Computing semigroups with error control

Matthew J. Colbrook

University of Cambridge

Papers:

M.J. Colbrook, "Computing semigroups with error control"
M.J. Colbrook and L.J. Ayton, "A contour method for time-fractional PDEs" (extension of current talk to time-fractional PDEs)

The infinite-dimensional problem

Linear operator A on an infinite-dimensional Hilbert space \mathcal{H},

$$
\frac{d u}{d t}=A u, \quad u(0)=u_{0} \in \mathcal{H} .
$$

GOAL: Rigorously compute the solution at time t.

Philosophy of the approach

Typically, A is discretised to $\mathbb{A} \in \mathbb{C}^{n \times n}$ and we use some sort of finite-dimensional solver: "truncate-then-solve"

Typical difficulties:

- Often very difficult to bound the error when we go from A to \mathbb{A}.
- Sometimes \mathbb{A} is more complicated to study. E.g. where are its eigenvalues?
- Sometimes \mathbb{A} does not respect key properties of the system.
- For PDEs on unbounded domains, there are two truncations: the physical domain and then the operator restricted to this domain.

PHILOSPHY OF THIS TALK: Solve-then-discretise.

Open Foundations Questions

Q.1: Can we compute semigroups with error control? I.e., does there exist an algorithm that given a generator A of a strongly continuous semigroup on \mathcal{H}, time $t>0$, arbitrary $u_{0} \in \mathcal{H}$ and error tolerance $\epsilon>0$, computes an approximation of $\exp (t A) u_{0}$ to accuracy ϵ in \mathcal{H} ?
Q.2: For $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$, is there a large class of PDO generators A on the unbounded domain \mathbb{R}^{d} where the answer to $Q .1$ is yes?

We'll provide resolutions to these two problems!

NB: Q2 has recently been solved in the positive for Schrödinger operators using weighted Sobolev bounds on the initial condition for rigorous domain truncation [Becker \& Hansen, 2020]. We'll aim to go much broader.

Example

Aperiodic (no repeating pattern) infinite Ammann-Beenker (AB) tiling. Such structures have very interesting transport properties but notoriously difficult to compute. Graph Laplacian:

$$
\left[\Delta_{\mathrm{AB}} \psi\right]_{i}=\sum_{i \sim j}\left(\psi_{j}-\psi_{i}\right), \quad\left\{\psi_{j}\right\}_{j \in \mathbb{N}} \in I^{2}(\mathbb{N})
$$

Schrödinger equation and wave equation:

$$
i u_{t}=-\Delta_{\mathrm{AB}} u \quad \text { and } \quad u_{t t}=\Delta_{\mathrm{AB}} u
$$

Example

Solutions computed with guaranteed accuracy $\epsilon=10^{-10}$.

Top row: $\log 10(|u(t)|)$ computed for the Schrödinger equation at times $t=1$ (left), $t=10$ (middle) and $t=50$ (right). Bottom row: $u(t)$ computed for the wave equation at times $t=1$ (left), $t=30$ (middle) and $t=50$ (right).

Example

u_{FS} : solution by direct diagonalisation of 10001×10001 truncation.

Small difference for small t, then grows quickly due to boundary effects. As t increases, need more vertices (basis vectors) to capture the solution method of this talk allows this to be done rigorously and adaptively.

Strongly continuous semigroup

$$
\begin{equation*}
\frac{d u}{d t}=A u, \quad u(0)=u_{0} \in \mathcal{H} \tag{1}
\end{equation*}
$$

Definition

Strongly cts semigroup is a map $S:[0, \infty) \rightarrow \quad \underbrace{\mathcal{L}(\mathcal{H})}$
s.t. bounded operators on \mathcal{H}
(1) $S(0)=I$
(2) $S(s+t)=S(s) S(t), \quad \forall s, t \geq 0$
(3) $\lim _{t \downarrow 0} S(t) v=v$ for all $v \in \mathcal{H}$.

The infinitesimal generator A of S is defined via $A x=\lim _{t \downarrow 0} \frac{1}{t}(S(t)-I) x$, where $\mathcal{D}(A)$ is all $x \in X$ such that the limit exists, write $S(t)=\exp (t A)$.

Why we care: A generates C_{0}-semigroup \Leftrightarrow (1) well-posed

Hille-Yosida Theorem

$$
\begin{gathered}
\operatorname{Sp}(A)=\{z: A-z l \text { not invertible }\}, \quad \rho(A):=\mathbb{C} \backslash \operatorname{Sp}(A) \\
R(z, A)=(A-z I)^{-1} \text { for } z \in \rho(A)
\end{gathered}
$$

Theorem

A closed operator A generates a C_{0}-semigroup if and only if A is densely defined and there exists $\omega \in \mathbb{R}, M>0$ with
(1) $\{\lambda \in \mathbb{R}: \lambda>\omega\} \subset \rho(A)$.
(2) For all $\lambda>\omega$ and $n \in \mathbb{N},(\lambda-\omega)^{n}\left\|R(\lambda, A)^{n}\right\| \leq M$.

Under these conditions, $\|\exp (t A)\| \leq M \exp (\omega t)$ and if $\operatorname{Re}(\lambda)>\omega$ then $\lambda \in \rho(A)$ with

$$
\left\|R(\lambda, A)^{n}\right\| \leq \frac{M}{(\operatorname{Re}(\lambda)-\omega)^{n}}, \quad \forall n \in \mathbb{N}
$$

$$
\exp (t A) u_{0}=[\frac{-1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \underbrace{e^{z t}(A-z)^{-1}}_{\text {no decay?! }} d z] u_{0}, \quad \text { for } \sigma>\omega,
$$

Case 1: $\mathcal{H}=I^{2}(\mathbb{N})$

$\operatorname{span}\left\{e_{n}: n \in \mathbb{N}\right\}$ forms a core of A and $A^{*} \Rightarrow$ matrix $A_{j, k}=\left\langle A e_{k}, e_{j}\right\rangle$.
$\Omega_{C_{0}}:\left(A, u_{0}, t\right)$ s.t. A generates C_{0}-semigroup, $u_{0} \in I^{2}(\mathbb{N})$ and $t>0$.
Allow access to:

- Matrix evaluations $\left\{f_{j, k, m}^{(1)}, f_{j, k, m}^{(2)}: j, k, m \in \mathbb{N}\right\}$ such that

$$
\left|f_{j, k, m}^{(1)}(A)-\left\langle A e_{k}, e_{j}\right\rangle\right| \leq 2^{-m}, \quad\left|f_{j, k, m}^{(2)}(A)-\left\langle A e_{k}, A e_{j}\right\rangle\right| \leq 2^{-m} .
$$

- Coefficient/norm evaluations $\left\{f_{j, m}: j \in \mathbb{N} \cup\{0\}, m \in \mathbb{N}\right\}$ such that

$$
\left|f_{0, m}\left(u_{0}\right)-\left\langle u_{0}, u_{0}\right\rangle\right| \leq 2^{-m}, \quad\left|f_{j, m}\left(u_{0}\right)-\left\langle u_{0}, e_{j}\right\rangle\right| \leq 2^{-m} .
$$

- Constants M, ω satisfying conditions in Hille-Yosida Theorem.

Theorem $1\left(C_{0}\right.$-semigroups on $I^{2}(\mathbb{N})$ computed with error control)

There exists a universal algorithm Γ using the above, s.t.

$$
\left\|\Gamma\left(A, u_{0}, t, \epsilon\right)-\exp (t A) u_{0}\right\| \leq \epsilon, \quad \forall \epsilon>0,\left(A, u_{0}, t\right) \in \Omega_{C_{0}} .
$$

Idea of proof

- Regularisation:

$$
\exp (t A) u_{0}=(A-(\omega+2) I)^{2}[\frac{-1}{2 \pi i} \int_{\omega+1-i \infty}^{\omega+1+i \infty} \underbrace{\frac{e^{z t} R(z, A)}{(z-(\omega+2))^{2}}}_{\text {now decays }} d z] u_{0}
$$

- Use well-posedness to reduce to $u_{0}=e_{k}$ for some $k \in \mathbb{N}$ and

$$
\exp (t A) e_{k}=(A-(\omega+2) I)\left[\frac{-1}{2 \pi i} \int_{\omega+1-i \infty}^{\omega+1+i \infty} \frac{e^{z t} R(z, A)}{(z-(\omega+2))^{2}} d z\right](A-(\omega+2) I) e_{k}
$$

- Final reduction to

$$
\left[\frac{1}{2 \pi i} \int_{\omega+1-i \infty}^{\omega+1+i \infty} \frac{\exp (z t) R(z, A)}{(z-(\omega+2))^{2}} d z\right] e_{l} .
$$

- Truncation + quadrature for decaying integrand.

At each step, use adaptive computation of $R(z, A)$ with error control.

Case 2: PDEs on $L^{2}\left(\mathbb{R}^{d}\right)$

$$
\begin{gathered}
{[A u](x)=\sum_{k \in \mathbb{Z}_{0}^{d},|k| \leq N} a_{k}(x) \partial^{k} u(x) .} \\
\mathcal{A}_{r}=\left\{f \in \operatorname{Meas}\left([-r, r]^{d}\right):\|f\|_{\infty}+\operatorname{TV}_{[-r, r]^{d}}(f)<\infty\right\} .
\end{gathered}
$$

$\Omega_{\text {PDE }}$ all $\left(A, u_{0}, t\right)$ with $u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$ and $t>0$ s.t. A generates a strongly continuous semigroup on $L^{2}\left(\mathbb{R}^{d}\right)$ and:
(1) Smooth, compactly supported functions form a core of A and A^{*}.
(2) At most polynomial growth: There exists $C_{k}>0$ and $B_{k} \in \mathbb{N}$ s.t. almost everywhere on $\mathbb{R}^{d},\left|a_{k}(x)\right| \leq C_{k}\left(1+|x|^{2 B_{k}}\right)$.
(3) Locally bounded total variation: $\forall r>0,\left.u_{0}\right|_{[-r, r]^{d}},\left.a_{k}\right|_{[-r, r]^{d}} \in \mathcal{A}_{r}$.

Theorem 2 (PDO C_{0}-semigroups on $L^{2}\left(\mathbb{R}^{d}\right)$ computed with error control)

There exists a universal algorithm Γ using pointwise evaluations of coefficients and u_{0}, s.t.

$$
\left\|\Gamma\left(A, u_{0}, t, \epsilon\right)-\exp (t A) u_{0}\right\| \leq \epsilon, \quad \forall \epsilon>0,\left(A, u_{0}, t\right) \in \Omega_{\mathrm{PDE}}
$$

Case 3: Analytic semigroups

$$
S_{\delta, \sigma}:=\{z \in \mathbb{C}: \arg (z-\sigma)<\pi-\delta\} .
$$

Case 3: Analytic semigroups

$$
\begin{gathered}
S_{\delta, \sigma}:=\{z \in \mathbb{C}: \arg (z-\sigma)<\pi-\delta\} \\
\gamma(s)=\sigma+\mu(1+\sin (i s-\alpha)), \quad \mu>0, \quad 0<\alpha<\frac{\pi}{2}-\delta \\
\exp (t A) u_{0} \approx \underbrace{\frac{-h}{2 \pi i} \sum_{j=-N}^{N} e^{z_{j} t} R\left(z_{j}, A\right) \gamma^{\prime}(j h)}_{\text {truncated Trapezoidal rule }}, \quad z_{j}=\gamma(j h)
\end{gathered}
$$

Case 3: Analytic semigroups

Compute $\exp (t A)$ for $t \in\left[t_{0}, t_{1}\right]$ where $0<t_{0} \leq t_{1}, \Lambda=t_{1} / t_{0}$. Using [Weideman \& Trefethen 2007], three error terms:
$\underbrace{\mathcal{O}\left(e^{\sigma t_{1}-2 \pi\left(\frac{\pi}{2}-\alpha-\delta\right) / h}\right)+\mathcal{O}\left(e^{\sigma t_{1}+\mu t_{1}-2 \pi \frac{\alpha}{h}}\right)}_{\text {discretisation error of the integral }}+\underbrace{\mathcal{O}\left(e^{\sigma t_{1}+\mu t_{0}(1-\sin (\alpha) \cosh (h N))}\right)}_{\text {truncation error of sum }}$

Case 3: Analytic semigroups

Compute $\exp (t A)$ for $t \in\left[t_{0}, t_{1}\right]$ where $0<t_{0} \leq t_{1}, \Lambda=t_{1} / t_{0}$. Using [Weideman \& Trefethen 2007], three error terms:
$\underbrace{\mathcal{O}\left(e^{\sigma t_{1}-2 \pi\left(\frac{\pi}{2}-\alpha-\delta\right) / h}\right)+\mathcal{O}\left(e^{\sigma t_{1}+\mu t_{1}-2 \pi \frac{\alpha}{h}}\right)}_{\text {discretisation error of the integral }}+\underbrace{\mathcal{O}\left(e^{\sigma t_{1}+\mu t_{0}(1-\sin (\alpha) \cosh (h N))}\right)}_{\text {truncation error of sum }}$

Problem: numerical instability as $N \rightarrow \infty$

Case 3: Analytic semigroups

Compute $\exp (t A)$ for $t \in\left[t_{0}, t_{1}\right]$ where $0<t_{0} \leq t_{1}, \Lambda=t_{1} / t_{0}$. Using [Weideman \& Trefethen 2007], three error terms:
$\underbrace{\mathcal{O}\left(e^{\sigma t_{1}-2 \pi\left(\frac{\pi}{2}-\alpha-\delta\right) / h}\right)+\mathcal{O}\left(e^{\sigma t_{1}+\mu t_{1}-2 \pi \frac{\alpha}{h}}\right)}_{\text {discretisation error of the integral }}+\underbrace{\mathcal{O}\left(e^{\sigma t_{1}+\mu t_{0}(1-\sin (\alpha) \cosh (h N))}\right)}_{\text {truncation error of sum }}$

Problem: numerical instability as $N \rightarrow \infty$
Idea: enforce $\gamma(0) t_{1}-\sigma t_{1}=\mu t_{1}(1-\sin (\alpha)) \leq \beta$ for stability as $N \rightarrow \infty$.
Compute each $R\left(z_{j}, A\right) u_{0}$ to an accuracy η, optimal parameters now give

$$
\underbrace{e^{-\sigma t}\left\|\exp (t A) u_{0}-u_{N}(t)\right\|}=\mathcal{O}(\eta)+\mathcal{O}(\exp (-c N / \log (N)))
$$

error with intrinsic stability factor

Numerical example showing stability

$$
\begin{aligned}
e^{-\lambda t} & =\frac{1}{2 \pi i} \int_{\gamma} \frac{e^{z t}}{z-\lambda} d z, \quad \lambda \geq 0 \\
M_{N} & =\text { max error for } t \in\left[t_{0}, t_{1}\right]
\end{aligned}
$$

previous optimal parameter choices

proposed quadrature rule

Example: complex perturbed fractional diffusion equation

$$
\begin{aligned}
& \operatorname{Sp}(A) \subset \overline{\mathcal{N}(A)} \cup \overline{\mathcal{N}\left(A^{*}\right)}, \quad \mathcal{N}(A):=\{\langle A x, x\rangle: x \in \mathcal{D}(A),\|x\|=1\} . \\
& \|R(z, A)\| \leq[\operatorname{dist}(z, \overline{\mathcal{N}(A)})]^{-1} \forall z \notin \overline{\mathcal{N}(A)} \cup \overline{\mathcal{N}\left(A^{*}\right)} . \\
& \quad D_{t}^{\iota} u=u_{x x}+i u /\left(1+x^{2}\right), \quad 0<\iota \leq 1 .
\end{aligned}
$$

Solutions $\left(\epsilon=10^{-12}\right.$) for various ι at $t=1$ (blue), $t=5$ (red) and $t=50$ (yellow). The real parts are shown as solid lines, and the imaginary parts as dashed lines (u_{0} shown in black).

Conclusion

Key points:

- Semigroups can be computed with error control via a universal algorithm.
- Extends to PDEs (e.g. unbounded domains).
- New stable quadrature rule for analytic semigroups.
- Results carry over to time-fractional PDEs via Laplace transforms.

Future work:

- Nonlinear cases (e.g. splitting).
- Non-autonomous cases.
- Efficient methods with error control for Schrödinger semigroups.

For further papers and numerical code:
http://www.damtp.cam.ac.uk/user/mjc249/home.html

References

- Main paper:
M.J. Colbrook. "Computing semigroups with error control." preprint.
- Extension to time-fractional:
M.J. Colbrook, L.J. Ayton. "A contour method for time-fractional PDEs." preprint.
- Application in physics:
D. Johnstone, M.J. Colbrook, A.E. Nielsen, P. Ohberg, C.W. Duncan. "Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity." preprint.
- Adaptive method of computing resolvent with error control: M.J. Colbrook. "Computing spectral measures and spectral types." Communications in Mathematical Physics (2021).
- S. Becker, A. Hansen. "Computing solutions of Schrödinger equations on unbounded domains." preprint (2020).
- J.A.C. Weideman, L.N. Trefethen. "Parabolic and hyperbolic contours for computing the Bromwich integral." Math. Comp. (2007).

