary conditions: B. Engquist and A. Majda, "Absorbing boundary conditions for numerical simulation of waves," PNAS, 1977.
- Rational approximations: M. Crouzeix, S. Larsson, S. Piskarev and V. Thomé, "The stability of rational approximations of analytic semigroups," BIT, 1993.
- Splitting methods: R. McLachlan and G. R. Quispel, "Splitting methods," Acta Numerica, 2002.
- Exponential integrators: M. Hochbruck and A. Ostermann, "Exponential integrators," Acta Numerica, 2010.
- Krylov methods: J. Liesen and Z. Strakos, "Krylov subspace methods," OUP, 2013.
- Galerkin methods: C. Lasser and C. Lubich, "Computing quantum dynamics in the semiclassical regime," Acta Numerica, 2020.
- Contour methods (in this talk): A. Talbot, "The accurate numerical inversion of Laplace transforms," IMA Journal of Applied Mathematics, 1979.
N. Guglielmi, M. López-Fernández and M. Manucci, "Pseudospectral roaming contour integral methods for convection-diffusion equations," Journal of Scientific Computing, 2021.

Each area has hundreds of papers and many great mathematicians who have written them!

Philosophy of the new approach

Previous approaches: A is discretised to $\mathbb{A} \in \mathbb{C}^{n \times n}$ and we use some sort of finite-dimensional solver - "truncate-then-solve"

Typical difficulties:

- Can be very difficult to bound the error when we go from A to \mathbb{A}.
- Sometimes \mathbb{A} does not respect key properties of the system.
- Sometimes \mathbb{A} is more complicated to study (e.g., where are its eigenvalues?).
- PDEs on unbounded domains - two truncations: the physical domain, then the operator restricted to this domain. How do we rigorously deal with domain truncation?

Philosophy of the new approach

Previous approaches: A is discretised to $\mathbb{A} \in \mathbb{C}^{n \times n}$ and we use some sort of finite-dimensional solver - "truncate-then-solve"

Typical difficulties:

- Can be very difficult to bound the error when we go from A to \mathbb{A}.
- Sometimes \mathbb{A} does not respect key properties of the system.
- Sometimes \mathbb{A} is more complicated to study (e.g., where are its eigenvalues?).
- PDEs on unbounded domains - two truncations: the physical domain, then the operator restricted to this domain. How do we rigorously deal with domain truncation?

PHILOSPHY OF THIS TALK: Solve-then-discretise.

Philosophy of the new approach

Previous approaches: A is discretised to $\mathbb{A} \in \mathbb{C}^{n \times n}$ and we use some sort of finite-dimensional solver - "truncate-then-solve"

Typical difficulties:

- Sometimes \mathbb{A} does not respect key properties of the system.
- Sometimes \mathbb{A} is more complicated to study (e.g., where are its eigenvalues?).
- PDEs on unbounded domains - two truncations: the physical domain, then the operator restricted to this domain. How do we rigorously deal with domain truncation?

PHILOSPHY OF THIS TALK: Solve-then-discretise.

Philosophy of the new approach

Previous approaches: A is discretised to $\mathbb{A} \in \mathbb{C}^{n \times n}$ and we use some sort of finite-dimensional solver - "truncate-then-solve"

Typical difficulties:

- Sontetintes Al does trot respect hey propertics of the systertr.
- Sometimes \mathbb{A} is more complicated to study (e.g., where are its eigenvalues?).
- PDEs on unbounded domains - two truncations: the physical domain, then the operator restricted to this domain. How do we rigorously deal with domain truncation?

PHILOSPHY OF THIS TALK: Solve-then-discretise.

Philosophy of the new approach

Previous approaches: A is discretised to $\mathbb{A} \in \mathbb{C}^{n \times n}$ and we use some sort of finite-dimensional solver - "truncate-then-solve"

Typical difficulties:

- Gometintes Al does trot respect hey propertics of the systertr.

- PDEs on unbounded domains - two truncations: the physical domain, then the operator restricted to this domain. How do we rigorously deal with domain truncation?

Philosophy of the new approach

Previous approaches: A is discretised to $\mathbb{A} \in \mathbb{C}^{n \times n}$ and we use some sort of finite-dimensional solver - "truncate-then-solve"

Typical difficulties:

PHILOSPHY OF THIS TALK: Solve-then-discretise.

Example: discrete Laplacian

Finite portion of the aperiodic infinite Ammann-Beenker tile - red dots correspond to u_{0}.
Very interesting transport properties but notoriously difficult to compute. Graph Laplacian:

$$
\left[\Delta_{\mathrm{AB}} \psi\right]_{i}=\sum_{i \sim j}\left(\psi_{j}-\psi_{i}\right), \quad\left\{\psi_{j}\right\}_{j \in \mathbb{N}} \in \ell^{2}(\mathbb{N})
$$

Schrödinger equation and wave equation:

$$
i u_{t}=-\Delta_{\mathrm{AB}} u \quad \text { and } \quad u_{t t}=\Delta_{\mathrm{AB}} u .
$$

Quasicrystals

Quasicrystal: Aperiodic material with long-range order.

- Discovered by Dan Shechtman in 1982 (awarded Nobel prize in Chemistry 2011).
- Luca Bindi and Paul Steinhardt discovered icosahedrite, first natural quasicrystal (awarded 2018 Aspen Institute Prize for scientific collaboration between Italy and US).
- Many exotic physical properties and beginning to be used in
- heat insulation
- LEDs, solar absorbers, and energy coatings
- reinforcing materials, e.g., low-friction gears
- bone repair (hardness, low friction, corrosion resistance)...
- E.g., what's the analogy of periodic physics for aperiodic systems?

[^0]Computed solutions with guaranteed accuracy $\epsilon=10^{-10}$

Top row: $\log 10(|u(t)|)$ for Schrödinger equation. Bottom row: $u(t)$ for wave equation.

Standard truncation methods

$u_{\mathrm{FS}}=$ solution by direct diagonalisation of 10001×10001 truncation.

As t increases, we need more vertices (basis vectors) to capture the solution. The method of this talk allows this to be done rigorously and adaptively.

When is our equation well-posed?

$$
\begin{equation*}
\frac{d u}{d t}=A u, \quad u(0)=u_{0} \in \mathcal{H} . \tag{1}
\end{equation*}
$$

Eq. (1) well-posed $\Leftrightarrow A$ generates a strongly continuous semigroup $\left(u(t)=\exp (t A) u_{0}\right)$ Spectrum: $\operatorname{Sp}(A)=\{z: A-z /$ not invertible $\}$

Theorem (Hille-Yosida Theorem)

A generates a strongly continuous semigroup if and only if A is densely defined and there exists $\omega \in \mathbb{R}, M>0$ such that

$$
\text { if } \operatorname{Re}(z)>\omega \text {, then } z \notin \operatorname{Sp}(A) \text { and }\left\|(A-z l)^{-n}\right\| \leq \frac{M}{(\operatorname{Re}(z)-\omega)^{n}}, \quad \forall n \in \mathbb{N}
$$

Two open foundations problems

Q.1: Computing semigroups with error control: Does there exist an algorithm with input:

- a generator A of a strongly continuous semigroup on \mathcal{H},
- a time $t>0$,
- an arbitrary initial condition $u_{0} \in \mathcal{H}$,
- an error tolerance $\epsilon>0$,
that computes an approximation of $\exp (t A) u_{0}$ to accuracy ϵ in \mathcal{H} ?
Q.2: For $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$ is there a large class of partial differential operators A on the unbounded domain \mathbb{R}^{d} where the answer to $Q .1$ is yes?

Two open foundations problems

Q.1: Computing semigroups with error control: Does there exist an algorithm with input:

- a generator A of a strongly continuous semigroup on \mathcal{H},
- a time $t>0$,
- an arbitrary initial condition $u_{0} \in \mathcal{H}$,
- an error tolerance $\epsilon>0$,
that computes an approximation of $\exp (t A) u_{0}$ to accuracy ϵ in \mathcal{H} ?
Q.2: For $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$ is there a large class of partial differential operators A on the unbounded domain \mathbb{R}^{d} where the answer to $Q .1$ is yes?

We will provide resolutions to both problems!

Two open foundations problems

Q.1: Computing semigroups with error control: Does there exist an algorithm with input:

- a generator A of a strongly continuous semigroup on \mathcal{H},
- a time $t>0$,
- an arbitrary initial condition $u_{0} \in \mathcal{H}$,
- an error tolerance $\epsilon>0$,
that computes an approximation of $\exp (t A) u_{0}$ to accuracy ϵ in \mathcal{H} ?
Q.2: For $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$ is there a large class of partial differential operators A on the unbounded domain \mathbb{R}^{d} where the answer to $Q .1$ is yes?

We will provide resolutions to both problems!

We will also extend the techniques to other scenarios such as time-fractional PDEs!

A first attempt

$$
\frac{d u}{d t}=A u, \quad u(0)=u_{0} \in \mathcal{H}
$$

Take Laplace transform (denoted $\hat{\kappa}) \Rightarrow \hat{u}(z)=\int_{0}^{\infty} e^{-z t} u(t) d t=-(A-z)^{-1} u_{0}$.

$$
\text { "Invert": } \exp (t A) u_{0}=\left[\frac{-1}{2 \pi i} \int_{\gamma} e^{z t}(A-z I)^{-1} d z\right] u_{0}
$$

A first attempt

$$
\frac{d u}{d t}=A u, \quad u(0)=u_{0} \in \mathcal{H}
$$

Take Laplace transform (denoted $\hat{\kappa}) \Rightarrow \hat{u}(z)=\int_{0}^{\infty} e^{-z t} u(t) d t=-(A-z)^{-1} u_{0}$.

$$
\text { "Invert": } \exp (t A) u_{0}=\left[\frac{-1}{2 \pi i} \int_{\gamma} e^{z t}(A-z I)^{-1} d z\right] u_{0}
$$

Problems:

A first attempt

$$
\frac{d u}{d t}=A u, \quad u(0)=u_{0} \in \mathcal{H}
$$

Take Laplace transform (denoted $\hat{\kappa}) \Rightarrow \hat{u}(z)=\int_{0}^{\infty} e^{-z t} u(t) d t=-(A-z)^{-1} u_{0}$.

$$
\text { "Invert": } \exp (t A) u_{0}=\left[\frac{-1}{2 \pi i} \int_{\gamma} e^{z t}(A-z I)^{-1} d z\right] u_{0}
$$

Problems:

- Integrand does not decay!

A first attempt

$$
\frac{d u}{d t}=A u, \quad u(0)=u_{0} \in \mathcal{H}
$$

Take Laplace transform (denoted $\hat{\kappa}) \Rightarrow \hat{u}(z)=\int_{0}^{\infty} e^{-z t} u(t) d t=-(A-z)^{-1} u_{0}$.

$$
\text { "Invert": } \exp (t A) u_{0}=\left[\frac{-1}{2 \pi i} \int_{\gamma} e^{z t}(A-z I)^{-1} d z\right] u_{0}
$$

Problems:

- Integrand does not decay!
- How do we compute $(A-z l)^{-1}$?

A first attempt

$$
\frac{d u}{d t}=A u, \quad u(0)=u_{0} \in \mathcal{H}
$$

Take Laplace transform (denoted $\hat{\kappa}) \Rightarrow \hat{u}(z)=\int_{0}^{\infty} e^{-z t} u(t) d t=-(A-z I)^{-1} u_{0}$.

$$
\text { "Invert": } \exp (t A) u_{0}=\left[\frac{-1}{2 \pi i} \int_{\gamma} e^{z t}(A-z I)^{-1} d z\right] u_{0}
$$

Problems:

- Integrand does not decay!
- How do we compute $(A-z I)^{-1}$?
- How do we bound error of approximating the integral?

Q.1: $\mathcal{H}=\ell^{2}(\mathbb{N})$ with inner product $\langle\cdot, \cdot\rangle$

Input $\left(\Omega_{\ell^{2}(\mathbb{N})}\right):\left(A, u_{0}, t\right)$ s.t. A generates strongly continuous semigroup, $u_{0} \in \ell^{2}(\mathbb{N}), t>0$.

Allow access to:

- Arbitrary precision approximations of:
(Matrix evaluations) $\left\langle A e_{k}, e_{j}\right\rangle, \quad\left\langle A e_{k}, A e_{j}\right\rangle, \quad \forall j, k \in \mathbb{N}$,
(Coefficient evaluations) $\left\langle u_{0}, u_{0}\right\rangle, \quad\left\langle u_{0}, e_{j}\right\rangle, \quad \forall j \in \mathbb{N}$.
- Constants M, ω satisfying conditions in Hille-Yosida Theorem.

Q.1: $\mathcal{H}=\ell^{2}(\mathbb{N})$ with inner product $\langle\cdot, \cdot\rangle$

Input $\left(\Omega_{\ell^{2}(\mathbb{N})}\right):\left(A, u_{0}, t\right)$ s.t. A generates strongly continuous semigroup, $u_{0} \in \ell^{2}(\mathbb{N}), t>0$.

Allow access to:

- Arbitrary precision approximations of:
(Matrix evaluations) $\left\langle A e_{k}, e_{j}\right\rangle, \quad\left\langle A e_{k}, A e_{j}\right\rangle, \quad \forall j, k \in \mathbb{N}$,
(Coefficient evaluations) $\left\langle u_{0}, u_{0}\right\rangle, \quad\left\langle u_{0}, e_{j}\right\rangle, \quad \forall j \in \mathbb{N}$.
- Constants M, ω satisfying conditions in Hille-Yosida Theorem.

Theorem 1 (Strongly continuous semigroups on $\ell^{2}(\mathbb{N})$ computed with error control)

There exists a universal algorithm $\Gamma_{\ell^{2}(\mathbb{N})}$ using the above, such that

$$
\left\|\Gamma_{\ell^{2}(\mathbb{N})}\left(A, u_{0}, t, \epsilon\right)-\exp (t A) u_{0}\right\|_{\ell^{2}(\mathbb{N})} \leq \epsilon, \quad \forall \epsilon>0 \text { and }\left(A, u_{0}, t\right) \in \Omega_{\ell^{2}(\mathbb{N})}
$$

Idea of proof

- Regularisation (a standard trick from functional analysis):

$$
\exp (t A) u_{0}=(A-(\omega+2) I)^{2}[\frac{-1}{2 \pi i} \int_{\omega+1-i \infty}^{\omega+1+i \infty} \underbrace{\frac{e^{z t}(A-z I)^{-1}}{(z-(\omega+2))^{2}}}_{\text {now decays }} d z] u_{0}
$$

Idea of proof

- Regularisation (a standard trick from functional analysis):

$$
\exp (t A) u_{0}=(A-(\omega+2) I)^{2}[\frac{-1}{2 \pi i} \int_{\omega+1-i \infty}^{\omega+1+i \infty} \underbrace{\frac{e^{z t}(A-z I)^{-1}}{(z-(\omega+2))^{2}}}_{\text {now decays }} d z] u_{0}
$$

- A few reductions (using Hille-Yosida theorem) to approximating the operator

$$
\left[\frac{1}{2 \pi i} \int_{\omega+1-i \infty}^{\omega+1+i \infty} \frac{\exp (z t)(A-z I)^{-1}}{(z-(\omega+2))^{2}} d z\right] .
$$

Idea of proof

- Regularisation (a standard trick from functional analysis):

$$
\exp (t A) u_{0}=(A-(\omega+2) I)^{2}[\frac{-1}{2 \pi i} \int_{\omega+1-i \infty}^{\omega+1+i \infty} \underbrace{\frac{e^{z t}(A-z I)^{-1}}{(z-(\omega+2))^{2}}}_{\text {now decays }} d z] u_{0}
$$

- A few reductions (using Hille-Yosida theorem) to approximating the operator

$$
\left[\frac{1}{2 \pi i} \int_{\omega+1-i \infty}^{\omega+1+i \infty} \frac{\exp (z t)(A-z I)^{-1}}{(z-(\omega+2))^{2}} d z\right] .
$$

- Truncation + quadrature for decaying integrand.

Idea of proof

- Regularisation (a standard trick from functional analysis):

$$
\exp (t A) u_{0}=(A-(\omega+2) I)^{2}[\frac{-1}{2 \pi i} \int_{\omega+1-i \infty}^{\omega+1+i \infty} \underbrace{\frac{e^{z t}(A-z I)^{-1}}{(z-(\omega+2))^{2}}}_{\text {now decays }} d z] u_{0}
$$

- A few reductions (using Hille-Yosida theorem) to approximating the operator

$$
\left[\frac{1}{2 \pi i} \int_{\omega+1-i \infty}^{\omega+1+i \infty} \frac{\exp (z t)(A-z I)^{-1}}{(z-(\omega+2))^{2}} d z\right] .
$$

- Truncation + quadrature for decaying integrand.
- Apply $(A-z I)^{-1}$ using least-squares and adaptive truncations by controlling residuals.

$$
\begin{gathered}
\text { Q.2: } \mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right) \\
{[A u](x)=\sum_{k \in \mathbb{Z}_{\geq 0}^{d},|k| \leq N} a_{k}(x) \partial^{k} u(x) .}
\end{gathered}
$$

Input $\left(\Omega_{\mathrm{PDE}}\right):\left(A, u_{0}, t\right)$ such that A generates a strongly continuous semigroup on $L^{2}\left(\mathbb{R}^{d}\right)$, $u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$ and $t>0$

Allow access to:

- Arbitrary precision pointwise evaluations $a_{k}(q), u_{0}(q), q \in \mathbb{Q}^{d}$.
- Bounds on growth rate and 'oscillations' of coefficients.
- Sequence $c_{n} \rightarrow 0$ with $\left\|\left.u_{0}\right|_{[-n, n]^{d}}-u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq c_{n}$.
- Constants M, ω satisfying conditions in Hille-Yosida Theorem.

$$
\text { Q.2: } \mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)
$$

$$
[A u](x)=\sum_{k \in \mathbb{Z} \underset{\geq 0}{d},|k| \leq N} a_{k}(x) \partial^{k} u(x) .
$$

Input $\left(\Omega_{\mathrm{PDE}}\right):\left(A, u_{0}, t\right)$ such that A generates a strongly continuous semigroup on $L^{2}\left(\mathbb{R}^{d}\right)$, $u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$ and $t>0$

Allow access to:

- Arbitrary precision pointwise evaluations $a_{k}(q), u_{0}(q), q \in \mathbb{Q}^{d}$.
- Bounds on growth rate and 'oscillations' of coefficients.
- Sequence $c_{n} \rightarrow 0$ with $\left\|\left.u_{0}\right|_{[-n, n]^{d}}-u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq c_{n}$.
- Constants M, ω satisfying conditions in Hille-Yosida Theorem.

Theorem 2 (PDE semigroups on $L^{2}\left(\mathbb{R}^{d}\right)$ computed with error control)

There exists a universal algorithm $\Gamma_{\text {PDE }}$ using the above, such that

$$
\left\|\Gamma_{\mathrm{PDE}}\left(A, u_{0}, t, \epsilon\right)-\exp (t A) u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq \epsilon, \quad \forall \epsilon>0 \text { and }\left(A, u_{0}, t\right) \in \Omega_{\mathrm{PDE}}
$$

Idea of proof

- Reduce to Q. 1 using (tensor product) Hermite basis

$$
\psi_{m}(x)=\left(2^{m} m!\sqrt{\pi}\right)^{-1 / 2} e^{-x^{2} / 2} H_{m}(x), \quad H_{m}(x)=(-1)^{m} e^{x^{2}} \frac{d^{m}}{d x^{m}} e^{-x^{2}}
$$

Idea of proof

- Reduce to Q. 1 using (tensor product) Hermite basis

$$
\psi_{m}(x)=\left(2^{m} m!\sqrt{\pi}\right)^{-1 / 2} e^{-x^{2} / 2} H_{m}(x), \quad H_{m}(x)=(-1)^{m} e^{x^{2}} \frac{d^{m}}{d x^{m}} e^{-x^{2}}
$$

- Compute inner products (with error control)

$$
\left\langle A e_{k}, A e_{j}\right\rangle=\int_{\mathbb{R}^{d}}\left(A \psi_{m(k)}\right) \overline{\left(A \psi_{m(j)}\right)} d x, \quad\left\langle A e_{k}, e_{j}\right\rangle=\int_{\mathbb{R}^{d}}\left(A \psi_{m(k)}\right) \psi_{m(j)} d x
$$

using quasi-Monte Carlo numerical integration.

Idea of proof

- Reduce to Q. 1 using (tensor product) Hermite basis

$$
\psi_{m}(x)=\left(2^{m} m!\sqrt{\pi}\right)^{-1 / 2} e^{-x^{2} / 2} H_{m}(x), \quad H_{m}(x)=(-1)^{m} e^{x^{2}} \frac{d^{m}}{d x^{m}} e^{-x^{2}}
$$

- Compute inner products (with error control)

$$
\left\langle A e_{k}, A e_{j}\right\rangle=\int_{\mathbb{R}^{d}}\left(A \psi_{m(k)}\right) \overline{\left(A \psi_{m(j)}\right)} d x, \quad\left\langle A e_{k}, e_{j}\right\rangle=\int_{\mathbb{R}^{d}}\left(A \psi_{m(k)}\right) \psi_{m(j)} d x
$$

using quasi-Monte Carlo numerical integration.

- Similar techniques deal with u_{0}.

Analytic semigroups

Analytic semigroups

Analytic semigroups

Instability

$$
\begin{gathered}
\gamma(s)=\mu(1+\sin (i s-\alpha)), \quad \mu>0, \quad 0<\alpha<\frac{\pi}{2}-\delta \quad(s \in \mathbb{R}) \\
\exp (t A) u_{0}=\left[\frac{-1}{2 \pi i} \int_{\gamma} e^{z t}(A-z I)^{-1} d z\right] u_{0} \approx \frac{-h}{2 \pi i} \sum_{j=-N}^{N} e^{z_{j} t}\left(A-z_{j} I\right)^{-1} \gamma^{\prime}(j h), \quad z_{j}=\gamma(j h) .
\end{gathered}
$$

. J. Weideman, L.N. Trefethen, "Parabolic and hyperbolic contours for computing the Bromwich integral," Mathematics of Computation, 2007.

Instability

$$
\begin{gathered}
\gamma(s)=\mu(1+\sin (i s-\alpha)), \quad \mu>0, \quad 0<\alpha<\frac{\pi}{2}-\delta \quad(s \in \mathbb{R}) \\
\exp (t A) u_{0}=\left[\frac{-1}{2 \pi i} \int_{\gamma} e^{z t}(A-z I)^{-1} d z\right] u_{0} \approx \frac{-h}{2 \pi i} \sum_{j=-N}^{N} e^{z_{j} t}\left(A-z_{j} I\right)^{-1} \gamma^{\prime}(j h), \quad z_{j}=\gamma(j h) .
\end{gathered}
$$

Compute $\exp (t A)$ for $t \in\left[t_{0}, t_{1}\right]$ where $0<t_{0} \leq t_{1}, \Lambda_{t}=t_{1} / t_{0}$.
Leads to 'optimal' h, μ and α as functions of N, Λ_{t} and δ.

[^1] Mathematics of Computation, 2007.

Instability

$$
\begin{gathered}
\gamma(s)=\mu(1+\sin (i s-\alpha)), \quad \mu>0, \quad 0<\alpha<\frac{\pi}{2}-\delta \quad(s \in \mathbb{R}) \\
\exp (t A) u_{0}=\left[\frac{-1}{2 \pi i} \int_{\gamma} e^{z t}(A-z I)^{-1} d z\right] u_{0} \approx \frac{-h}{2 \pi i} \sum_{j=-N}^{N} e^{z_{j} t}\left(A-z_{j} I\right)^{-1} \gamma^{\prime}(j h), \quad z_{j}=\gamma(j h) .
\end{gathered}
$$

Compute $\exp (t A)$ for $t \in\left[t_{0}, t_{1}\right]$ where $0<t_{0} \leq t_{1}, \Lambda_{t}=t_{1} / t_{0}$.
Leads to 'optimal' h, μ and α as functions of N, Λ_{t} and δ.
Problem: Numerical instability since $\max \left(\operatorname{Re}\left(z_{j}\right)\right) \rightarrow \infty$ as $N \rightarrow \infty$.
. J. Weideman, L.N. Trefethen, "Parabolic and hyperbolic contours for computing the Bromwich integral," Mathematics of Computation, 2007.

Instability (even in scalar case)

$$
1=\frac{1}{2 \pi i} \int_{\gamma} \frac{e^{z t}}{z} d z
$$

$$
M_{N}=\max \text { error for } t \in\left[t_{0}, t_{1}\right] .
$$

Previous parameter choices

Instability (even in scalar case)

$$
1=\frac{1}{2 \pi i} \int_{\gamma} \frac{e^{z t}}{z} d z
$$

$$
M_{N}=\max \text { error for } t \in\left[t_{0}, t_{1}\right] .
$$

Previous parameter choices

Proposed quadrature rule

Enforcing stability

$$
\exp (t A) u_{0} \approx \frac{-h}{2 \pi i} \sum_{j=-N}^{N} e^{z_{j} t}\left(A-z_{j} l\right)^{-1} \gamma^{\prime}(j h), \quad z_{j}=\gamma(j h)
$$

Idea: Enforce $\max \left(\operatorname{Re}\left(z_{j}\right)\right) t_{1} \leq \beta$ as $N \rightarrow \infty$ for stability.

Enforcing stability

$$
\exp (t A) u_{0} \approx \frac{-h}{2 \pi i} \sum_{j=-N}^{N} e^{z_{j} t}\left(A-z_{j} l\right)^{-1} \gamma^{\prime}(j h), \quad z_{j}=\gamma(j h)
$$

Idea: Enforce $\max \left(\operatorname{Re}\left(z_{j}\right)\right) t_{1} \leq \beta$ as $N \rightarrow \infty$ for stability.

$$
h=\frac{1}{N} W\left(\Lambda_{t} N \frac{\pi(\pi-2 \delta)}{\beta \sin \left(\frac{\pi-2 \delta}{4}\right)}\left(1-\sin \left(\frac{\pi-2 \delta}{4}\right)\right)\right), \quad \mu=\frac{\beta / t_{1}}{1-\sin ((\pi-2 \delta) / 4)}, \quad \alpha=\frac{h \mu t_{1}+\pi^{2}-2 \pi \delta}{4 \pi} .
$$

Enforcing stability

$$
\exp (t A) u_{0} \approx \frac{-h}{2 \pi i} \sum_{j=-N}^{N} e^{z_{j} t}\left(A-z_{j} l\right)^{-1} \gamma^{\prime}(j h), \quad z_{j}=\gamma(j h)
$$

Idea: Enforce $\max \left(\operatorname{Re}\left(z_{j}\right)\right) t_{1} \leq \beta$ as $N \rightarrow \infty$ for stability.

$$
h=\frac{1}{N} W\left(\Lambda_{t} N \frac{\pi(\pi-2 \delta)}{\beta \sin \left(\frac{\pi-2 \delta}{4}\right)}\left(1-\sin \left(\frac{\pi-2 \delta}{4}\right)\right)\right), \quad \mu=\frac{\beta / t_{1}}{1-\sin ((\pi-2 \delta) / 4)}, \quad \alpha=\frac{h \mu t_{1}+\pi^{2}-2 \pi \delta}{4 \pi} .
$$

Algorithm: Stable and rapidly convergent algorithm for analytic semigroups.
Input: A (generator of an analytic semigroup with angle $\delta \in[0, \pi / 2)$), $u_{0} \in \mathcal{H}$, $0<t_{0} \leq t_{1}<\infty, \beta>0, N \in \mathbb{N}$ and $\eta>0$.
1: Let γ be defined as above with α, μ and h given by above, where $\Lambda_{t}=t_{1} / t_{0}$.
2: Set $z_{j}=\gamma(j h)$ and $w_{j}=\frac{h}{2 \pi i} \gamma^{\prime}(j h)$.
3: Solve $\left(A-z_{j} I\right) R_{j}=-u_{0}$ for $-N \leq j \leq N$ to an accuracy η.
Output: $u_{N}(t)=\sum_{j=-N}^{N} e^{z_{j} t} w_{j} R_{j}$ for $t \in\left[t_{0}, t_{1}\right]$.

Recovery theorem

Theorem 3 (Stable \& rapidly convergent algorithm for analytic semigroups)
Explicit constant C such that for any $t_{0} \leq t \leq t_{1}$,

$$
\begin{aligned}
\left\|\exp (t A) u_{0}-u_{N}(t)\right\|_{\mathcal{H}} \leq & \underbrace{\left(2 \mu e^{\frac{\beta}{1-\sin (\alpha)}} \pi^{-1} \int_{0}^{\infty} e^{x-\mu t \sin (\alpha) \cosh (x)} d x\right) \eta}_{\text {numerical error due to inexact resolvent }} \\
& +\underbrace{C e^{\frac{\beta}{1-\sin (\alpha)}} \cdot \exp \left(-\frac{N \pi(\pi-2 \delta) / 2}{\log \left(\Lambda_{t} \frac{\sin (\pi / 4-\delta / 2)^{-1}-1}{\beta} N \pi(\pi-2 \delta)\right)}\right)}_{\text {quadrature error }} \\
= & \mathcal{O}(\eta)+\mathcal{O}(\exp (-c N / \log (N))) .
\end{aligned}
$$

Example on $L^{2}(\mathbb{R})$ demonstrating convergence

$$
u_{t}=\left[\left(1.1-1 /\left(1+x^{2}\right)\right) u_{x}\right]_{x}, \quad u_{0}(x)=e^{-\frac{(x-1)^{2}}{5}} \cos (2 x)+2\left[1+(x+1)^{4}\right]^{-1} .
$$

Basis: $\phi_{n}(x)=\pi^{-1 / 2}(1+i x)^{n}(1-i x)^{-(n+1)}, \quad n \in \mathbb{Z}$.

Solutions ($\epsilon=10^{-12}$)

Relative errors

What about fractional derivatives?

$$
\left[\mathcal{D}_{t}^{\nu} g\right](t)= \begin{cases}\frac{1}{\Gamma(n-\nu)} \int_{0}^{t}(t-\tau)^{n-\nu-1} g^{(n)}(\tau) d \tau, & \text { if } n-1<\nu<n \\ g^{(n)}(t), & \text { if } \nu=n\end{cases}
$$

Time-fractional equation: $\sum_{j=1}^{M} \mathcal{D}_{t}^{\nu_{j}} A_{j} u=f(t)$ for $t \geq 0, \quad n_{j}-1<\nu_{j} \leq n_{j}$.
Applications: Solid mechanics, biology, electrochemistry, finance, signal processing, anomalous diffusion, statistics, astrophysics, etc. (Explosion of interest over last ≈ 15 years.)

What about fractional derivatives?

$$
\left[\mathcal{D}_{t}^{\nu} g\right](t)= \begin{cases}\frac{1}{\Gamma(n-\nu)} \int_{0}^{t}(t-\tau)^{n-\nu-1} g^{(n)}(\tau) d \tau, & \text { if } n-1<\nu<n \\ g^{(n)}(t), & \text { if } \nu=n\end{cases}
$$

Time-fractional equation: $\sum_{j=1}^{M} \mathcal{D}_{t}^{\nu_{j}} A_{j} u=f(t)$ for $t \geq 0, \quad n_{j}-1<\nu_{j} \leq n_{j}$.
Applications: Solid mechanics, biology, electrochemistry, finance, signal processing, anomalous diffusion, statistics, astrophysics, etc. (Explosion of interest over last ≈ 15 years.)

Common challenges:

- Non-local time derivative.
- Hard to get high accuracy.
- Large memory consumption.
- Singularities as $t \downarrow 0$.

What about fractional derivatives?

$$
\left[\mathcal{D}_{t}^{\nu} g\right](t)= \begin{cases}\frac{1}{\Gamma(n-\nu)} \int_{0}^{t}(t-\tau)^{n-\nu-1} g^{(n)}(\tau) d \tau, & \text { if } n-1<\nu<n \\ g^{(n)}(t), & \text { if } \nu=n\end{cases}
$$

Time-fractional equation: $\sum_{j=1}^{M} \mathcal{D}_{t}^{\nu_{j}} A_{j} u=f(t)$ for $t \geq 0, \quad n_{j}-1<\nu_{j} \leq n_{j}$.
Applications: Solid mechanics, biology, electrochemistry, finance, signal processing, anomalous diffusion, statistics, astrophysics, etc. (Explosion of interest over last ≈ 15 years.)

Common challenges:

- Non-local time derivative.
- Hard to get high accuracy.
- Large memory consumption.
- Singularities as $t \downarrow 0$.

Contour method in this talk:

- Global approximation.
- Exponential convergence and linear complexity.
- No time-stepping needed, parallelisable, reuse computations at different times.
- Avoids singularities (looks straight ahead to $t>0$).

Laplace transform

$$
\sum_{j=1}^{M} \mathcal{D}_{t}^{\nu_{j}} A_{j} u=f(t) \text { for } t \geq 0, \quad n_{j}-1<\nu_{j} \leq n_{j}
$$

Operator: $T(z)=\sum_{j=1}^{M} z^{\nu_{j}} A_{j}, \quad T(z): \mathcal{D}(T) \subset \mathcal{H} \rightarrow \mathcal{H}$.
Known function: $K(z)=\hat{f}(z)+\sum_{j=1}^{M} A_{j} \sum_{k=1}^{n_{j}} z^{\nu_{j}-k} u^{(k-1)}(0), \quad K: \mathbb{C} \rightarrow \mathcal{H}$.
Aside on causality: Can replace $\hat{f}(z)$ by $\int_{0}^{t} e^{-z s} f(s) d s$ and approximate via quadrature.

$$
T(z) \hat{u}(z)=K(z)(\text { posed in } \mathcal{H}) \Rightarrow u(t)=\frac{1}{2 \pi i} \int_{\gamma} e^{z t}\left[T(z)^{-1} K(z)\right] d z
$$

Laplace transform

Method: Apply the above stable and exponentially convergent quadrature rule.

Laplace transform

Method: Apply the above stable and exponentially convergent quadrature rule.

Challenges:

- Must analyse generalised spectrum $\operatorname{Sp}(T)=\{z \in \mathbb{C}: T(z)$ is not invertible $\}$. NB: Often easier for infinite-dimensional operator as opposed to discretisation:

$$
\left\|T(z)^{-1}\right\| \leq[\operatorname{dist}(0, \mathcal{N}(T(z)))]^{-1}, \quad \mathcal{N}(T(z)):=\{\langle T(z) v, v\rangle: v \in \mathcal{D}(T(z)),\|v\|=1\}
$$

- For high accuracy, need generalised spectrum contained in sector to deform contour.

Fractional beam equations

Stress-strain relation: $\underbrace{\sigma(x, t)}_{\text {stress }}=E_{0}(x) \underbrace{\epsilon(x, t)}_{\text {strain }}+E_{1}(x) \mathcal{D}_{t}^{\nu} \underbrace{\epsilon(x, t)}_{\text {strain }}$.

$$
\begin{gathered}
\frac{\partial^{2} y}{\partial t^{2}}+\frac{1}{\rho(x)} \frac{\partial^{2}}{\partial x^{2}}\left[a(x) \frac{\partial^{2} y}{\partial x^{2}}+b(x) \mathcal{D}_{t}^{\nu} \frac{\partial^{2} y}{\partial x^{2}}\right]=\frac{F(x, t)}{\rho(x)}, \quad x \in[-1,1], \quad a(x)>0 \\
{[T(z)] y=z^{2} y+\frac{1}{\rho(x)} \frac{\partial^{2}}{\partial x^{2}}\left[a(x) \frac{\partial^{2} y}{\partial x^{2}}+z^{\nu} b(x) \frac{\partial^{2} y}{\partial x^{2}}\right]}
\end{gathered}
$$

Fractional beam equations

Modern materials (e.g., embedded polymers, biomaterials) have exotic structural properties. Elastic and viscous properties captured experimentally

Problem: Numerical methods typically suffer from (1) limited accuracy and high computational cost, or (2) restricted to the constant beam parameters that allow semi-analytical results.

Fast and accurate numerical method crucial for interaction between theory and experiments!

Quasi-linearisation of $[T(z)] y=z^{2} y+\frac{1}{\rho(x)} \frac{\partial^{2}}{\partial x^{2}}\left[a(x) \frac{\partial^{2} y}{\partial x^{2}}+z^{\nu} b(x) \frac{\partial^{2} y}{\partial x^{2}}\right]$

$\mathcal{H}_{\mathrm{BC} 1}^{2}, \mathcal{H}_{\mathrm{BC} 2}^{2}$: Sobolev subspaces of $H^{2}(-1,1)$ capturing BC .
$\mathcal{H}=\mathcal{H}_{\mathrm{BC} 1}^{2} \times L_{\rho}^{2}(-1,1), \quad\left\langle\left(u_{0}, u_{1}\right),\left(v_{0}, v_{1}\right)\right\rangle_{\mathcal{H}}=\int_{-1}^{1} a(x) u_{0}^{\prime \prime}(x) \overline{v_{0}^{\prime \prime}(x)} d x+\int_{-1}^{1} \rho(x) u_{1}(x) \overline{v_{1}(x)} d x$.
Linearise quadratic term:

$$
\begin{aligned}
& {[\mathcal{A}(z)]\left(u_{0}, u_{1}\right) }=z\left(u_{0}, u_{1}\right)+\left(-u_{1}, \frac{1}{\rho}\left(a u_{0}^{\prime \prime}+z^{\nu-1} b u_{1}^{\prime \prime}\right)^{\prime \prime}\right), \\
& \mathcal{D}(\mathcal{A}(z))=\left\{\left(u_{0}, u_{1}\right) \in \mathcal{H}_{\mathrm{BC} 1}^{2} \times \mathcal{H}_{\mathrm{BC} 1}^{2}: a u_{0}^{\prime \prime}+z^{\nu-1} b u_{1}^{\prime \prime} \in \mathcal{H}_{\mathrm{BC} 2}^{2}\right\} . \\
& {[\mathcal{A}(z)]^{-1}(0, v)=\left([T(z)]^{-1} v, z[T(z)]^{-1} v\right), \quad \forall v \in L_{\rho}^{2}(-1,1) . }
\end{aligned}
$$

Key point: Generalised spectrum of $\mathcal{A}(z)$ much easier to study.

$$
\nu=1
$$

Computing $T(z)^{-1}$ and computational cost

Solve the ODEs using sparse spectral methods (expanded in n Chebyshev polynomials).

- Computation of $T(z)^{-1}$ converges exponentially in n with $\mathcal{O}(n)$ complexity.
- Quadrature error bounded by $\mathcal{O}(\exp (-c N / \log (N)))$ for N quadrature points.
- Solutions of ODEs computed in parallel and reused for different times $t \in\left[t_{0}, t_{1}\right]$.
- Avoids the large memory consumption/computation time of time stepping methods.
- Solution computed with explicit error control (10^{-8} in what follows).

[^2]
Toy example

$a=\cosh (x), \quad b=\sin (\pi x)+2, \quad \rho=\tanh (x)+2, \quad F(x, t)=\cos (20 t) \sin (\pi x)$,

$$
y(x, 0)=\sin (2 \pi x)\left(1-x^{2}\right)(1-x), \quad \frac{\partial y}{\partial t}(x, 0)=0
$$

Physical example

$a=1, \quad b=1.01+\tanh (10 x)$ (weakly damped for $x<0$, strongly damped for $x>0$),

$$
\rho=1, \quad F(x, t)=\cos (\pi t)\left(24-\pi^{2}\left(1-x^{2}\right)^{2}\right), \quad y(x, 0)=\left(1-x^{2}\right)^{2}, \quad \frac{\partial y}{\partial t}(x, 0)=0
$$

$$
\nu=0.5
$$

$$
\nu=0.7
$$

Physical example

Energy (computed with error control): $E(t)=\frac{1}{2} \int_{-1}^{1} a(x)\left|y_{x x}(x, t)\right|^{2}+\rho(x)\left|y_{t}(x, t)\right|^{2} d x$.

Wider framework

How: Deal with operators directly, instead of previous 'truncate-then-solve'. (e.g., adaptive truncations to compute the resolvent with error control)
\Rightarrow Compute many properties for the first time.
Framework: Classify problems in a computational hierarchy measuring intrinsic difficulty.
\Rightarrow Algorithms realise boundaries of what computers can achieve.
Other recent examples:

- Computing spectra $\operatorname{Sp}(A)$ of operators.
- Computing spectral measures of operators.
- Koopman operators (cf. Koopmania)
- Optimisation and neural networks (finite-dimensional problems!).
- Colbrook, "The Foundations of Infinite-Dimensional Spectral Computations," PhD diss., 2020.
- Colbrook, Roman, Hansen, "How to compute spectra with error control" Physical Review Letters, 2019.
- Colbrook, "Computing spectral measures and spectral types" Communications in Mathematical Physics, 2021.
- Colbrook, Horning, Townsend, "Computing spectral measures of self-adjoint operators" SIAM Review, 2021.
- Colbrook, Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems" arXiv, out this morning!
- Colbrook, Antun, Hansen "Can stable and accurate neural networks be computed?," PNAS, to appear. 33/34

Conclusion

Key points:

- Q.1: Semigroups can be computed with error control via a universal algorithm.
- Q.2: Extends to PDEs (e.g., on unbounded domain $L^{2}\left(\mathbb{R}^{d}\right)$).
- New stable and rapidly convergent quadrature rule for analytic semigroups.
- Extends to time-fractional PDEs via Laplace transform (need to bound gen. spectrum).
- Methods are part of a wider framework (e.g., deals with inf-dim operators directly).

Future work:

- Non-autonomous cases and non-linear cases (e.g., splitting).
- Other time-fractional PDEs can now be tackled. E.g., 2D fractional beam equations.

Conclusion

Key points:

- Q.1: Semigroups can be computed with error control via a universal algorithm.
- Q.2: Extends to PDEs (e.g., on unbounded domain $L^{2}\left(\mathbb{R}^{d}\right)$).
- New stable and rapidly convergent quadrature rule for analytic semigroups.
- Extends to time-fractional PDEs via Laplace transform (need to bound gen. spectrum).
- Methods are part of a wider framework (e.g., deals with inf-dim operators directly).

Future work:

- Non-autonomous cases and non-linear cases (e.g., splitting).
- Other time-fractional PDEs can now be tackled. E.g., 2D fractional beam equations.

A question for Mattia and Nicola: What if $\left\|(A-z l)^{-1}\right\|$ can't be studied analytically? Can we combine with roaming methods and new infinite-dimensional methods for computing pseudospectra with error control?

Conclusion

Key points:

- Q.1: Semigroups can be computed with error control via a universal algorithm.
- Q.2: Extends to PDEs (e.g., on unbounded domain $L^{2}\left(\mathbb{R}^{d}\right)$).
- New stable and rapidly convergent quadrature rule for analytic semigroups.
- Extends to time-fractional PDEs via Laplace transform (need to bound gen. spectrum).
- Methods are part of a wider framework (e.g., deals with inf-dim operators directly).

Future work:

- Non-autonomous cases and non-linear cases (e.g., splitting).
- Other time-fractional PDEs can now be tackled. E.g., 2D fractional beam equations.

A question for Mattia and Nicola: What if $\left\|(A-z I)^{-1}\right\|$ can't be studied analytically? Can we combine with roaming methods and new infinite-dimensional methods for computing pseudospectra with error control?
For papers and code: http://www.damtp.cam.ac.uk/user/mjc249/home.html

[^0]: - D. Johnstone, M. Colbrook, A. Nielsen, P. Öhberg, C. Duncan, "Bulk localised transport states in infinite and finite quasicrystals via magnetic aperiodicity," arXiv preprint.

[^1]: - J. Weideman, L.N. Trefethen, "Parabolic and hyperbolic contours for computing the Bromwich integral,"

[^2]: S. Olver, A. Townsend, "A fast and well-conditioned spectral method," SIAM Review, 2013.

