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The infinite-dimensional problem

Linear operator A on an infinite-dimensional Hilbert space H,

du

dt
= Au, u(0) = u0 ∈ H.

GOAL: Rigorously compute the solution at time t.



Philosophy of the approach

Typically, A is discretised to A ∈ Cn×n and we use some sort of
finite-dimensional solver: “truncate-then-solve”

Typical difficulties:

Often very difficult to bound the error when we go from A to A.

Sometimes A is more complicated to study.
E.g. where are its eigenvalues?

Sometimes A does not respect key properties of the system.

For PDEs on unbounded domains, there are two truncations: the
physical domain and then the operator restricted to this domain.

PHILOSPHY OF THIS TALK: Solve-then-discretise.



Open Foundations Questions

Q.1: Can we compute semigroups with error control? I.e., does there exist
an algorithm that given a generator A of a strongly continuous semigroup
on H, time t > 0, arbitrary u0 ∈ H and error tolerance ε > 0, computes an
approximation of exp(tA)u0 to accuracy ε in H?

Q.2: For H = L2(Rd), is there a large class of PDO generators A on the
unbounded domain Rd where the answer to Q.1 is yes?

We’ll provide resolutions to these two problems!

NB: Q2 has recently been solved in the positive for Schrödinger operators
using weighted Sobolev bounds on the initial condition for rigorous domain
truncation [Becker & Hansen, 2020]. We’ll aim to go much broader.



Example

Aperiodic (no repeating pattern) infinite Ammann–Beenker (AB) tiling.
Such structures have very interesting transport properties but notoriously
difficult to compute. Graph Laplacian:

[∆ABψ]i =
∑
i∼j

(ψj − ψi ) , {ψj}j∈N ∈ l2(N).

Schrödinger equation and wave equation:

iut = −∆ABu and utt = ∆ABu.



Example

Solutions computed with guaranteed accuracy ε = 10−10.

Top row: log10(|u(t)|) computed for the Schrödinger equation at times t = 1
(left), t = 10 (middle) and t = 50 (right). Bottom row: u(t) computed for the
wave equation at times t = 1 (left), t = 30 (middle) and t = 50 (right).



Example

uFS: solution by direct diagonalisation of 10001× 10001 truncation.
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Small difference for small t, then grows quickly due to boundary effects.
As t increases, need more vertices (basis vectors) to capture the solution -
method of this talk allows this to be done rigorously and adaptively.



Strongly continuous semigroup

du

dt
= Au, u(0) = u0 ∈ H. (1)

Definition

Strongly cts semigroup is a map S : [0,∞)→ L(H)︸ ︷︷ ︸
bounded operators on H

s.t.

(1) S(0) = I

(2) S(s + t) = S(s)S(t), ∀s, t ≥ 0

(3) limt↓0 S(t)v = v for all v ∈ H.

The infinitesimal generator A of S is defined via Ax = limt↓0
1
t (S(t)− I )x,

where D(A) is all x ∈ X such that the limit exists, write S(t) = exp(tA).

Why we care: A generates C0-semigroup ⇔ (1) well-posed



Hille–Yosida Theorem

Sp(A) = {z : A− zI not invertible}, ρ(A) := C\Sp(A)

R(z ,A) = (A− zI )−1 for z ∈ ρ(A)

Theorem

A closed operator A generates a C0-semigroup if and only if A is densely
defined and there exists ω ∈ R, M > 0 with

(1) {λ ∈ R : λ > ω} ⊂ ρ(A).

(2) For all λ > ω and n ∈ N, (λ− ω)n‖R(λ,A)n‖ ≤ M.

Under these conditions, ‖ exp(tA)‖ ≤ M exp(ωt) and if Re(λ)>ω then
λ∈ρ(A) with

‖R(λ,A)n‖ ≤ M

(Re(λ)− ω)n
, ∀n ∈ N.

exp(tA)u0 =

−1

2πi

∫ σ+i∞

σ−i∞
ezt(A− zI )−1︸ ︷︷ ︸

no decay?!

dz

 u0, for σ > ω,



Case 1: H = l2(N)

span{en : n ∈ N} forms a core of A and A∗ ⇒ matrix Aj ,k = 〈Aek , ej〉.
ΩC0 : (A, u0, t) s.t. A generates C0-semigroup, u0 ∈ l2(N) and t > 0.

Allow access to:

Matrix evaluations {f (1)j ,k,m, f
(2)
j ,k,m : j , k ,m ∈ N} such that

|f (1)j ,k,m(A)− 〈Aek , ej〉| ≤ 2−m, |f (2)j ,k,m(A)− 〈Aek ,Aej〉| ≤ 2−m.

Coefficient/norm evaluations {fj ,m : j ∈ N ∪ {0},m ∈ N} such that

|f0,m(u0)− 〈u0, u0〉| ≤ 2−m, |fj ,m(u0)− 〈u0, ej〉| ≤ 2−m.

Constants M, ω satisfying conditions in Hille–Yosida Theorem.

Theorem 1 (C0-semigroups on l2(N) computed with error control)

There exists a universal algorithm Γ using the above, s.t.

‖Γ(A, u0, t, ε)− exp(tA)u0‖ ≤ ε, ∀ε > 0, (A, u0, t) ∈ ΩC0 .



Idea of proof

Regularisation:

exp(tA)u0 = (A− (ω + 2)I )2

−1

2πi

∫ ω+1+i∞

ω+1−i∞

eztR(z ,A)

(z − (ω + 2))2︸ ︷︷ ︸
now decays

dz

 u0.

Use well-posedness to reduce to u0 = ek for some k ∈ N and

exp(tA)ek = (A−(ω+2)I )

[
−1

2πi

∫ ω+1+i∞

ω+1−i∞

eztR(z ,A)

(z − (ω + 2))2
dz

]
(A−(ω+2)I )ek .

Final reduction to[
1

2πi

∫ ω+1+i∞

ω+1−i∞

exp(zt)R(z ,A)

(z − (ω + 2))2
dz

]
el .

Truncation + quadrature for decaying integrand.

At each step, use adaptive computation of R(z ,A) with error control.



Case 2: PDEs on L2(Rd)

[Au](x) =
∑

k∈Zd
≥0,|k|≤N

ak(x)∂ku(x).

Ar = {f ∈ Meas([−r , r ]d) : ‖f ‖∞ + TV[−r ,r ]d (f ) <∞}.

ΩPDE all (A, u0, t) with u0 ∈ L2(Rd) and t > 0 s.t. A generates a strongly
continuous semigroup on L2(Rd) and:

(1) Smooth, compactly supported functions form a core of A and A∗.

(2) At most polynomial growth: There exists Ck > 0 and Bk ∈ N s.t.

almost everywhere on Rd , |ak(x)| ≤ Ck(1 + |x |2Bk ).

(3) Locally bounded total variation: ∀r > 0, u0|[−r ,r ]d , ak |[−r ,r ]d ∈ Ar .

Theorem 2 (PDO C0-semigroups on L2(Rd) computed with error control)

There exists a universal algorithm Γ using pointwise evaluations of
coefficients and u0, s.t.

‖Γ(A, u0, t, ε)− exp(tA)u0‖ ≤ ε, ∀ε > 0, (A, u0, t) ∈ ΩPDE



Case 3: Analytic semigroups
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︸ ︷︷ ︸
truncated Trapezoidal rule

, zj = γ(jh).
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Case 3: Analytic semigroups

Compute exp(tA) for t ∈ [t0, t1] where 0 < t0 ≤ t1, Λ = t1/t0.
Using [Weideman & Trefethen 2007], three error terms:

O
(
eσt1−2π(π

2
−α−δ)/h

)
+O

(
eσt1+µt1−2π

α
h

)
︸ ︷︷ ︸

discretisation error of the integral

+O
(
eσt1+µt0(1−sin(α) cosh(hN))

)
︸ ︷︷ ︸

truncation error of sum

.

Problem: numerical instability as N →∞

Idea: enforce γ(0)t1 − σt1 = µt1(1− sin(α)) ≤ β for stability as N →∞.

Compute each R(zj ,A)u0 to an accuracy η, optimal parameters now give

e−σt ‖exp(tA)u0 − uN(t)‖︸ ︷︷ ︸
error with intrinsic stability factor

= O(η) +O(exp(−cN/ log(N))).
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Numerical example showing stability

e−λt =
1

2πi

∫
γ

ezt

z − λ
dz , λ ≥ 0.

MN = max error for t ∈ [t0, t1].
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Example: complex perturbed fractional diffusion equation

Sp(A) ⊂ N (A) ∪N (A∗), N (A) := {〈Ax , x〉 : x ∈ D(A), ‖x‖ = 1}.

‖R(z ,A)‖ ≤ [dist(z ,N (A))]−1 ∀z /∈ N (A) ∪N (A∗).

Dι
tu = uxx + iu/(1 + x2), 0 < ι ≤ 1.
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Solutions (ε = 10−12) for various ι at t = 1 (blue), t = 5 (red) and t = 50
(yellow). The real parts are shown as solid lines, and the imaginary parts as
dashed lines (u0 shown in black).



Conclusion

Key points:

Semigroups can be computed with error control via a universal
algorithm.

Extends to PDEs (e.g. unbounded domains).

New stable quadrature rule for analytic semigroups.

Results carry over to time-fractional PDEs via Laplace transforms.

Future work:

Nonlinear cases (e.g. splitting).

Non-autonomous cases.

Efficient methods with error control for Schrödinger semigroups.

For further papers and numerical code:
http://www.damtp.cam.ac.uk/user/mjc249/home.html
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