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“To classify is to bring order into chaos.” - George Polya




Cast of great collaborators!

Alex Townsend Igor Mezic Alexei Stepanenko Nicolas Boullé Gustav Conradie
(Cornell) (UC Santa Barbara) (Cam. -> Industry) (Imperial) (PhD student at
Cambridge)

* C., Townsend. "Rigorous data-driven computation of spectral properties of Koopman operators
for dynamical systems.” Communications on Pure and Applied Mathematics, 2024.

e C., Mezi¢, Stepanenko, “Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy
Data-Driven Learning.” (under revision at Nature Communications).

* Boullé, C., Conradie, “Convergent Methods for Koopman Operators on Reproducing Kernel
Hilbert Spaces.” (SpecRKHS - hot off the press: https://arxiv.org/abs/2506.15782)



What is a Koopman operator?

» X —the state space Henri Poincaré

(Sorbonne)

e X’ © x —the state

cts F: X — X —the dynamics: x,,,1 = F(xy,)

* Poincaré, “Les méthodes nouvelles de la mécanique céleste,” Vol. 2. Gauthier-Villars et fils, imprimeurs-libraires, 1893.



What is a Koopman operator?

Bernard Koopman
(Columbia)

X —the state space
e X 3 x —the state

cts F: X — X —the dynamics: x,,,1 = F(xy,)

* Functions g: X’ — C a.k.a “observables”
John von Neumann
» Koopman operator Kz: [Krg](x) = g(F(x)) |LINEAR! (1AS)

/

Observe g one time step forward

Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.



What is a Koopman operator?

X —the state space
e X 3 x —the state

* Unknown cts F: X — X —the dynamics: x,,.1 = F(x;;)

* Functions g: X — C a.k.a “observables”

» Koopman operator Kp: [Krg](x) = g(F(x))

* Available snapshot data: {(x(m),y(m) = F(x(m))) m=1,..., M}

Can we compute spectral properties from trajectory data?



Why?

If | K g — Ag||l < €, then g(x,,) = [K"g](xy) = A"g(xy) + O(ne)

Trades: Nonlinear, finite-dimensional = Linear, infinite-dimensional.




Coherent features! Lorenz attractor

| Trades: Nonlinear, finite-dimensional = Linear, infinite-dimensional. |




Coherent features!
Spap,s(:}c) — {Z € (C: agl “g” — 1) ”ng o Zg” S 8}

| Trades: Nonlinear, finite-dimensional = Linear, infinite-dimensional. |




Koopman Mode Decomposition

Verified Eigenfunctions
* Find (g;, ;) with H?ng — jng <¢€
* Expand state: coefficients, called
“Koopman modes”
X = 2 ¢jg;(x)
J

* Forecasts:

X, = 2 Ai'cigj(x) + O(ne)
J

Intuition: A nonlinear separation of variables through a linear operator! |
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New papers on computing
Koopman operator spectra

Koopmania*: A revolution in the big data era?

/
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Very little on convergence guarantees. WHY?

Koopman operators have been largely used in
applied domains + distinct from NLA.
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Infinite-dimensional spec. comp. notoriously hard ...

\

| Only recently have the tools been developed |




GOAL: Compute spectral properties
and figure out how hard this is.
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The Standard (naive?) Pipeline

o] + [piscRenze
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The Standard (naive?) Pipeline

o] + [piscRenze

LQ_% FINITE-DIMENSIONAL
NUMERICAL LINEAR ALGEBRA
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The Standard (naive?) Pipeline

o] + [piscRenze

&% FINITE-DIMENSIONAL
NUMERICAL LINEAR ALGEBRA

EIGENVALUES etc.
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The Standard (naive?) Pipeline

o] + [piscRenze

FINITE-DIME
NUMERICAL LINE

Works great if you have a self-

adjoint operator that is compact ~
or has compact resolvent! EIGENVALUES etc.

Eigenvalue Problems

]J. Babuska*

Institute for Physical Science and Technology
and Department of Mathematics
University of Maryiand

J. Osborn**

artinlly sup
DMS-84-10324.

rG. ions
. EBevier Science Publishers BV. (Nosth-Hollend)




The Standard (naive?) Pipeline

o] + [piscRenze

LQ_% FINITE-DIMENSIONAL
NUMERICAL LINEAR ALGEBRA

1(( D

For Koopman?
%? EIGENVALUES etc.
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Perils of discretization: Warmup on £ (Z)

q - . E (:N XN

p—

* Spectrum is unit circle.  Spectrum is {0}.

e Spectrum is stable. e Spectrum is unstable.
* Continuous spectra. * Discrete spectra.

* Unitary evolution. * Nilpotent evolution.

Lots of Koopman operators are built up from operators like these!

17



Explicit example: Matrix approximation of K (EDMD)

Observables;: X - C,j=1,..,N ‘ {x(m),y(m) _ F(x(m))}nM1—1
quadrature points
ot = Sy o[ O Y (e e
Py () e Py () wi) \(x™) e Py (D)

quadrature weights ¥x w Px DL
0ctty) = S G ) |GG (. HO®
[W) P (x M) I/JN(x(M))J ' Wm/ P (y™) I/JN(Y(M))J
! Yy w Py 1P

Galerkin

’ —1yp * NXN
Approximation K — (LPX WqJX) qJX WLPY € C

Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



EDMD doesn’t converge!

* Duffing oscillator: x =y, y = —ay + x(1 — x?), sampled At = 0.3.
* Gaussian radial basis functions, Monte Carlo integration (M = 50000)

conservative system dissipative system

® EDMD evals

N N
S LT T TR

Re(A)

spurious o =03 (b)ﬂ
el )| evals A |

(c) EDMD does not converge

Can we fix this?

10° o 10*
Matrix size
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The fix: Residual DMD (ResDMD)

M

(Vo ¥j) =

Wi (x ™) 1 (x ™)) = FPX*W‘P);]
G

M
(Kipro ) = ) Wity (4 () = W)
m K1

=1 (1] () jk

C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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The fix: Residual DMD (ResDMD)

M
m=1 ]k

M

(3 y) =~ Z Wt ) (™) =

=1 [KPg] (x(m))

C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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The fix: Residual DMD (ResDMD)

(Vo ¥j) =

Wit (x ™) 1 (x ™) = [gj X ij&]
G jk

(K, ¥j) =

M= iDMs

Wi () P () = [gjx*wwg]
1 [%llik]v(x(m)) Ky

Wi (y(m) ‘Pk(y(m)) = FIJY*WLPKI
1 K> jk

jk

(Khw, Kpj) =

M=

3
I

C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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The fix: Residual DMD (ResDMD)

M
(i) = ) W () 3 (x ) = W]
m=1 ; jk
M
(Ko ) = ) winth; ) () = W)
1 (K] (x (™) jk

M=

(Khw, Kpj) =

Wml/) (y (m)) 1/Jk()’ (m)) [LIJY WLIJY]
1

3
I

jk

Residuals: g = Z _18Yj, 1Kg—2gll* =(Kg— 219, Kg — Ag)

* (., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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The fix: Residual DMD (ResDMD)

M
(i) = ) W () 3 (x ) = W]
m=1 ; jk
M
(Ko ) = ) winth; ) () = W)
1 (K] (x (™) jk

M=

(Khw, Kpj) =

Wml/) (y (m)) 1/Jk()’ (m)) [LIJY WLIJY]
1

3
I

jk

Residuals: g = Y, 8,9, 1Kg — Agll* = I} ;- 8,8 (Ky,

— My, Kp; — A )

* (., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.

* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
e Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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The fix: Residual DMD (ResDMD)

M
(i) = ) W () 3 (x ) = W]

m=1 'k

M : Infinite-
(K, ;) = Z Wi (x M) 1y (y) = FPX*WLIJZ] _ dimensional
m=1 Hor] () AN rror bound!
M y
(HKr, Kp;) ~ z Wi (y ™)y (y™) = [}PY*I(VLPK] % ' %
m=1

jk

Residuals: g = Z _18Y;, I1Kg —gll* = hmg[ — AK" — 1K, + |A*G]g

* (., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

ResDMD does converge!
* Duffing oscillator: x = y, y = —ay + x(1 — x4), sampled At = 0.3.

e Gaussian radial basis functions, Monte Carlo integration (M = 50000)

Compute Sp,p, £(K), local adaptive controlon e | 0

|
[ conservative system dissipative system
1.5 ; P
(a) ¢ =0 | | Spurious a =03 (b)
1] / - N EDMD | — \
0.5 XP \e"als, / Y B
o, 00.0‘ y (
S o | (iR }}) (& )
_— \ ':.0; .. ' |
‘05 [ \ ®a0 :o" /- \ )
11 \ y»¥  — ccontour N A
~— ® EDMD evals
15! = = T T A : : : 3 0.01
RO e S R I AR i

Re(A)

(c)

EDMD does not converge

| == EDMD (m.p. system)

--------- EDMD (dissipative system)
««+« Proposed (dissipative system)

Proposed (m.p. system)
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10°

Matrix size

10%
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ECG Rossler Lorenz Flow Past Cylinder

Sea Surface Height

System Time Series

Vorticity Field

Pseudospectra and
EDMD Eigenvalues

15
1
05
0

Im(A)

Re(A)

Convergence Test

10°
~——EDMD
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Can maths help guide the way?

Consider space of observables with finite energy: L? (X, w)

Theorem: There exists algorithms I'y 5, using snapshots such that
lim lim l_‘N,M(F) — Spap,s(:KF)

N—>ocoM —> o0

- S
for all systems. %\}

N =ssize of basis, M = amount of data (quadrature)

Spap,s(jc) — {Z € (C: Hg, “g” — 11 ”ng R Zg” S 8}

28

* (., Mezic, Stepanenko, “Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning,” preprint, 2025.



Can maths help guide the way?

Consider space of observables with finite energy: L? (X, w)

Theorem: There exists algorithms I'y 5, using snapshots such that
lim lim l_‘N,M(F) — Spap,s(jCF)

N—>ocoM —> o0

for all systems.

N = size of basis, M = amount of data (quadrature)

Double limit lim lim Can we do better?

N—-0ocoM-—>o00

29

* (., Mezic, Stepanenko, “Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning,” preprint, 2025.
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Adversaries: Double limit is necessary!

Implies X is unitary

—

Class of systems: Qp = {F: D — D| F cts, measure preserving, invertible}.

Data an algorithm can use: T = {(x, y,)|x € D, ||F(x) — y,,,|| < 27™}.

Theorem: There does not exist any sequence of deterministic algorithms
{[1} using T such that lim I3, (F) = Sp,p, - (Kfp) VF € Qp.
Nn—o00

NB:

* n can index anything.

* Universal - any type of algorithm or computational model.

* Similarly, no random algorithms converging with probability > 1/2.

* (., Mezic, Stepanenko, “Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning,” preprint, 2025.



Proof idea: Constructing an adversary

F,: rotation by , Sp(?CFO) = {1+1}

Phase transition lemma: Let X = {xq,...,xy5},Y = {y4, ..., Yy} be distinct
points in annulus A={x€e€D|I0<R<|lx|| <r<1} with XNnY =0.

There exists a measure-preserving homeomorphism H such that H acts as
the identity on D\A and H(y;) = Fo(H(x;)),j =1, ..., N.

Conjugacy of data (x; — y;) with F

Idea: Use lemma to trick any algorithm into oscillating between spectra.

31

* Brown and Halperin. “On certain area-preserving maps.” Annals of Mathematics, 1935.



Proof idea: Constructing an adversary
Suppose (for contradiction) {I’,,} uses T, 71i_r)1(}oI‘,,L(F) = Sp(Kr) VF € Qp.

Build an adversarial F...

32

Tp = {6 ym) | IIF(X) — ymll < 27™}
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Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

Tp = {6 ym) | IIF(X) — ymll < 27™}
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Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

lim [, (Fy) = Sp(Kx) = Iny st dist(i, I, (Fy)) < 1.

n—00

BUT [}, uses finite amount of info to output I3, (E)
Let X, Y correspond to these snapshots.

Tp = {6 ym) | IIF(X) — ymll < 27™}
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Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

lim I (Fl) = Sp(Kg;) = 3Any s.t. dist(i, [, (Fl)) < 1.

n—00

BUT [}, uses finite amount of info to output I3, (Fl).
Let X, Y correspond to these snapshots.

Rotation by i

i Mm\\\\\

Lemma: F; = H;! o Fy o H; on annulus A;.
Consistent data = I, (F;) = [}, (F7), dist(i, [, (F)) <1
BUT Sp(Kp,) = Sp(Kf,) = {£1} Sp(X) = {+1}
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, F;, = Hi* o Fy o Hy, on Ay. F = lim F,,
Consistent data = T, (F) = I, (Fy), dist(i, Iy (F)) < 1, nj, = o0

BUT Sp(KFr) = Sp(Kp,) = {£1}

CANNOT CONVERGE

k— o0

A

~

O

Cascade of disks
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, F;, = Hi* o Fy o Hy, on Ay. F = lim F,,

— k— oo
Consistent data = I3, (F) = I3, (F), dist(i, I}, (F)) < 1, ny » o
BUT Sp(KFr) = Sp(Xp,) = {£1} CANNOT CONVERGE Py
1
A,
s

Sp(K) = {z:1z| = 1} Sp(¥) = {1} Cascade of disks
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.
* A;: One limit, full error control. E.g., d(I},,(F),Sp(¥Xr)) < 27™.
* A iq:SCl < m.

* Xm: SCI < m, final limit from below.
E.g.,X;: sup dist(z, Sp(Kr)) <27
z€l'y (F)
* [1,,,: SCI < m, final limit from above.

E.g., Il;: sup dist(z, Fn(F)) <2 ™
z€Sp(KF)

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCl)

SCI: Fewest number of limits needed to solve a computational problem.
* A;: One limit, full error control. E.g., d(I},,(F),Sp(¥Xr)) < 27™.
* A iq:SCl < m.

* Xm: SCI < m, final limit from below.

E.g.,2y: sup dist(z, Sp(Ky)) <277
z€l'y (F)

, final limit from above.
E.g,M;: sup dist(z, I, (F)) <
trust output eSp(Kr)
° ) ! \ covers spectrum

= verification

Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.



Lots of SCl upper bounds lurking in Koopman literature!

SCI: Fewest number of limits needed to solve a computational problem.

Algorithm

Comments/Assumptions

Spectral Problem’s Corresponding SCI Upper Bound

KMD | Spectrum| Spectral Measure (if m.p.) Spectral Type (if m.p.)
Extended DMD[47] o general L” spaces | SCLS 2TIN/C NS e B
: o < o < g < o varies, see [84]
Resdwal DMDBA L general [ spaces  pUlsrpelsspeiss ] e.g,ac density: SCI < 2
) : SCI < 2% (general)
Measure preserving EDMDIA5] | mpsystems SIS IN/C ey <1 (ddlay-embedding)
Hankel DMD[85] .l m.p. ergodicsystems  ISOL < 27IN/C INJC e B
Periodic approximations [86] | L. mp: £ LAC ] SOLS 2 INC LSS 2(ee 87D ] ac. density: SCI=3
Christoffel-Darboux kernel [40] 1....... m.p: ergodic systems LSS 3 A PELE 2 ] e:gyac density: SCI < 2.
cts.-time, samples V F'
< <
Generator EDMDISSI L (otherwise additional limit) |1 =2 [N/€ SEL= 2(secl® nsa
Compactification [42] | cts.-time, m.p. ergodic systems|SCI <4 |IN/C ~ |SCI<4 ~ ~ ~  ~ nfa
Resolvent compactification [43] |cts-time, m.p. ergodic systems|SCI <5 IN/C ~ |sCI<5 ~  In/a
Diffusion maps [90] (see also [10])|cts.-time, m.p. ergodic systems|SCI < 3 [n/a n/a r
( Are these sharp\?]

Previous techniques prove upper bounds on SCI.
“N/C”: method need not converge. “n/a”: algorithm not applicable to problem.

Also in Ulam’s method for Markov processes, SRB measure computation, control,...




Lower + upper bounds

Classification for Koopman

3 limits needed

4 SCI hierarchy of computing the spectrum ) in general!
Key
__1SCI=1 [Jnoexampleclass ’I I | Different classes:
[]SCI=2 =»strictinclusion | . Qy:General systems |
[1sCi=3 — ' 1 Qy ={F: X > X | F cts}
>
= "l i?’ |" ......... Q¥ ={F:X - X | F cts,m.p.}
O a8 A oy,
% 2, |.. .,,I I, O ={F: X - X | F mod.cty.a}
.Q.m: M re- 0'0 E 0'.. a: i . L i
a0 presﬂérvmegassy‘;tims IR {1 : Uniform mod. of cty. | [dy(F (x), F (y)) < a(d x (x, y))]
%
5 B e, . .
L= ——= 3 A —= - Optimal algorithms and
..... : D . g .
e L - classifications of
E pregerviné.and uniform A1 dyna mical SystemS.
e mOCOIEY. .. Finite state space

41

C., Mezi¢, Stepanenko, “Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning,” preprint, 2025.



Peter Lax:

“The trick of the successful mathematician is to turn the question
being asked into one he knows how to answer.”

Johann Wolfgang von Goethe:

“Mathematicians are like Frenchmen: whatever you say to them
they translate into their own language and forthwith it is
something entirely different.”

Let’s perform this trick by changing the space...
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Reproducing kernel Hilbert space (RKHS)

Hilbert space of functions on X s.t. g » g(x) bounded Vx € X.
Generated by a kernel R: X X X = C
g(x) = (g, &), Kx,y) = (ﬁx» S%y> = K,(y)

> . o |
Advantages over L° (X, w): An lnbrodiceion
to the Th?ory of

* Forecasts: space bounds = pointwise bounds. heproducing Remel

Hilbert Spaces
* High-dimensional systems practical through kernel trick.

* Fast methods for evaluating K.

» Different & = different K| Can be tailored to application.
(This is where the community is currently heading.)
(of sufficient regularity)

* Leads to fundamental “possibility” gains...
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SpecRKHS: Avoiding large data limit M — oo

Look at “Left eigenpairs” through X*: | K"K, = KF(y

No quadrature needed:
Gir = (R,00, R,00) = K(x1,xV))
A = (K"K 00,8 () = <ﬁy<k>,ﬁxu)> = &(y,x))

R = (K"K, 00, K*K () = <ﬁy(k);ﬁy<j)> = K(y"),y))
M
g = gnf. m, IK*g—Aglli =g"(R—24"— 24+ G)g
1

m

e Boullé, C., Conradie, “Convergent Methods for Koopman Operators on Reproducing Kernel Hilbert Spaces,” preprint, 2025.



SpecRKHS: Example algorithm

I%g = Agll3; _ g'[R— 24" — 1A +G]g

res*(1, g)% =
) 2 *
9|5 g8°Gg
1. Compute G,A,R € CN*N (N = M)
2. For z; in grid, compute 7, = min res”(zy, 8), corresponding g (gen. SVD).
9= -1 gmK (m),
3. Output: {z;: T < €}, {gx: Tx < €} (e-pseudoeigenfunctions).
First convergent method for general X |~
Theorem: 3 2

* Error control: {z,: 7 < &} € Sp,p, (K™)
* Convergence: Converges locally uniformly to Sp,, (K*) (as N — )

SPape(K™) ={z € C:3g,|lgllsr = L [K*g — zgll < €}

e Boullé, C., Conradie, “Convergent Methods for Koopman Operators on Reproducing Kernel Hilbert Spaces,” preprint, 2025.




Practical gains: Sea ice forecasting

Motivation: Arctic amplification, polar bears, local communities, effect
on extreme weather in Northern hemisphere,...

Problems: 1. Very hard to locate geographical significant regions.
2. Very hard to predict more than two months in advance.
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Avoid spurious evals = State-of-the-art forecasts
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Lead Time (Months) Lead Time (Months)

Mean binary accuracy over test years 2012-2020. (IceNet:
Andersson et al, “Seasonal Arctic sea ice forecasting with
probabilistic deep learning.” Nature Communications, 2021.)

Relative mean squared error over 2016-2020. Model built
from 2005-2015 data. (Solid lines moving 12-month mean.)

C., Mezi¢, Stepanenko, “Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning,” preprint, 2025.



Optimal algorithms and classifications of systems
s increasing difficulty m—)

Error control 1 limit 2 limits 3 limits
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Optimal algorithms and classifications of systems

_— s increasing difficulty m—)
Error control 1 limit 2 limits 3 limits
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Optimal algorithms and classifications of systems

i-o.y s increasing difficulty m—)
Error control 1 limit 2 limits 3 limits
A '_A_' A '_l_‘
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Optimal algorithms and classifications of systems

ﬂy d increasing difficulty _
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Pointers

1. Data-driven spectral problems for Koopman operators are hugely popular.
BUT: Standard truncation methods often fail.

2. General method with convergence for spectral properties
(spectra, pseudospectra, spectral measures etc.) of K. operators!
E.qg., Verification of approximate eigenfunctions leads to practical gains.

3. SCI hierarchy classifies computational problems:
Lower bounds through method of adversarial dynamics.

Upper bounds = new “inf.-dim.” algorithms. Rigorous, optimal, practical.
— We now have a near complete picture for Koopman on L?(X, w) and RKHS!

NB: Similar picture has emerged for spectral measures, dealing with continuous
spectra (versus eigenvalues) and spectral type (different flavors of dynamics).
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10.

Some Open Problems

To capture nonlinearity, infinite dimensions are cruciall Can we develop infinite-dimensional NLA to
tackle these problems? Solve-then-discretize!

Other spaces of observables? When is this useful?

Data perturbation analysis almost completely missing for DMD type algorithms.

Stronger links between dynamical systems classes and complexity?

What about partial measurements? l.e., access to h(x) or sketches?

What are classifications for control in this domain? (Linear control = convex optimization problems.)
Can lower bounds be proven for PDE learning? E.g., hyperbolic PDEs.

Links between methods for continuous spectra (not in this talk!), quadrature, and iterative methods.
Continuous-time systems.

Links between Markov chains and LLMs - can ChatGPT be studied as a big Koopman operator?

To get started in Koopman (from a data-driven NA perspective):

* C. "The multiverse of dynamic mode decomposition algorithms.”" Handbook of Numerical Analysis, 2024.

e Outsoon: C., Drmac, Horning, “An Introductory Guide to Computations with Koopman Operators”
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