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The finite-dimensional case

du

dt
= Au, A ∈ Cn×n, u(0) = u0 ∈ Cn ⇒ u(t) = exp(tA)u0 =

∞∑

j=0

t j

j!
Aju0.

E.g., if A = PDP−1, D = diag(d1, ..., dn) diagonal, then

u(t) = P




ed1t

ed2t

. . .

ednt


P−1u0.

(Usually much better ways to compute this, but that’s a different story...)

· C. Moler, C. Van Loan, “Nineteen dubious ways to compute the exponential of a matrix, twenty-five years
later,” SIAM review, 2003.
· N. Higham, “The scaling and squaring method for the matrix exponential revisited,” SIAM Journal on Matrix
Analysis and Applications, 2005.
· A. Frommer and B. Hashemi, “Computing enclosures for the matrix exponential,” SIAM Journal on Matrix
Analysis and Applications, 2020. 1/34



The infinite-dimensional case

Linear operator A on an infinite-dimensional Hilbert space H,

du

dt
= Au, u(0) = u0 ∈ H.

Common examples:

Time-dependent PDEs.

Infinite discrete systems.

GOAL: Compute the solution u(t) at time t > 0. Ideally with error control.
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Some common techniques

Domain truncation and absorbing boundary conditions: B. Engquist and A. Majda,
“Absorbing boundary conditions for numerical simulation of waves,” PNAS, 1977.

Rational approximations: M. Crouzeix, S. Larsson, S. Piskarev and V. Thomé, “The stability of
rational approximations of analytic semigroups,” BIT, 1993.

Splitting methods: R. McLachlan and G. R. Quispel, “Splitting methods,” Acta Numerica, 2002.

Exponential integrators: M. Hochbruck and A. Ostermann, “Exponential integrators,” Acta
Numerica, 2010.

Krylov methods: J. Liesen and Z. Strakos, “Krylov subspace methods,” OUP, 2013.

Galerkin methods: C. Lasser and C. Lubich, “Computing quantum dynamics in the semiclassical
regime,” Acta Numerica, 2020.

Contour methods (in this talk): A. Talbot, “The accurate numerical inversion of Laplace
transforms,” IMA Journal of Applied Mathematics, 1979.
N. Guglielmi, M. López-Fernández and M. Manucci, “Pseudospectral roaming contour integral
methods for convection-diffusion equations,” Journal of Scientific Computing, 2021.

Each area has hundreds of papers and many great mathematicians who have written them!
3/34



Philosophy of the new approach

Previous approaches: A is discretised to A ∈ Cn×n and we use some sort of
finite-dimensional solver – “truncate-then-solve”

Typical difficulties:

Can be very difficult to bound the error when we go from A to A.

Sometimes A does not respect key properties of the system.

Sometimes A is more complicated to study (e.g., where are its eigenvalues?).

PDEs on unbounded domains - two truncations: the physical domain, then the operator
restricted to this domain. How do we rigorously deal with domain truncation?

PHILOSPHY OF THIS TALK: Solve-then-discretise.
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Example: discrete Laplacian

Finite portion of the aperiodic infinite Ammann–Beenker tile - red dots correspond to u0.

Very interesting transport properties but notoriously difficult to compute. Graph Laplacian:

[∆ABψ]i =
∑

i∼j
(ψj − ψi ) , {ψj}j∈N ∈ `2(N).

Schrödinger equation and wave equation:

iut = −∆ABu and utt = ∆ABu.
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Quasicrystals

Quasicrystal: Aperiodic material with long-range order.

Discovered by Dan Shechtman in 1982 (awarded Nobel prize in Chemistry 2011).

Luca Bindi and Paul Steinhardt discovered icosahedrite, first natural quasicrystal
(awarded 2018 Aspen Institute Prize for scientific collaboration between Italy and US).

Many exotic physical properties and beginning to be used in

heat insulation
LEDs, solar absorbers, and energy coatings
reinforcing materials, e.g., low-friction gears
bone repair (hardness, low friction, corrosion resistance)...

E.g., what’s the analogy of periodic physics for aperiodic systems?

· D. Johnstone, M. Colbrook, A. Nielsen, P. Öhberg, C. Duncan, “Bulk localised transport states in infinite and
finite quasicrystals via magnetic aperiodicity,” arXiv preprint. 6/34



Computed solutions with guaranteed accuracy ε = 10−10
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Top row: log10(|u(t)|) for Schrödinger equation. Bottom row: u(t) for wave equation.
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Standard truncation methods

uFS = solution by direct diagonalisation of 10001× 10001 truncation.
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As t increases, we need more vertices (basis vectors) to capture the solution.
The method of this talk allows this to be done rigorously and adaptively.
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When is our equation well-posed?

du

dt
= Au, u(0) = u0 ∈ H. (1)

Eq. (1) well-posed ⇔ A generates a strongly continuous semigroup (u(t) = exp(tA)u0)

Spectrum: Sp(A) = {z : A− zI not invertible}

Theorem (Hille–Yosida Theorem)

A generates a strongly continuous semigroup if and only if A is densely defined and there
exists ω ∈ R, M > 0 such that

if Re(z) > ω, then z /∈ Sp(A) and ‖(A− zI )−n‖ ≤ M

(Re(z)− ω)n
, ∀n ∈ N.
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Two open foundations problems

Q.1: Computing semigroups with error control: Does there exist an algorithm with input:

a generator A of a strongly continuous semigroup on H,

a time t > 0,

an arbitrary initial condition u0 ∈ H,

an error tolerance ε > 0,

that computes an approximation of exp(tA)u0 to accuracy ε in H?

Q.2: For H = L2(Rd) is there a large class of partial differential operators A on the
unbounded domain Rd where the answer to Q.1 is yes?

We will provide resolutions to both problems!

We will also extend the techniques to other scenarios such as time-fractional PDEs!
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A first attempt

du

dt
= Au, u(0) = u0 ∈ H.

Take Laplace transform (denoted ·̂) ⇒ û(z) =

∫ ∞

0
e−ztu(t)dt = −(A− zI )−1u0.

γ

Im(z)

Re(z)
“Invert”: exp(tA)u0 =

[−1

2πi

∫

γ

ezt(A− zI )−1 dz

]
u0

Problems:

Integrand does not decay!

How do we compute (A− zI )−1?

How do we bound error of approximating the integral?
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Q.1: H = `2(N) with inner product 〈·, ·〉

Input (Ω`2(N)): (A, u0, t) s.t. A generates strongly continuous semigroup, u0 ∈ `2(N), t > 0.

Allow access to:

Arbitrary precision approximations of:

(Matrix evaluations) 〈Aek , ej〉, 〈Aek ,Aej〉, ∀j , k ∈ N,

(Coefficient evaluations) 〈u0, u0〉, 〈u0, ej〉, ∀j ∈ N.

Constants M, ω satisfying conditions in Hille–Yosida Theorem.

Theorem 1 (Strongly continuous semigroups on `2(N) computed with error control)

There exists a universal algorithm Γ`2(N) using the above, such that

‖Γ`2(N)(A, u0, t, ε)− exp(tA)u0‖`2(N) ≤ ε, ∀ε > 0 and (A, u0, t) ∈ Ω`2(N).

12/34



Q.1: H = `2(N) with inner product 〈·, ·〉

Input (Ω`2(N)): (A, u0, t) s.t. A generates strongly continuous semigroup, u0 ∈ `2(N), t > 0.

Allow access to:

Arbitrary precision approximations of:

(Matrix evaluations) 〈Aek , ej〉, 〈Aek ,Aej〉, ∀j , k ∈ N,

(Coefficient evaluations) 〈u0, u0〉, 〈u0, ej〉, ∀j ∈ N.

Constants M, ω satisfying conditions in Hille–Yosida Theorem.

Theorem 1 (Strongly continuous semigroups on `2(N) computed with error control)

There exists a universal algorithm Γ`2(N) using the above, such that

‖Γ`2(N)(A, u0, t, ε)− exp(tA)u0‖`2(N) ≤ ε, ∀ε > 0 and (A, u0, t) ∈ Ω`2(N).

12/34



Idea of proof

Regularisation (a standard trick from functional analysis):

exp(tA)u0 = (A− (ω + 2)I )2



−1

2πi

∫ ω+1+i∞

ω+1−i∞

ezt(A− zI )−1

(z − (ω + 2))2︸ ︷︷ ︸
now decays

dz


 u0.

A few reductions (using Hille–Yosida theorem) to approximating the operator

[
1

2πi

∫ ω+1+i∞

ω+1−i∞

exp(zt)(A− zI )−1

(z − (ω + 2))2
dz

]
.

Truncation + quadrature for decaying integrand.

Apply (A− zI )−1 using least-squares and adaptive truncations by controlling residuals.
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Q.2: H = L2(Rd)

[Au](x) =
∑

k∈Zd
≥0,|k|≤N

ak(x)∂ku(x).

Input (ΩPDE): (A, u0, t) such that A generates a strongly continuous semigroup on L2(Rd),
u0 ∈ L2(Rd) and t > 0

Allow access to:

Arbitrary precision pointwise evaluations ak(q), u0(q), q ∈ Qd .

Bounds on growth rate and ‘oscillations’ of coefficients.

Sequence cn → 0 with ‖u0|[−n,n]d − u0‖L2(Rd ) ≤ cn.

Constants M, ω satisfying conditions in Hille–Yosida Theorem.

Theorem 2 (PDE semigroups on L2(Rd) computed with error control)

There exists a universal algorithm ΓPDE using the above, such that

‖ΓPDE(A, u0, t, ε)− exp(tA)u0‖L2(Rd ) ≤ ε, ∀ε > 0 and (A, u0, t) ∈ ΩPDE
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Idea of proof

Reduce to Q.1 using (tensor product) Hermite basis

ψm(x) = (2mm!
√
π)−1/2e−x

2/2Hm(x), Hm(x) = (−1)mex
2 dm

dxm
e−x

2
.

Compute inner products (with error control)

〈Aek ,Aej〉 =

∫

Rd

(Aψm(k))(Aψm(j))dx , 〈Aek , ej〉 =

∫

Rd

(Aψm(k))ψm(j)dx ,

using quasi-Monte Carlo numerical integration.

Similar techniques deal with u0.
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Analytic semigroups

γ

Im(z)

Re(z)

exp(tA)u0 =

[−1

2πi

∫

γ
ezt(A− zI )−1 dz

]
u0

γ(s) = µ(1 + sin(is − α)), µ > 0, 0 < α <
π

2
− δ (s ∈ R).
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Analytic semigroups

γ

Im(z)

Re(z)
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Instability

γ(s) = µ(1 + sin(is − α)), µ > 0, 0 < α <
π

2
− δ (s ∈ R).

exp(tA)u0 =

[−1

2πi

∫

γ
ezt(A− zI )−1 dz

]
u0 ≈

−h
2πi

N∑

j=−N
ezj t(A− zj I )

−1γ′(jh), zj = γ(jh).

Compute exp(tA) for t ∈ [t0, t1] where 0 < t0 ≤ t1, Λt = t1/t0.

Leads to ‘optimal’ h, µ and α as functions of N,Λt and δ.

Problem: Numerical instability since max(Re(zj))→∞ as N →∞.

· J. Weideman, L.N. Trefethen, “Parabolic and hyperbolic contours for computing the Bromwich integral,”
Mathematics of Computation, 2007. 17/34
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Instability (even in scalar case)

1 =
1

2πi

∫

γ

ezt

z
dz .

MN = max error for t ∈ [t0, t1].
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Proposed quadrature rule
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Enforcing stability

exp(tA)u0 ≈
−h
2πi

N∑

j=−N
ezj t(A− zj I )

−1γ′(jh), zj = γ(jh).

Idea: Enforce max(Re(zj))t1 ≤ β as N →∞ for stability.

h =
1

N
W
(
ΛtN

π(π − 2δ)

β sin
(
π−2δ

4

)(1− sin
(π − 2δ

4

)))
, µ =

β/t1
1− sin((π − 2δ)/4)

, α =
hµt1 + π2 − 2πδ

4π
.

Algorithm: Stable and rapidly convergent algorithm for analytic semigroups.

Input: A (generator of an analytic semigroup with angle δ ∈ [0, π/2)), u0 ∈ H,
0 < t0 ≤ t1 <∞, β > 0, N ∈ N and η > 0.

1: Let γ be defined as above with α, µ and h given by above, where Λt = t1/t0.
2: Set zj = γ(jh) and wj = h

2πiγ
′(jh).

3: Solve (A− zjI)Rj = −u0 for −N ≤ j ≤ N to an accuracy η.

Output: uN (t) =
∑N
j=−N e

zjtwjRj for t ∈ [t0, t1].

3

This manuscript is for review purposes only.
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Recovery theorem

Theorem 3 (Stable & rapidly convergent algorithm for analytic semigroups)

Explicit constant C such that for any t0 ≤ t ≤ t1,

‖exp(tA)u0 − uN(t)‖H≤
(

2µe
β

1−sin(α)π−1
∫ ∞

0
ex−µt sin(α) cosh(x)dx

)
η

︸ ︷︷ ︸
numerical error due to inexact resolvent

+ Ce
β

1−sin(α) · exp


− Nπ(π − 2δ)/2

log(Λt
sin(π/4−δ/2)−1−1

β Nπ(π − 2δ))




︸ ︷︷ ︸
quadrature error

= O(η) +O(exp(−cN/ log(N))).
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Example on L2(R) demonstrating convergence

ut = [(1.1− 1/(1 + x2))ux ]x , u0(x) = e−
(x−1)2

5 cos(2x) + 2[1 + (x + 1)4]−1.

Basis: φn(x) = π−1/2(1 + ix)n(1− ix)−(n+1), n ∈ Z.
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What about fractional derivatives?

[Dνt g ] (t) =





1

Γ(n − ν)

∫ t

0
(t − τ)n−ν−1g (n)(τ)dτ, if n − 1 < ν < n,

g (n)(t), if ν = n.

Time-fractional equation:
∑M

j=1D
νj
t Aju = f (t) for t ≥ 0, nj − 1 < νj ≤ nj .

Applications: Solid mechanics, biology, electrochemistry, finance, signal processing,
anomalous diffusion, statistics, astrophysics, etc. (Explosion of interest over last ≈ 15 years.)

Common challenges:

Non-local time derivative.

Hard to get high accuracy.

Large memory consumption.

k

Singularities as t ↓ 0.

Contour method in this talk:

Global approximation.

Exponential convergence and linear complexity.

No time-stepping needed, parallelisable, reuse
computations at different times.

Avoids singularities (looks straight ahead to t > 0).
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Laplace transform

M∑

j=1

Dνjt Aju = f (t) for t ≥ 0, nj − 1 < νj ≤ nj .

Operator: T (z) =
∑M

j=1 z
νjAj , T (z) : D(T ) ⊂ H → H.

Known function: K (z) = f̂ (z) +
∑M

j=1 Aj
∑nj

k=1 z
νj−ku(k−1)(0), K : C→ H.

Aside on causality: Can replace f̂ (z) by
∫ t
0 e−zs f (s)ds and approximate via quadrature.

T (z)û(z) = K (z) (posed in H) ⇒ u(t) = 1
2πi

∫
γ e

zt
[
T (z)−1K (z)

]
dz
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Laplace transform

Method: Apply the above stable and exponentially convergent quadrature rule.

Challenges:

Must analyse generalised spectrum Sp(T ) = {z ∈ C : T (z) is not invertible}.
NB: Often easier for infinite-dimensional operator as opposed to discretisation:

‖T (z)−1‖ ≤ [dist(0,N (T (z)))]−1, N (T (z)) := {〈T (z)v , v〉 : v ∈ D(T (z)), ‖v‖ = 1}.

For high accuracy, need generalised spectrum contained in sector to deform contour.
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Fractional beam equations

x

u = y = displacement F (x , t) = forcing

Stress-strain relation: σ(x , t)︸ ︷︷ ︸
stress

= E0(x) ε(x , t)︸ ︷︷ ︸
strain

+E1(x)Dνt ε(x , t)︸ ︷︷ ︸
strain

.

∂2y

∂t2
+

1

ρ(x)

∂2

∂x2

[
a(x)

∂2y

∂x2
+ b(x)Dνt

∂2y

∂x2

]
=

F (x , t)

ρ(x)
, x ∈ [−1, 1], a(x) > 0.

[T (z)]y = z2y +
1

ρ(x)

∂2

∂x2

[
a(x)

∂2y

∂x2
+ zνb(x)

∂2y

∂x2

]
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Quasi-linearisation of [T (z)]y = z2y + 1
ρ(x)

∂2

∂x2

[
a(x)∂

2y
∂x2 + zνb(x)∂

2y
∂x2

]

H2
BC1, H2

BC2: Sobolev subspaces of H2(−1, 1) capturing BCs.

H = H2
BC1×L2ρ(−1, 1), 〈(u0, u1), (v0, v1)〉H =

∫ 1

−1
a(x)u′′0 (x)v ′′0 (x)dx+

∫ 1

−1
ρ(x)u1(x)v1(x)dx .

Linearise quadratic term:

[A(z)]
(
u0, u1

)
= z

(
u0, u1

)
+
(
−u1, 1ρ(au′′0 + zν−1bu′′1 )′′

)
,

D(A(z)) =
{

(u0, u1) ∈ H2
BC1 ×H2

BC1 : au′′0 + zν−1bu′′1 ∈ H2
BC2

}
.

[A(z)]−1
(
0, v
)

=
(
[T (z)]−1v , z [T (z)]−1v

)
, ∀v ∈ L2ρ(−1, 1).

Key point: Generalised spectrum of A(z) much easier to study.
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Computing T (z)−1 and computational cost

Solve the ODEs using sparse spectral methods (expanded in n Chebyshev polynomials).

Computation of T (z)−1 converges exponentially in n with O(n) complexity.

Quadrature error bounded by O(exp(−cN/ log(N))) for N quadrature points.

Solutions of ODEs computed in parallel and reused for different times t ∈ [t0, t1].

Avoids the large memory consumption/computation time of time stepping methods.

Solution computed with explicit error control (10−8 in what follows).

· S. Olver, A. Townsend, “A fast and well-conditioned spectral method,” SIAM Review, 2013. 29/34



Toy example

a = cosh(x), b = sin(πx) + 2, ρ = tanh(x) + 2, F (x , t) = cos(20t) sin(πx),

y(x , 0) = sin(2πx)(1− x2)(1− x),
∂y

∂t
(x , 0) = 0.
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Physical example

a = 1, b = 1.01 + tanh(10x) (weakly damped for x < 0, strongly damped for x > 0),

ρ = 1, F (x , t) = cos(πt)(24− π2(1− x2)2), y(x , 0) = (1− x2)2,
∂y

∂t
(x , 0) = 0.

t

y

x

ν = 0.5

t

y

x

ν = 0.7

t

y

x

ν = 1
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Physical example

Energy (computed with error control): E (t) =
1

2

∫ 1

−1
a(x)|yxx(x , t)|2 + ρ(x)|yt(x , t)|2dx .

0 1 2 3 4 5

10
0

10
1

t

oscillates due to forcing����
E

(t
)
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Wider framework
How: Deal with operators directly, instead of previous ‘truncate-then-solve’.
(e.g., adaptive truncations to compute the resolvent with error control)

⇒ Compute many properties for the first time.

Framework: Classify problems in a computational hierarchy measuring intrinsic difficulty.

⇒ Algorithms realise boundaries of what computers can achieve.

Other recent examples:

Computing spectra Sp(A) of operators.

Computing spectral measures of operators.

Koopman operators (cf. Koopmania)

Optimisation and neural networks (finite-dimensional problems!).

· Colbrook, “The Foundations of Infinite-Dimensional Spectral Computations,” PhD diss., 2020.
· Colbrook, Roman, Hansen, “How to compute spectra with error control” Physical Review Letters, 2019.
· Colbrook, “Computing spectral measures and spectral types” Communications in Mathematical Physics, 2021.
· Colbrook, Horning, Townsend, “Computing spectral measures of self-adjoint operators” SIAM Review, 2021.
· Colbrook, Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for
dynamical systems” arXiv, out this morning!
· Colbrook, Antun, Hansen “Can stable and accurate neural networks be computed?,” PNAS, to appear. 33/34



Conclusion

Key points:

Q.1: Semigroups can be computed with error control via a universal algorithm.

Q.2: Extends to PDEs (e.g., on unbounded domain L2(Rd)).

New stable and rapidly convergent quadrature rule for analytic semigroups.

Extends to time-fractional PDEs via Laplace transform (need to bound gen. spectrum).

Methods are part of a wider framework (e.g., deals with inf-dim operators directly).

Future work:

Non-autonomous cases and non-linear cases (e.g., splitting).

Other time-fractional PDEs can now be tackled. E.g., 2D fractional beam equations.

A question for Mattia and Nicola: What if ‖(A− zI )−1‖ can’t be studied analytically? Can
we combine with roaming methods and new infinite-dimensional methods for computing
pseudospectra with error control?

For papers and code: http://www.damtp.cam.ac.uk/user/mjc249/home.html
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