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Data-driven dynamical systems

* Compact metric space (X, d) — the state space

| Dynamics (geometry)

e x € X —the state 19th century

cts F: X —» X —the dynamics: x,,.1 = F(x,)



Data-driven dynamical systems

* Compact metric space (X, d) — the state space

e x € X —the state

cts F: X —» X —the dynamics: x,,.1 = F(x,)

e Borel measure w on X

* Function space L* = L*(X, w) (elements g called “observables”)[”

» Koopman operator Kr: L? - L% |[Krg](x) = g(F(x))

NB: Pointwise definition of X needs F#w <« w — this will hold throughout.
NB: K bounded equivalent to dF#w/dw € L™ — this will hold throughout (can be dropped).

| Dynamics (geometry)
19th century

Analysis
20t century



Data-driven dynamical systems

* Compact metric space (X, d) — the state space

| Dynamics (geometry)

e x € X —the state 19th century

* Unknown cts F: X — X —the dynamics: x,,.1 = F(x,)

e Borel measure w on X

Analysis
e Function space L* = L*(X, w) (elements g called “observables”)[” 20t century

» Koopman operator Kr: L? - L?; [Krg](x) = g(F(x))

—_—

 Available snapshot data: {(x(m),y(m) — F(x(m))) m=1, ..., M}} Data

215t century

NB: Pointwise definition of X needs F#w <« w — this will hold throughout.
NB: K bounded equivalent to dF#w/dw € L™ — this will hold throughout (can be dropped).



Why you should care about Koopman

Fundamental in ergodic theory

Peter Walters

An Introduction
to Ergodic Theory

E&l Springer

E.g., key to ergodic theorems of
Birkhoff and von Neumann.

Trades: Nonlinear, finite-dimensional = Linear, infinite-dimensional.




Why you should care about Koopman

Fundamental in ergodic theory Can provide a diagonalization of a nonlinear system.
continuous

spectrum
eigenfunction of X

J /
Peter Walters g(x) — z C)[ 90/1 (x) + ¢Q g(x) d@
An Introduction eigenvalues 4;
to Ergodic Theory

g(xy) = [K"g](x0)

Y afa e o) + j 9.9 (o) dO

B spin eigenvalues A;
£ Springer

Spectral properties encode: geometric features,
E.g., key to ergodic theorems of invariant measures, transient behavior, long-time
Birkhoff and von Neumann. behavior, coherent structures, quasiperiodicity, etc.

Trades: Nonlinear, finite-dimensional = Linear, infinite-dimensional.




Why you should care about Koopman

New Papers on
“Koopman Operators”
6000

+ HUGE recent interest in 000 A
their spectral properties! - /‘/\

1000
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—number of papers

doubles every 5 yrs

Trades: Nonlinear, finite-dimensional = Linear, infinite-dimensional.




Perils of discretization: Warmup on £ (Z)

q - . E (:N XN

p—

* Spectrum is unit circle.  Spectrum is {0}.

e Spectrum is stable. e Spectrum is unstable.
* Continuous spectra. * Discrete spectra.

* Unitary evolution. * Nilpotent evolution.

Lots of Koopman operators are built up from operators like these!



Issue: Many practitioners view Koopman as a magic bullet, but standard
algorithms typically fail to converge! (Inf-dim spectral problems.)

Question: When can we reliably learn Koopman spectral properties from
system data, and when is it impossible?
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Extended Dynamic Mode Decomposition (EDMD)

Functionsy;: X - C,j=1,..,N ‘ {x(m),y(m) _ F(x(m))}M
m=1

e Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.

Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.

* Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Extended Dynamic Mode Decomposition (EDMD)

Functionsy;: X - C,j=1,..,N ‘ {x(m),y(m) _ F(x(m))}M
quadrature points m=1
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Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Extended Dynamic Mode Decomposition (EDMD)

Functionsy;: X - C,j=1,..,N ‘ {x(m),y(m) _ F(x(m))}M
m=1

(Wi ¥y) = Tpma Wit ) (x ) (@) D) P D) e ]
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e Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
* Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Extended Dynamic Mode Decomposition (EDMD)

Functionsy;: X - C,j=1,..,N ‘ {x(m),y(m) _ F(x(m))}M
m=1

(Wi ¥y) = Tpma Wit ) (x ) (@) D) P D) e ]
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e Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
* Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Example: EDMD does NOT converge

* Duffing oscillator: x =y, y = —ay + x(1 — x?), sampled At = 0.3.

* Gaussian radial basis functions, Monte Carlo integration (M = 50000)

Compute Sp,, local adaptive controlon e | 0

Spe(Kr) = {z € C:||(Kp —zD7HI™H < €}

[ conservative system

spurious

dissipative system

EDMD
evals

]

|

® EDMD evals

a=03| (b)

N N
r\.% ,\.b ’

’Q. Q. )\.

(c)

EDMD does not converge

| e EDMD (m.p. system)

‘ Proposed (m.p. system)
--------- EDMD (dissipative system)
|sesssens Proposed (dissipative system)

.
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.
.
.
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Residual DMD (ResDMD)

M

(Vo ¥j) =

Wi (x ™) 1 (x ™)) = FPX*W‘P);]
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C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Residual DMD (ResDMD)

M
m=1 ]k

M

(Kipro ;) = Z Wy ) i (y™) =

=1 [KPg] (x(m))

C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Residual DMD (ResDMD)

’ e e
What s theF missing  _ FX*WW&]
? L
- [ty
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 C,Towns: ctral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
e C., Aytor , . iy - aposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Residual DMD (ResDMD)
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C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Residual DMD (ResDMD)

(Vo ¥j) =
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Residuals: g = Z _18Yj, 1Kg—2gll* =(Kg— 219, Kg — Ag)

* (., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Residual DMD (ResDMD)

(Vo ¥j) =

Wi (x ™) 1 (x ™)) = [HJX*WW&]
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Residuals: g = Y, 8¢, 1Kg — Agll* = ¥ ;=1 8k Bj (K — Ay, Kp; — 1))

* (., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Bound projection errors!

M
(i) = ) W () 3 (x ) = W]
m=1 'k
M ] Infinite-
(Kpy, ;) = Z Wi (M) gpk(y(m)l = FPX*W‘IJg] - dlmen5|onal
‘n;/1=1 (K] (™) jk residual
(7(¢k»7€¢j> ~ z Wmlpj(y(m)) 1/Jk(y(m)) — [EPY*I{V‘PK] % *
m=1 jk

Residuals: g = Z _18Y;, I1Kg —gll* = hmg[ — AK" — 1K, + |A*G]g

* (., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Proof sketch

Theorem A: There exists deterministic algorithms {Fnz,nl} using
snapshots such that lim lim I3, , (F) = Sp(XKF) for all measure-

nz—)OO'nl—)OO

preserving systems.

* Residuals — Al,im I&im ywm(Z F) = [|(Kg —zD7H| 7L
N = size of basis, M = amount of data (quadrature).
* Measure-preserving = |[(Kr — zI) 7|7t = dist(z, Sp(KFr)).

* Local N-adaptive minimisation of yy »/(z, F) to approximate Sp(Xr).
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Proof sketch

Theorem A: There exists deterministic algorithms {Fnz,nl} using
snapshots such that lim lim I3, , (F) = Sp(XKF) for all measure-

nz—)OO'nl—)OO

preserving systems.

* Residuals — Al,im I&im ywm(Z F) = [|(Kg —zD7H| 7L
N = size of basis, M = amount of data (quadrature).
* Measure-preserving = |[(Kr — zI) 7|7t = dist(z, Sp(KFr)).

* Local N-adaptive minimisation of yy »/(z, F) to approximate Sp(Xr).

Double limit lim lim Can we do better?

N—->ocoM—>o00
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Theorem B (impossibility)

Implies K is unitary

— \

Class of systems: Qp = {F: D — D| F cts, measure preserving, invertible}.

Data an algorithm can use: T = {(x, y,)|x € D, ||F(x) — y,,,|| < 27™}.

Theorem B: There does not exist any sequence of deterministic algorithms {I’,, }
using 7 such that im I, (F) = Sp(Kr) VF € Qp.
Nn—>00

NB: Similarly, no random algorithms converging with probability > 1/2.

Double limit is necessary!




Proof idea: Constructing an adversary

F,: rotation by , Sp(?CFO) = {1+1}

Phase transition lemma: Let X = {xq,...,xx5},Y = {y4, ..., yn} be distinct
points in annulus A={x€D|0 <R <||x|| <r <1} with XnY = 0.

There exists a measure-preserving homeomorphism H such that H acts as
the identity on D\A and H(y;) = Fo(H(x;)),j =1, ..., N.

Conjugacy of data (x; — y;) with F

Idea: Use lemma to trick any algorithm into oscillating between spectra.

25

* Brown and Halperin. “On certain area-preserving maps.” Annals of Mathematics, 1935.



Proof idea: Constructing an adversary
Suppose (for contradiction) {I’,,} uses T, 71i_r)1(}oI‘,,L(F) = Sp(Kr) VF € Qp.

Build an adversarial F...

26

Tp = {6 ym) | IIF(X) — ymll < 27™}
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Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

Tp = {6 ym) | IIF(X) — ymll < 27™}
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Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

lim [, (Fy) = Sp(Kx) = Iny st dist(i, I, (Fy)) < 1.

n—00

BUT [}, uses finite amount of info to output I3, (E)
Let X, Y correspond to these snapshots.

Tp = {6 ym) | IIF(X) — ymll < 27™}
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Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

lim I (Fl) = Sp(Kg;) = 3Any s.t. dist(i, [, (Fl)) < 1.

n—00

BUT [}, uses finite amount of info to output I3, (Fl).
Let X, Y correspond to these snapshots.

Rotation by i

i Mm\\\\\

Lemma: F; = H;! o Fy o H; on annulus A;.
Consistent data = I, (F;) = [}, (F7), dist(i, [, (F)) <1
BUT Sp(Kp,) = Sp(Kf,) = {£1} Sp(X) = {+1}
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, F;, = Hi* o Fy o Hy, on Ay. F = lim F,,
Consistent data = T, (F) = I, (Fy), dist(i, Iy (F)) < 1, nj, = o0

BUT Sp(KFr) = Sp(Kp,) = {£1}

CANNOT CONVERGE

k— o0

A

~

O

Cascade of disks
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, F;, = Hi* o Fy o Hy, on Ay. F = lim F,,

— k— oo
Consistent data = I3, (F) = I3, (F), dist(i, I}, (F)) < 1, ny » o
BUT Sp(KFr) = Sp(Xp,) = {£1} CANNOT CONVERGE Py
1
A,
s

Sp(K) = {z:1z| = 1} Sp(¥) = {1} Cascade of disks
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Successive limits seems unavoidable!?!1?

Def: {Fnk,---,nl} with lim ... lim [},

nk—)OO ’nl—)OO

L..m, convergent a tower of algorithms.

—~__

First appeared in dynamical systems theory: algorithms
“Yes for cubic, no for higher
degree. Quartic and quintic can
rational map for be solved using towers of
polynomial zero algorithms. Sextic cannot be
Steve Smale  finding?” CuisMcMullen  solved in any number of limits.’

“Is there any purely
iterative convergent

)

Smale, “On the efficiency of algorithms of analysis.” Bull. Am. Math. Soc., 1985.

McMullen, “Families of rational maps and iterative root-finding algorithms.” Annals Math., 1987.
McMullen, “Braiding of the attractor and the failure of iterative algorithms.” Invent. Math. 1988.
Doyle, McMullen, “Solving the quintic by iteration.” Acta Math., 1989.
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.

Theorem A: SCI < 2
combine SCl =2

Theorem B: SCI > 1

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.

Theorem A: SCI < 2
combine SCl =2

Theorem B: SCI > 1

So far literature has only
proven upper bounds,
that need not be sharp...

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.



Koopman literature has tonnes of upper bounds!

SCI: Fewest number of limits needed to solve a computational problem.

Algorithm

Comments/Assumptions

Spectral Problem’s Corresponding SCI Upper Bound

KMD | Spectrum| Spectral Measure (if m.p.) Spectral Type (if m.p.)
Extended DMD[47] | . general L” spaces | SCIL < 2" IN/C IN/C 0z
: o < o < g < o varies, see [84]
Residual DMD4 general L7spaces  SCL=2mSAl=amsel=2n e.g., a.c. density: SCI < 2*
) : SCI < 2% (general)
Measure-preserving EDMDI45] ) - mp.systems SAI=1INVE lscr < 1 delay-embedding)™*
HankelDMD([85] | . m.p. ergodic systems | SCT < 2% IN/C NG A
Periodic approximations [86] | m.p. +wac | SCI<2 IN/C ~ |SCI<2(see[87]) | a.c. density: SCI <3
Christoffel-Darboux kernel [40] | m.p. ergodicsystems ~ |SCI <3 |n/a | SCTL <2 @ i e.g., a.c. density: SCI < 2
cts.-time, samples V F'
< <
Generator EDMDISS] = (otherwise additional limity |71 =2 [N/ |SCL=2(seel®) - nja
Compactification [42] | cts.-time, m.p. ergodic systems|SCI < 4 |[N/C ~ |SCI <4 ~ ~  nfa
Resolvent compactification [43] |cts.-time, m.p. ergodic systems|SCI <5 IN/C ~ |SCI<5 ~~ ~~ ~ ~ nfa
Diffusion maps [90] (see also [10])|cts.-time, m.p. ergodic systems|SCI < 3 [n/a n/a r
] ] ( Are these sharp\?]

Previous techniques prove upper bounds on SCI.

“N/C”: method need not converge. “n/a”: algorithm not applicable to problem.

Also in Ulam’s method for Markov processes, SRB measure computation, control,...
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.
* A;: One limit, full error control. E.g., d(I},,(F), Sp(Kr)) < 27",

* A, .1:SCl < m.

* Xt SCI < m, final limit from below.
E.g.,X;: sup dist(z, Sp(Kr)) <27
zel', (F)
* [1,,,: SCI < m, final limit from above.
E.g.,Il{: sup dist(z, Fn(F)) < 2™
z€Sp(KF)

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.
* A;: One limit, full error control. E.g., d(I},,(F), Sp(Kr)) < 27",

* A, .1:SCl < m.

* Xt SCI < m, final limit from below.
E.g., 2y sup dist(z,Sp(¥Kp)) <27 L | oification

zel', (F)
* [1,,,: SC»P< m, final limit from above.
E.g.,Il;: sup dist(z, Fn(IM_
trust output z€Sp(KF) covers spectrum

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.



Theorems A+ B

SCI hierarchy of computing the spectrum )
Key ’l 1
| ]1scl=1[_|noexampleclass o 3
[]SCI=2 =»strictinclusion | . Qy: General systems |
\:I SCI = 3 - “ L H
? .-""’l AS k ....
3 ..... A
= 2k ; 4 I
o i Measure- [ %e i T 0% Uniform mod. of oty
C = | preservingsystems . : .
R ——— :
8 0:0
6 ‘,oﬂ Az T’ .....
E “““““ y LI
Zl k ...... D e ? Hl
. Q% N Q): Measure- A'
=« preserving and uniform 1
5 mod. of cty. :

Classification for Koopman | _ 3 imits needed

in general!

Different classes:

Qy ={F: X - X | F cts}

Q¥ ={F:X - X | F cts,m.p.}
O ={F:X - X | F mod.cty.a}
[dx (F(x), F(¥)) < a(dx(x,y))]

Optimal algorithms and
classifications of
dynamical systems.
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Practical Gains: Arctic Sea Ice Forecasting

Sea Ice Extent
European Organisation for the n ﬁ n ﬂ ” N
Exploitation of Meteorological Satellites’ « ] :
(EUMETSAT) Ocean and Sea Ice Satellite E 1 HM H M u M
Application Facilities (OSI-SAF) data M A
record, comprising retrieval algorithms |

0SI-450 (1979-2015) and OSI-430-b 06| “ “
(2016 onwards).

7
1.8 210

Monthly average from satellite passive .8
microwave sensors. Data from the ﬂ

1

1.4

1:2'H

0.4 - ! ! L 1 ! ! ! 4
1980 1985 1990 1995 2000 2005 2010 2015 2020

Motivation: Arctic amplification, polar bears, local communities, effect
on extreme weather in Northern hemisphere,...

Problems:
* Very hard to predict more than two months in advance.
* Which geographical regions are significant?
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Figure 4: Forecast error for entire sea ice concentration. The
relative mean squared error of forecasts over five years. The solid lines
show the moving 12-month mean. In each case, the model is built using
the data from the years 2005-2015, and then tested on 2016-2020. The
proposed method consistently outperforms DMD.
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Figure 5: Comparison with machine learning and statistical
prediction benchmarks. Mean binary accuracy over the test years
2012-2020, shown for IceNet, SEAS5, and our proposed method that
avoids spurious Koopman eigenvalues. Our proposed method achieves
better accuracy for lead times greater than one month, with very little
increase of errors at larger lead times.

Andersson et al, “Seasonal Arctic sea ice forecasting with probabilistic deep learning.” Nature Communications, 2021.
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Full spectral measure
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Classification for
Koopman Il

Example: Theorem C
For smooth, measure-preservin
systems on a torus, learning
eigenfunctions or even determining
if there are any has SCI = 2 (even if
we can sample derivatives).

Finding finite-dimensional
embeddings in which the dynamics
are linear (e.g., autoencoders, latent
space representation) is very hard!
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Increasing difficulty

SCI hierarchy of computing spectral types
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General tool in data-driven dynamical systems/PDEs

Adversarial arguments generalize to:

e “Learning the F”. E.g., SINDy (X541 = F(x,))
 Solving PDEs with neural networks (PINNs)

 Learning PDEs from forcing-solution pairs (e.g., hyperbolic)

Brunton, Proctor, Kutz, “Discovering governing equations from data by sparse identification of nonlinear dynamical systems,” Proc. Natl.
Acad. Sci. USA, 2016.

Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang, “Physics-informed machine learning,” Nature Reviews Physics, 2021.
Boulle, Halikias, Townsend, “Elliptic PDE learning is provably data-efficient,” Proc. Natl. Acad. Sci. USA, 2023.



Where does this leave us?

* Many problems NECESSARILY require multiple limits.
* New tools for lower bounds (impossibility results) for Koopman learning.

 Combine with upper bounds (algorithms)
= classify difficulty of problems + prove optimality of algorithms.

* Ergodic theory + approximation theory + computational analysis
= started to map out this terrain.

46



Where does this leave us?

* Many problems NECESSARILY require multiple limits.
* New tools for lower bounds (impossibility results) for Koopman learning.

 Combine with upper bounds (algorithms)
= classify difficulty of problems + prove optimality of algorithms.

* Ergodic theory + approximation theory + computational analysis
= started to map out this terrain.

* Future work:
e Other function spaces.
* Partial observations, continuous-time.
e Control and uses of Koopman.
e Other data-driven dynamical system methods.
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Where does this leave us?

* Many problems NECESSARILY require multiple limits.
* New tools for lower bounds (impossibility results) for Koopman learning.

 Combine with upper bounds (algorithms)
= classify difficulty of problems + prove optimality of algorithms.

* Ergodic theory + approximation theory + computational analysis
= started to map out this terrain.

* Future work:
e Other function spaces.
* Partial observations, continuous-time.
e Control and uses of Koopman.
e Other data-driven dynamical system methods.

Where does your problem/method fit into the SCI hierarchy? Is it optimal?
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