

Spectral Learning for Dynamical Systems Via Infinite-Dimensional Numerical Linear Algebra

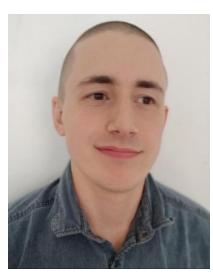
Matthew Colbrook 9th Sep 2025

"To classify is to bring order into chaos." - George Pólya

Cast of great collaborators!

Alex Townsend (Cornell)

Igor Mezić (UC Santa Barbara)



Alexei Stepanenko (Cam. -> Industry)

Nicolas Boullé (Imperial)

Gustav Conradie (PhD student at Cambridge)

- C., Townsend. "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems." Communications on Pure and Applied Mathematics, 2024.
- C., Mezić, Stepanenko, "Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning." (under revision at Nature Communications).
- Boullé, C., Conradie, "Convergent Methods for Koopman Operators on Reproducing Kernel Hilbert Spaces." (SpecRKHS hot off the press: https://arxiv.org/abs/2506.15782)

What is a Koopman operator?

- X the state space
- $X \ni x$ the state

cts $F: \mathcal{X} \to \mathcal{X}$ – the dynamics: $x_{n+1} = F(x_n)$

Henri Poincaré (Sorbonne)

What is a Koopman operator?

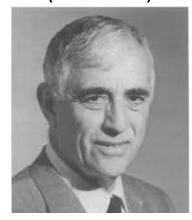
- X the state space
- $X \ni x$ the state

cts
$$F: \mathcal{X} \to \mathcal{X}$$
 – the dynamics: $x_{n+1} = F(x_n)$

- Functions $g: \mathcal{X} \to \mathbb{C}$ a.k.a "observables"
- Koopman operator \mathcal{K}_F : $[\mathcal{K}_F g](x) = g(F(x))$

Observe *g* one time step forward

Bernard Koopman (Columbia)



John von Neumann (IAS)

- Koopman, "Hamiltonian systems and transformation in Hilbert space," Proc. Natl. Acad. Sci. USA, 1931.
- Koopman, v. Neumann, "Dynamical systems of continuous spectra," Proc. Natl. Acad. Sci. USA, 1932.

What is a Koopman operator?

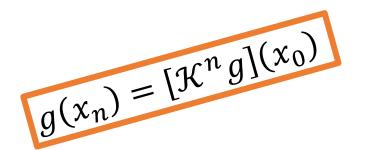
- X the state space
- $X \ni x$ the state
- <u>Unknown</u> cts $F: \mathcal{X} \to \mathcal{X}$ the dynamics: $x_{n+1} = F(x_n)$
- Functions $g: \mathcal{X} \to \mathbb{C}$ a.k.a "observables"
- Koopman operator \mathcal{K}_F : $[\mathcal{K}_F g](x) = g(F(x))$ LINEAR!
- <u>Available</u> snapshot data: $\{(x^{(m)}, y^{(m)} = F(x^{(m)})) : m = 1, ..., M\}$

Can we compute spectral properties from trajectory data?

$$g(x_n) = [\mathcal{K}^n g](x_0)$$

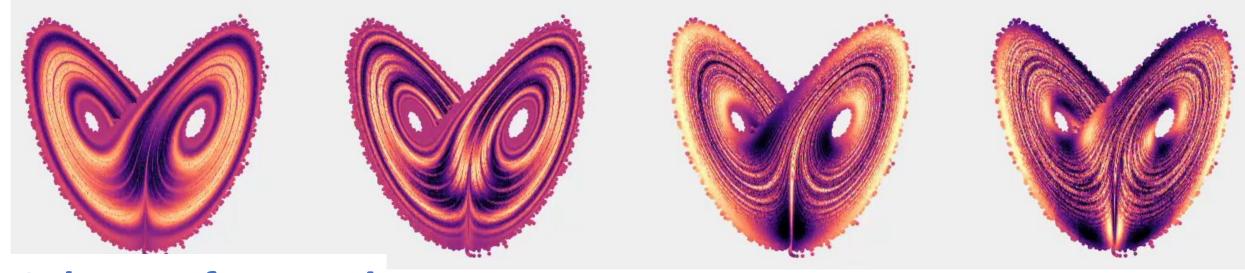
If
$$\|\mathcal{K}g - \lambda g\| \le \varepsilon$$
, then $g(x_n) = [\mathcal{K}^n g](x_0) = \lambda^n g(x_0) + \mathcal{O}(n\varepsilon)$

Trades: Nonlinear, finite-dimensional \Rightarrow Linear, infinite-dimensional.



Why?

If
$$\|\mathcal{K}g - \lambda g\| \le \varepsilon$$
, then $g(x_n) = [\mathcal{K}^n g](x_0) = \lambda^n g(x_0) + \mathcal{O}(n\varepsilon)$



Coherent features!

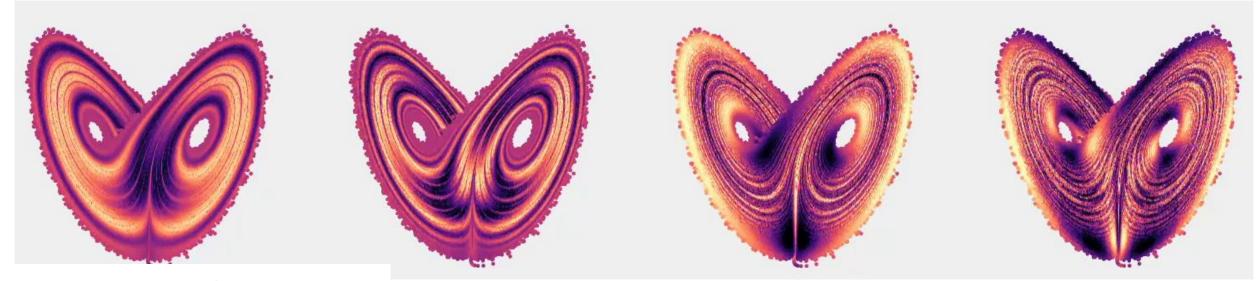
Lorenz attractor

Trades: Nonlinear, finite-dimensional \Rightarrow Linear, infinite-dimensional.

$$g(x_n) = [\mathcal{K}^n g](x_0)$$

Why?

If
$$\|\mathcal{K}g - \lambda g\| \le \varepsilon$$
, then $g(x_n) = [\mathcal{K}^n g](x_0) = \lambda^n g(x_0) + \mathcal{O}(n\varepsilon)$



Coherent features!

$$\operatorname{Sp}_{\operatorname{ap},\varepsilon}(\mathcal{K}) = \{ z \in \mathbb{C} : \exists g, ||g|| = 1, ||\mathcal{K}g - zg|| \le \varepsilon \}$$

Trades: Nonlinear, finite-dimensional \Rightarrow Linear, infinite-dimensional.

Koopman Mode Decomposition

Verified Eigenfunctions

- Find (g_i, λ_i) with $\|\mathcal{K}g_i \lambda_i g_i\| \le \varepsilon$
- Expand state:

 $x \approx \sum_{i} c_{i}g_{j}(x)$ "Koopman modes"

coefficients, called

Forecasts:

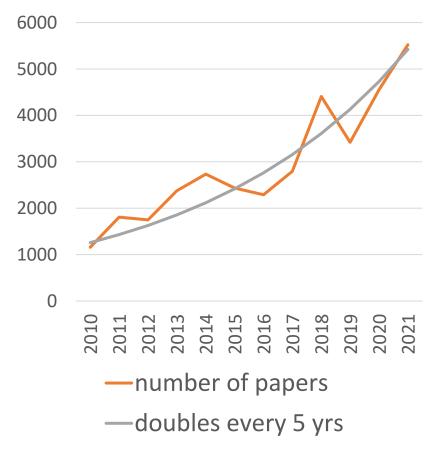
$$x_n = \sum_j \lambda_j^n c_j g_j(x) + \mathcal{O}(n\varepsilon)$$

 $g(x_n) = [\mathcal{K}^n g](x_0)$

Intuition: A nonlinear separation of variables through a linear operator!

Koopmania*: A revolution in the big data era?

New papers on computing Koopman operator spectra



Very little on convergence guarantees. WHY?

- Koopman operators have been largely used in applied domains + distinct from NLA.
- 2. Infinite-dimensional spec. comp. notoriously hard ...

Only recently have the tools been developed

GOAL: Compute spectral properties and figure out how hard this is.

DATA + DISCRETIZE ${\cal K}$

DATA + DISCRETIZE X

FINITE-DIMENSIONAL NUMERICAL LINEAR ALGEBRA

DATA + DISCRETIZE X

FINITE-DIMENSIONAL NUMERICAL LINEAR ALGEBRA

EIGENVALUES etc.

FINITE-DIMEN NUMERICAL LINE

Works great if you have a selfadjoint operator that is compact or has compact resolvent!

Eigenvalue Problems

I. Babuška*

Institute for Physical Science and Technology and Department of Mathematics University of Maryland College Park, MD 20742, USA

J. Osborn**

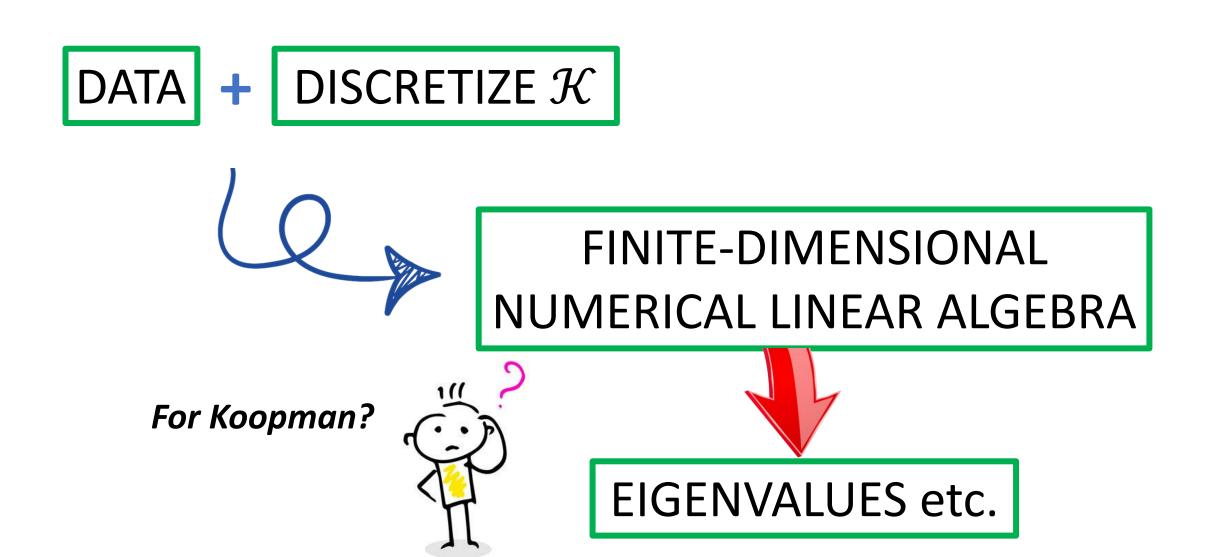
Department of Mathematics University of Maryland College Park, MD 20742, USA

*Partially supported by the Office of Naval Research under contract N00014-85-K-0169 and by the National Science Foundation under grant DMS-85-16191.

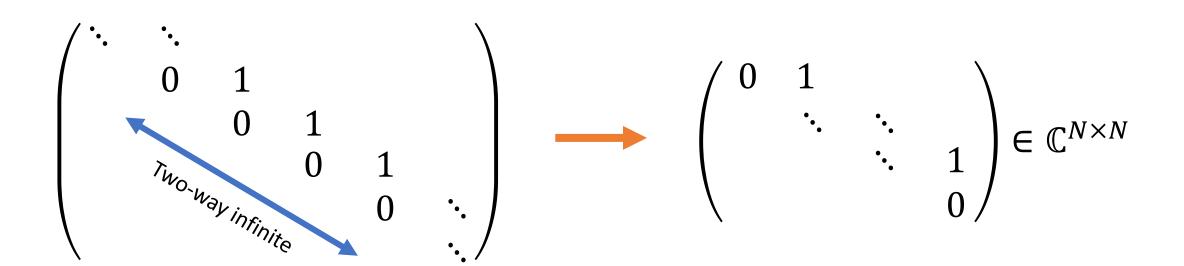
**Partially supported by the National Science Foundation under grant DMS-84-10324.

HANDBOOK OF NUMERICAL ANALYSIS, VOL. II Finite Blement Methods (Part 1) Edited by P.G. Clarlet and J.L. Lions © 1991. Elsevier Science Publishers B.V. (North-Holland)

EIGENVALUES etc.



Perils of discretization: Warmup on $\ell^2(\mathbb{Z})$



- Spectrum is unit circle.
- Spectrum is stable.
- Continuous spectra.
- Unitary evolution.

- Spectrum is $\{0\}$.
- Spectrum is unstable.
- Discrete spectra.
- Nilpotent evolution.

Lots of Koopman operators are built up from operators like these!

Explicit example: Matrix approximation of ${\mathcal K}$ (EDMD)

Observables
$$\psi_j: \mathcal{X} \to \mathbb{C}, j = 1, ..., N$$

$$\left\{x^{(m)}, y^{(m)} = F(x^{(m)})\right\}_{m=1}^{M}$$

quadrature points

$$\langle \psi_k, \psi_j \rangle \approx \sum_{m=1}^M w_m \overline{\psi_j(x^{(m)})} \psi_k(x^{(m)}) = \begin{bmatrix} \begin{pmatrix} \psi_1(x^{(1)}) & \cdots & \psi_N(x^{(1)}) \\ \vdots & \ddots & \vdots \\ \psi_1(x^{(M)}) & \cdots & \psi_N(x^{(M)}) \end{pmatrix}^* \underbrace{\begin{pmatrix} w_1 & & \\ & \ddots & \\ & & w_M \end{pmatrix}}_{\hat{W}} \underbrace{\begin{pmatrix} \psi_1(x^{(1)}) & \cdots & \psi_N(x^{(1)}) \\ \vdots & \ddots & \vdots \\ \psi_1(x^{(M)}) & \cdots & \psi_N(x^{(M)}) \end{pmatrix}}_{j_k}$$
quadrature weights

$$\langle \mathcal{K}\psi_{k},\psi_{j}\rangle \approx \sum_{m=1}^{M} w_{m}\overline{\psi_{j}(x^{(m)})}\underbrace{\psi_{k}(y^{(m)})}_{[\mathcal{K}\psi_{k}](x^{(m)})} = \underbrace{\begin{bmatrix} \psi_{1}(x^{(1)}) & \cdots & \psi_{N}(x^{(1)}) \\ \vdots & \ddots & \vdots \\ \psi_{1}(x^{(M)}) & \cdots & \psi_{N}(x^{(M)}) \end{bmatrix}^{*}}_{\psi_{X}} \underbrace{\begin{pmatrix} w_{1} & & & \\ & \ddots & & \\ & & w_{M} \end{pmatrix}}_{W} \underbrace{\begin{pmatrix} \psi_{1}(y^{(1)}) & \cdots & \psi_{N}(y^{(1)}) \\ \vdots & \ddots & \vdots \\ \psi_{1}(y^{(M)}) & \cdots & \psi_{N}(y^{(M)}) \end{pmatrix}}_{ik}$$

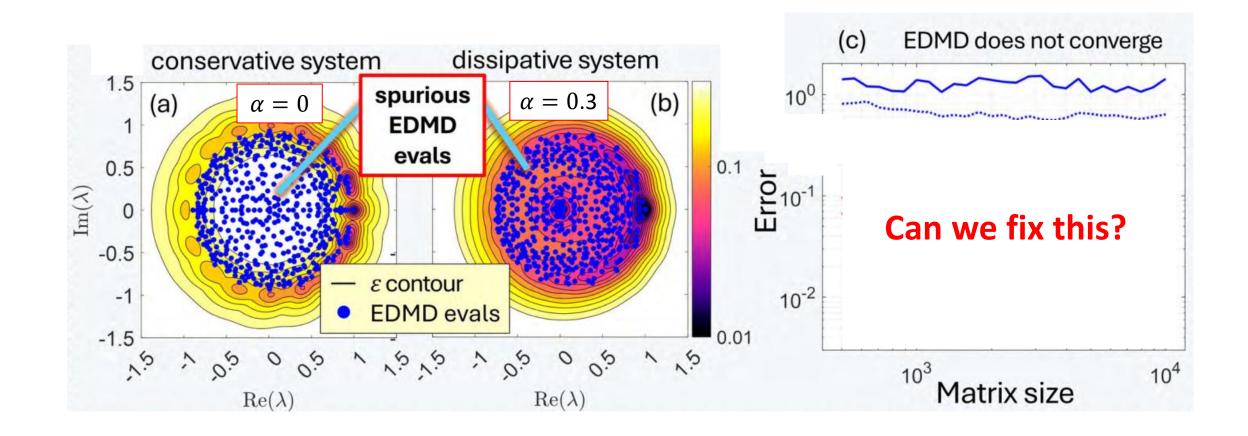
Galerkin Approximation

$$\mathcal{K} \longrightarrow (\Psi_X^* W \Psi_X^*)^{-1} \Psi_X^* W \Psi_Y \in \mathbb{C}^{N \times N}$$

- Schmid, "Dynamic mode decomposition of numerical and experimental data," J. Fluid Mech., 2010.
- Rowley, Mezić, Bagheri, Schlatter, Henningson, "Spectral analysis of nonlinear flows," J. Fluid Mech., 2009.
- Williams, Kevrekidis, Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlinear Sci., 2015.

EDMD doesn't converge!

- Duffing oscillator: $\dot{x}=y$, $\dot{y}=-\alpha y+x(1-x^2)$, sampled $\Delta t=0.3$.
- Gaussian radial basis functions, Monte Carlo integration (M = 50000)



$$\langle \psi_k, \psi_j \rangle \approx \sum_{m=1}^{M} w_m \overline{\psi_j(x^{(m)})} \, \psi_k(x^{(m)}) = \left[\underbrace{\Psi_X^* W \Psi_X}_{G} \right]_{jk}$$

$$\langle \mathcal{K} \psi_k, \psi_j \rangle \approx \sum_{m=1}^{M} w_m \overline{\psi_j(x^{(m)})} \, \underbrace{\psi_k(y^{(m)})}_{[\mathcal{K} \psi_k](x^{(m)})} = \left[\underbrace{\Psi_X^* W \Psi_Y}_{K_1} \right]_{jk}$$

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," Commun. Pure Appl. Math., 2023.
- C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., 2023.
- Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

$$\langle \psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \psi_{k}(x^{(m)}) = \left[\underbrace{\Psi_{X}^{*}W\Psi_{X}}_{\hat{G}} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \underbrace{\psi_{k}(y^{(m)})}_{[\mathcal{K}\psi_{k}](x^{(m)})} = \left[\underbrace{\Psi_{X}^{*}W\Psi_{Y}}_{K_{1}} \right]_{jk}$$

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," Commun. Pure Appl. Math., 2023.
- C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., 2023.
- Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

$$\langle \psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \psi_{k}(x^{(m)}) = \left[\underbrace{\Psi_{X}^{*}W\Psi_{X}}_{G} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \underbrace{\psi_{k}(y^{(m)})}_{[\mathcal{K}\psi_{k}](x^{(m)})} = \left[\underbrace{\Psi_{X}^{*}W\Psi_{Y}}_{K_{1}} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \mathcal{K}\psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(y^{(m)})} \psi_{k}(y^{(m)}) = \left[\underbrace{\Psi_{Y}^{*}W\Psi_{Y}}_{K_{2}} \right]_{jk}$$

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," Commun. Pure Appl. Math., 2023.
- C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., 2023.
- Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

$$\langle \psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \psi_{k}(x^{(m)}) = \left[\underbrace{\Psi_{X}^{*}W\Psi_{X}}_{G} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \underbrace{\psi_{k}(y^{(m)})}_{[\mathcal{K}\psi_{k}](x^{(m)})} = \left[\underbrace{\Psi_{X}^{*}W\Psi_{Y}}_{K_{1}} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \mathcal{K}\psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(y^{(m)})} \psi_{k}(y^{(m)}) = \left[\underbrace{\Psi_{Y}^{*}W\Psi_{Y}}_{K_{2}} \right]_{jk}$$

Residuals:
$$g = \sum_{j=1}^{N} \mathbf{g}_{j} \psi_{j}$$
, $\|\mathcal{K}g - \lambda g\|^{2} = \langle \mathcal{K}g - \lambda g, \mathcal{K}g - \lambda g \rangle$

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," Commun. Pure Appl. Math., 2023.
- C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., 2023.
- Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

$$\langle \psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \psi_{k}(x^{(m)}) = \left[\underbrace{\Psi_{X}^{*}W\Psi_{X}}_{G} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \underbrace{\psi_{k}(y^{(m)})}_{[\mathcal{K}\psi_{k}](x^{(m)})} = \left[\underbrace{\Psi_{X}^{*}W\Psi_{Y}}_{K_{1}} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \mathcal{K}\psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(y^{(m)})} \psi_{k}(y^{(m)}) = \left[\underbrace{\Psi_{Y}^{*}W\Psi_{Y}}_{K_{2}} \right]_{jk}$$

Residuals:
$$g = \sum_{j=1}^{N} \mathbf{g}_j \psi_j$$
, $\|\mathcal{K}g - \lambda g\|^2 = \sum_{k,j=1}^{N} \mathbf{g}_k \overline{\mathbf{g}_j} \langle \mathcal{K}\psi_k - \lambda \psi_k, \mathcal{K}\psi_j - \lambda \psi_j \rangle$

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," Commun. Pure Appl. Math., 2023.
- C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., 2023.
- Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

$$\langle \psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \psi_{k}(x^{(m)}) = \left[\underbrace{\Psi_{X}^{*}W\Psi_{X}}_{G} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \underbrace{\psi_{k}(y^{(m)})}_{[\mathcal{K}\psi_{k}](x^{(m)})} = \left[\underbrace{\Psi_{X}^{*}W\Psi_{Y}}_{K_{1}} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \mathcal{K}\psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(y^{(m)})} \psi_{k}(y^{(m)}) = \left[\underbrace{\Psi_{Y}^{*}W\Psi_{Y}}_{K_{2}} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \mathcal{K}\psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(y^{(m)})} \psi_{k}(y^{(m)}) = \left[\underbrace{\Psi_{Y}^{*}W\Psi_{Y}}_{K_{2}} \right]_{jk}$$

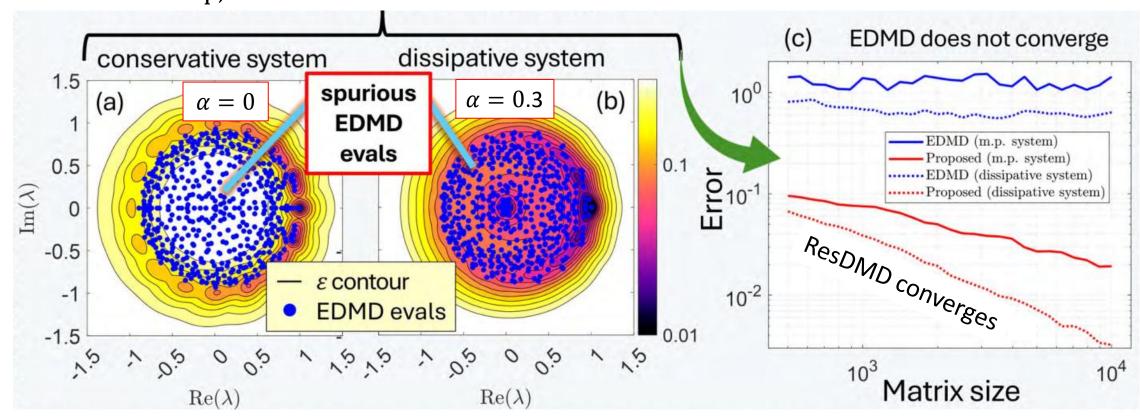
Residuals:
$$g = \sum_{j=1}^{N} \mathbf{g}_{j} \psi_{j}$$
, $\|\mathcal{K}g - \lambda g\|^{2} = \lim_{M \to \infty} \mathbf{g}^{*} [K_{2} - \lambda K_{1}^{*} - \bar{\lambda} K_{1} + |\lambda|^{2} G] \mathbf{g}$

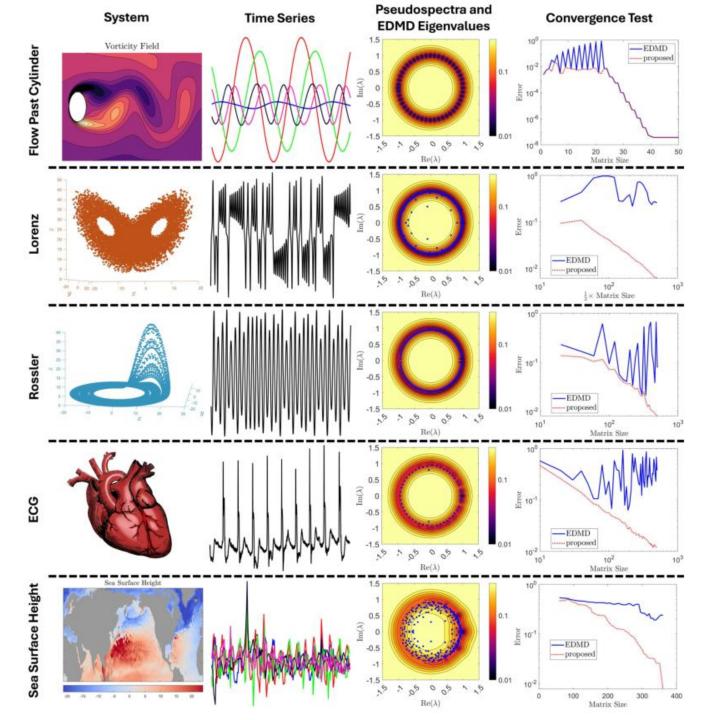
- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," Commun. Pure Appl. Math., 2023.
- C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., 2023.
- Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

ResDMD does converge!

- Duffing oscillator: $\dot{x}=y$, $\dot{y}=-\alpha y+x(1-x^2)$, sampled $\Delta t=0.3$.
- Gaussian radial basis functions, Monte Carlo integration (M = 50000)

Compute $\operatorname{Sp}_{\operatorname{ap},\varepsilon}(\mathcal{K})$, local adaptive control on $\varepsilon\downarrow 0$





Can maths help guide the way?

Consider space of observables with finite energy: $L^2(\mathcal{X}, \omega)$

Theorem: There **exists** algorithms $\Gamma_{N,M}$ using snapshots such that

$$\lim_{N\to\infty}\lim_{M\to\infty}\Gamma_{N,M}(F)=\mathrm{Sp}_{\mathrm{ap},\varepsilon}(\mathcal{K}_F)$$

for all systems.

N =size of basis, M =amount of data (quadrature)

$$\operatorname{Sp}_{\operatorname{ap},\varepsilon}(\mathcal{K}) = \{ z \in \mathbb{C} : \exists g, ||g|| = 1, ||\mathcal{K}g - zg|| \le \varepsilon \}$$

Can maths help guide the way?

Consider space of observables with finite energy: $L^2(\mathcal{X}, \omega)$

Theorem: There **exists** algorithms $\Gamma_{N,M}$ using snapshots such that

$$\lim_{N\to\infty}\lim_{M\to\infty}\Gamma_{N,M}(F)=\mathrm{Sp}_{\mathrm{ap},\varepsilon}(\mathcal{K}_F)$$

for all systems.

N =size of basis, M =amount of data (quadrature)

Double limit $\lim_{N\to\infty} \lim_{N\to\infty}$

Can we do better?

Adversaries: **Double** limit is necessary!

Implies ${\mathcal K}$ is unitary

Class of systems: $\Omega_{\mathbb{D}} = \{F : \overline{\mathbb{D}} \to \overline{\mathbb{D}} | F \text{ cts, measure preserving, invertible} \}.$

Data an algorithm can use: $\mathcal{T}_F = \{(x, y_m) | x \in \overline{\mathbb{D}}, || F(x) - y_m || \le 2^{-m} \}.$

Theorem: There does not exist any sequence of deterministic algorithms $\{\Gamma_n\}$ using \mathcal{T}_F such that $\lim_{n\to\infty}\Gamma_n(F)=\operatorname{Sp}_{\mathrm{ap},\epsilon}(\mathcal{K}_F)\ \forall F\in\Omega_{\mathbb{D}}.$

NB:

- n can index anything.
- <u>Universal</u> any type of algorithm or computational model.
- Similarly, no <u>random</u> algorithms converging with probability > 1/2.

• C., Mezić, Stepanenko, "Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning," preprint, 2025.

$$F_0$$
: rotation by π , $\mathrm{Sp}(\mathcal{K}_{F_0})=\{\pm 1\}$

Phase transition lemma: Let $X = \{x_1, ..., x_N\}, Y = \{y_1, ..., y_N\}$ be distinct points in annulus $\mathcal{A} = \{x \in \mathbb{D} | 0 < R < \|x\| < r < 1\}$ with $X \cap Y = \emptyset$. There exists a measure-preserving homeomorphism H such that H acts as the identity on $\mathbb{D} \setminus \mathcal{A}$ and $H(y_j) = F_0(H(x_j)), j = 1, ..., N$.

Conjugacy of <u>data</u> $(x_j o y_j)$ with F_0

Idea: Use lemma to trick any algorithm into oscillating between spectra.

• Brown and Halperin. "On certain area-preserving maps." Annals of Mathematics, 1935.

Suppose (for contradiction) $\{\Gamma_n\}$ uses \mathcal{T}_F , $\lim_{n\to\infty}\Gamma_n(F)=\operatorname{Sp}(\mathcal{K}_F)\ \forall F\in\Omega_{\mathbb{D}}$. Build an adversarial F...

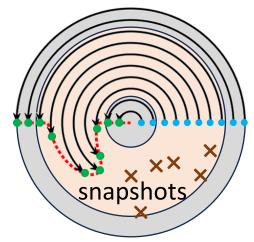
$$T_F = \{(x, y_m) \mid ||F(x) - y_m|| \le 2^{-m}\}$$

Suppose (for contradiction) $\{\Gamma_n\}$ uses \mathcal{T}_F , $\lim_{n\to\infty}\Gamma_n(F)=\operatorname{Sp}(\mathcal{K}_F)\ \forall F\in\Omega_{\mathbb{D}}$.

Build an adversarial F...

$$\widetilde{F_1}(r,\theta) = (r,\theta + \pi + \phi(r)), \operatorname{supp}(\phi) \subset [1/4, 3/4]$$

 $\operatorname{Sp}(\mathcal{K}_{\widetilde{F_1}}) = \mathbb{T}$ (unit circle).



Suppose (for contradiction) $\{\Gamma_n\}$ uses \mathcal{T}_F , $\lim_{n\to\infty}\Gamma_n(F)=\operatorname{Sp}(\mathcal{K}_F)\ \forall F\in\Omega_{\mathbb{D}}$.

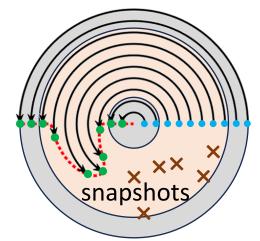
Build an adversarial F...

$$\widetilde{F_1}(r,\theta) = (r,\theta + \pi + \phi(r)), \operatorname{supp}(\phi) \subset [1/4, 3/4]$$

 $\operatorname{Sp}(\mathcal{K}_{\widetilde{F_1}}) = \mathbb{T}$ (unit circle).

 $\lim_{n\to\infty}\Gamma_n\big(\widetilde{F_1}\big)=\operatorname{Sp}(\mathcal{K}_{\widetilde{F_1}})\Rightarrow \exists n_1 \text{ s.t. } \operatorname{dist}(i,\Gamma_{n_1}\big(\widetilde{F_1}\big))\leq 1.$

BUT Γ_{n_1} uses finite amount of info to output $\Gamma_{n_1}(\widetilde{F_1})$. Let X, Y correspond to these snapshots.



Suppose (for contradiction) $\{\Gamma_n\}$ uses \mathcal{T}_F , $\lim_{n\to\infty}\Gamma_n(F)=\operatorname{Sp}(\mathcal{K}_F)\ \forall F\in\Omega_{\mathbb{D}}$.

Build an adversarial F...

$$\widetilde{F_1}(r,\theta) = (r,\theta + \pi + \phi(r)), \operatorname{supp}(\phi) \subset [1/4, 3/4]$$

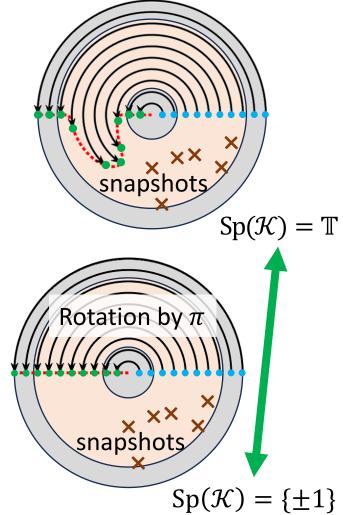
 $\operatorname{Sp}(\mathcal{K}_{\widetilde{F_1}}) = \mathbb{T}$ (unit circle).

$$\lim_{n\to\infty}\Gamma_n\big(\widetilde{F_1}\big)=\operatorname{Sp}(\mathcal{K}_{\widetilde{F_1}})\Rightarrow \exists n_1 \text{ s.t. } \operatorname{dist}(i,\Gamma_{n_1}\big(\widetilde{F_1}\big))\leq 1.$$

BUT Γ_{n_1} uses finite amount of info to output $\Gamma_{n_1}(\widetilde{F_1})$. Let X, Y correspond to these snapshots.

Lemma: $F_1 = H_1^{-1} \circ F_0 \circ H_1$ on annulus \mathcal{A}_1 . Consistent data $\Rightarrow \Gamma_{n_1}(F_1) = \Gamma_{n_1}(\widetilde{F_1})$, dist $(i, \Gamma_{n_1}(F_1)) \leq 1$

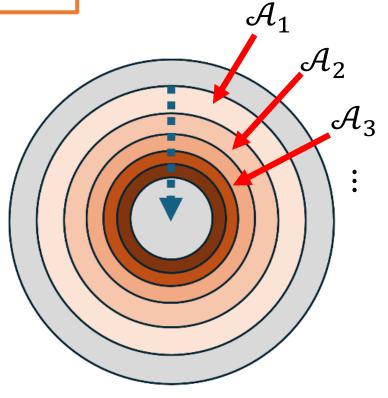
BUT
$$\operatorname{Sp}(\mathcal{K}_{F_1}) = \operatorname{Sp}(\dot{\mathcal{K}}_{F_0}) = \{\pm 1\}$$



Inductive step: Repeat on annuli, $F_k = H_k^{-1} \circ F_0 \circ H_k$ on \mathcal{A}_k . $F = \lim_{k \to \infty} F_k$ Consistent data $\Rightarrow \Gamma_{n_k}(F) = \Gamma_{n_k}(\widetilde{F_k})$, $\operatorname{dist}(i, \Gamma_{n_k}(F)) \leq 1$, $n_k \to \infty$

BUT $\operatorname{Sp}(\mathcal{K}_F) = \operatorname{Sp}(\mathcal{K}_{F_0}) = \{\pm 1\}$

CANNOT CONVERGE



Cascade of disks

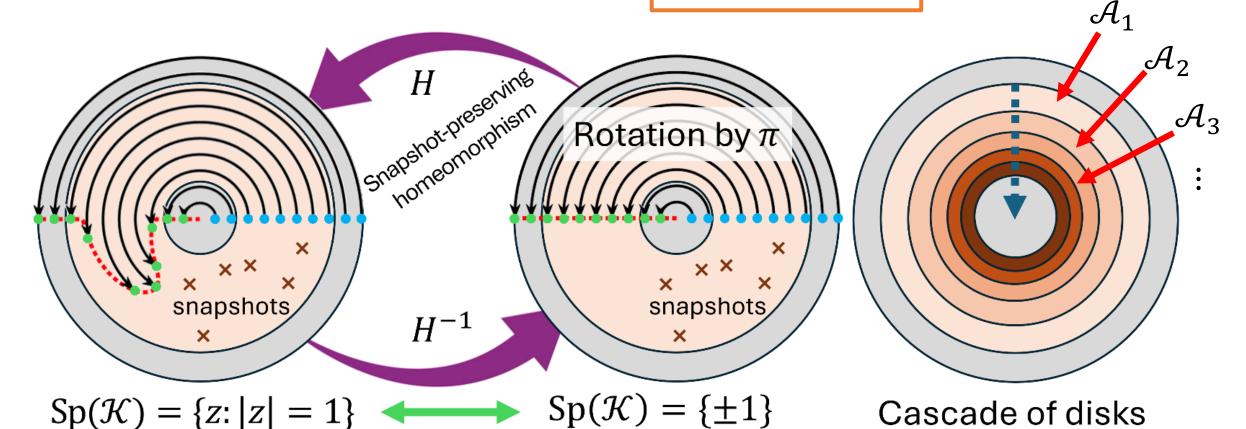
Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, $F_k = H_k^{-1} \circ F_0 \circ H_k$ on \mathcal{A}_k . $F = \lim_{k \to \infty} F_k$

CANNOT CONVERGE

Consistent data $\Rightarrow \Gamma_{n_k}(F) = \Gamma_{n_k}(\widetilde{F_k})$, dist $(i, \Gamma_{n_k}(F)) \leq 1$, $n_k \to \infty$

BUT Sp(\mathcal{K}_F) = Sp(\mathcal{K}_{F_0}) = { ± 1 }



Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

- Δ_1 : One limit, full error control. E.g., $d(\Gamma_n(F), \operatorname{Sp}(\mathcal{K}_F)) \leq 2^{-n}$.
- Δ_{m+1} : $SCI \leq m$.
- Σ_m : SCI $\leq m$, final limit from below.

E.g.,
$$\Sigma_1$$
: $\sup_{z \in \Gamma_n(F)} \operatorname{dist}(z, \operatorname{Sp}(\mathcal{K}_F)) \leq 2^{-n}$.

• Π_m : SCI $\leq m$, final limit from above.

E.g.,
$$\Pi_1$$
: $\sup_{z \in \operatorname{Sp}(\mathcal{K}_F)} \operatorname{dist}(z, \Gamma_n(F)) \leq 2^{-n}$.

- Hansen, "On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators." J. Am. Math. Soc., 2011.
- C., "The foundations of infinite-dimensional spectral computations," PhD diss., University of Cambridge, 2020.
- C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2022.
- C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," arXiv, 2020.

Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

- Δ_1 : One limit, full error control. E.g., $d(\Gamma_n(F), \operatorname{Sp}(\mathcal{K}_F)) \leq 2^{-n}$.
- Δ_{m+1} : $SCI \leq m$.

trust output

• Σ_m : SCI $\leq m$, final limit from below.

E.g.,
$$\Sigma_1$$
: $\sup_{z \in \Gamma_n(F)} \operatorname{dist}(z, \operatorname{Sp}(\mathcal{K}_F)) \leq 2^{-n}$. al limit from above.

• Π_m : SCI $\leq m$, final limit from above.

E.g.,
$$\Pi_1$$
: $\sup_{z \in \operatorname{Sp}(\mathcal{K}_F)} \operatorname{dist}(z, \Gamma_n(F)) \leq 2^{-n}$.

covers spectrum

- Hansen, "On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators." J. Am. Math. Soc., 2011.
- C., "The foundations of infinite-dimensional spectral computations," PhD diss., University of Cambridge, 2020.
- C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2022.
- C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," arXiv, 2020.

Lots of SCI upper bounds lurking in Koopman literature!

SCI: Fewest number of limits needed to solve a computational problem.

Algorithm	Commants/Assumptions	Spectral Problem's Correspondi			1 1
Aigonum	Comments/Assumptions	KMD	Spectrum	Spectral Measure (if m.p.)	Spectral Type (if m.p.)
Extended DMD [47]	general L^2 spaces	$SCI \le 2^*$	N/C	N/C	n/a
Residual DMD [44]	general L^2 spaces	$SCI \le 2^*$	$SCI \le 3^*$	$SCI \le 2^*$	varies, see [84] e.g., a.c. density: $SCI \le 2^*$
Measure-preserving EDMD [45]	m.p. systems	$SCI \le 1$	N/C	$SCI \le 2^*$ (general) $SCI \le 1$ (delay-embedding)	n/a
Hankel DMD [85]	m.p. ergodic systems	$SCI \le 2^*$	N/C	N/C	n/a
Periodic approximations [86]	m.p. $+\omega$ a.c.	$SCI \leq 2$	N/C	$SCI \le 2$ (see [87])	a.c. density: $SCI \leq 3$
Christoffel–Darboux kernel [40]	m.p. ergodic systems	$SCI \leq 3$	n/a	$ SCI \le 2$	e.g., a.c. density: $SCI \leq 2$
Generator EDMD [88]	ctstime, samples ∇F (otherwise additional limit)	$SCI \le 2$	N/C	$SCI \leq 2$ (see [89])	n/a
Compactification [42]	ctstime, m.p. ergodic systems	$SCI \le 4$	N/C	$SCI \leq 4$	n/a
Resolvent compactification [43]	ctstime, m.p. ergodic systems	$SCI \leq 5$	N/C	$SCI \leq 5$	n/a
Diffusion maps [90] (see also [10])	4	•••••••		n/a	
- · · · · ·			•		Are these sharp?

Previous techniques prove upper bounds on SCI.

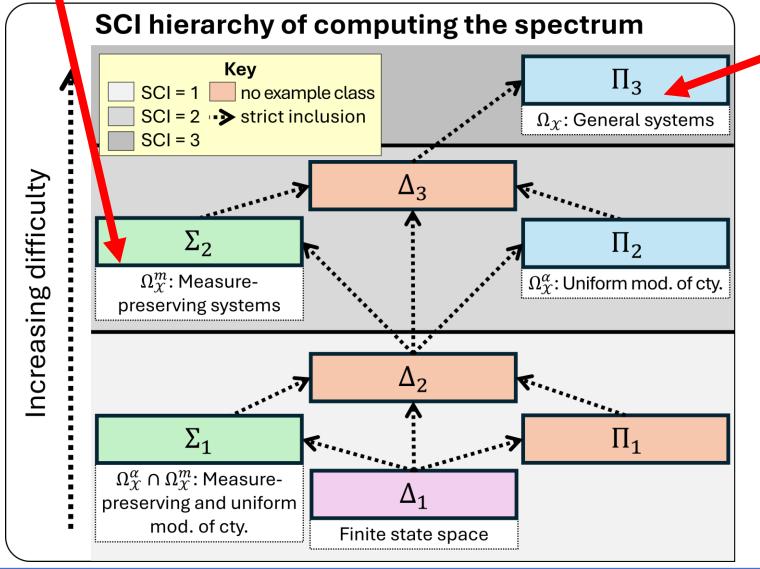
"N/C": method need not converge. "n/a": algorithm not applicable to problem.

Also in Ulam's method for Markov processes, SRB measure computation, control,...

Lower + upper bounds

Classification for Koopman

3 limits needed in general!



Different classes:

$$\Omega_{\mathcal{X}} = \{F: \mathcal{X} \to \mathcal{X} \mid F \text{ cts}\}$$

$$\Omega_{\mathcal{X}}^{m} = \{F: \mathcal{X} \to \mathcal{X} \mid F \text{ cts, m. p.}\}$$

$$\Omega_{\mathcal{X}}^{\alpha} = \{F: \mathcal{X} \to \mathcal{X} \mid F \text{ mod. cty. } \alpha\}$$

$$[d_{\mathcal{X}}(F(x), F(y)) \leq \alpha(d_{\mathcal{X}}(x, y))]$$

Optimal algorithms and classifications of dynamical systems.

• C., Mezić, Stepanenko, "Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning," **preprint**, 2025.

Peter Lax:

"The trick of the successful mathematician is to turn the question being asked into one he knows how to answer."

Johann Wolfgang von Goethe:

"Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely different."

Let's perform this trick by changing the space...

Reproducing kernel Hilbert space (RKHS)

Hilbert space of functions on \mathcal{X} s.t. $g \mapsto g(x)$ bounded $\forall x \in \mathcal{X}$.

Generated by a kernel $\Re: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$

$$g(x) = \langle g, \mathfrak{K}_{\chi} \rangle, \qquad \mathfrak{K}(x, y) = \langle \mathfrak{K}_{\chi}, \mathfrak{K}_{y} \rangle = \mathfrak{K}_{\chi}(y)$$

Advantages over $L^2(X, \omega)$:

- Forecasts: space bounds ⇒ pointwise bounds.
- High-dimensional systems practical through kernel trick.
- Fast methods for evaluating \Re .
- Different $\Re \Rightarrow$ different $\Re!$ Can be tailored to application. (This is where the community is currently heading.)
- Leads to fundamental "possibility" gains...

An Introduction to the Theory of Reproducing Kernel Hilbert Spaces

VERN I. PAULSEN MRINAL RAGHUPATHI

E.g., Sobolev spaces (of sufficient regularity)

Reproducing kernel Hilbert space (RKHS)

Hilbert space of functions on \mathcal{X} s.t. $g \mapsto g(x)$ bounded $\forall x \in \mathcal{X}$.

Generated by a kernel $\Re: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$

$$g(x) = \langle g, \mathfrak{K}_{\chi} \rangle, \qquad \mathfrak{K}(x, y) = \langle \mathfrak{K}_{\chi}, \mathfrak{K}_{y} \rangle = \mathfrak{K}_{\chi}(y)$$

Advantages over $L^2(X, \omega)$:

- Forecasts: space bounds ⇒ pointwise bounds.
- High-dimensional systems practical through kernel trick.
- Fast methods for evaluating \Re .
- Different $\Re \Rightarrow$ different $\Re!$ Can be tailored to application. (This is where the community is currently heading.)
- Leads to fundamental "possibility" gains...

An Introduction to the Theory of Reproducing Kernel Hilbert Spaces

VERN I. PAULSEN MRINAL RAGHUPATHI

E.g., Sobolev spaces (of sufficient regularity)

SpecRKHS: Avoiding large was Look at "Left eigenpairs" through \mathcal{K}^* : $\mathcal{K}^*\mathfrak{K}_\chi = \mathfrak{K}_{F(\chi)}$

$$\mathcal{K}^*\mathfrak{K}_{\chi} = \mathfrak{K}_{F(\chi)}$$

$$G_{jk} = \left\langle \mathfrak{K}_{\chi(k)}, \mathfrak{K}_{\chi(j)} \right\rangle = \mathfrak{K}(\chi^{(k)}, \chi^{(j)})$$

$$A_{jk} = \left\langle \mathcal{K}^* \mathfrak{K}_{\chi(k)}, \mathfrak{K}_{\chi(j)} \right\rangle = \left\langle \mathfrak{K}_{y(k)}, \mathfrak{K}_{\chi(j)} \right\rangle = \mathfrak{K}(y^{(k)}, \chi^{(j)})$$

$$R_{jk} = \left\langle \mathcal{K}^* \mathfrak{K}_{\chi(k)}, \mathcal{K}^* \mathfrak{K}_{\chi(j)} \right\rangle = \left\langle \mathfrak{K}_{y(k)}, \mathfrak{K}_{y(j)} \right\rangle = \mathfrak{K}(y^{(k)}, y^{(j)})$$

$$g = \sum_{m=1}^{M} \mathbf{g}_m \mathfrak{K}_{\chi(m)}, \qquad \|\mathcal{K}^* g - \lambda g\|_{\mathcal{H}}^2 = \mathbf{g}^* (R - \lambda A^* - \bar{\lambda} A + G) \mathbf{g}$$

SpecRKHS: Example algorithm

$$\operatorname{res}^*(\lambda, \mathbf{g})^2 = \frac{\|\mathcal{K}^*g - \lambda g\|_{\mathcal{H}}^2}{\|g\|_{\mathcal{H}}^2} = \frac{\mathbf{g}^*[R - \lambda A^* - \bar{\lambda}A + G]\mathbf{g}}{\mathbf{g}^*G\mathbf{g}}$$

- 1. Compute $G, A, R \in \mathbb{C}^{N \times N}$ (N = M)
- 2. For z_k in grid, compute $\tau_k = \min_{g = \sum_{m=1}^N \mathbf{g}_m \mathfrak{R}_{\chi(m)}} \operatorname{res}^*(z_k, \mathbf{g})$, corresponding g_k (gen. SVD).
- **3.** Output: $\{z_k: \tau_k < \varepsilon\}$, $\{g_k: \tau_k < \varepsilon\}$ (ε -pseudoeigenfunctions).

Theorem:

First convergent method for general ${\mathcal K}$

- Error control: $\{z_k : \tau_k < \varepsilon\} \subseteq \operatorname{Sp}_{ap,\varepsilon}(\mathcal{K}^*)$
- Convergence: Converges locally uniformly to $\operatorname{Sp}_{\operatorname{ap},\epsilon}(\mathcal{K}^*)$ (as $N \to \infty$)

$$\operatorname{Sp}_{\operatorname{ap},\varepsilon}(\mathcal{K}^*) = \{ z \in \mathbb{C} : \exists g, \|g\|_{\mathcal{H}} = 1, \|\mathcal{K}^*g - zg\|_{\mathcal{H}} \le \varepsilon \}$$

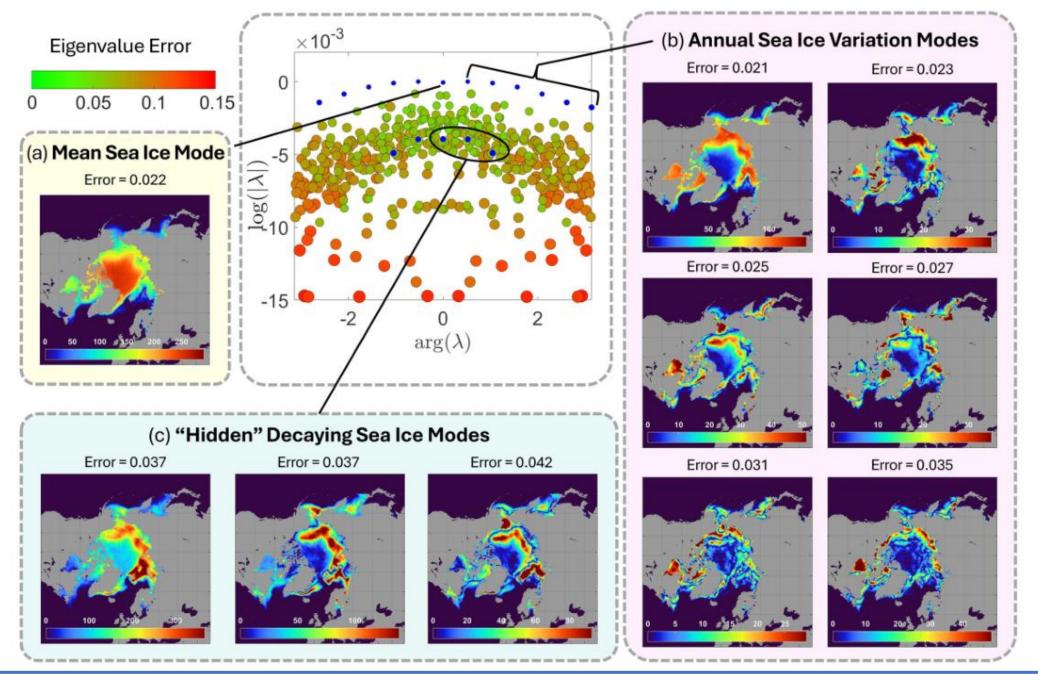
• Boullé, C., Conradie, "Convergent Methods for Koopman Operators on Reproducing Kernel Hilbert Spaces," preprint, 2025.

Practical gains: Sea ice forecasting

Motivation: Arctic amplification, polar bears, local communities, effect on extreme weather in Northern hemisphere,...

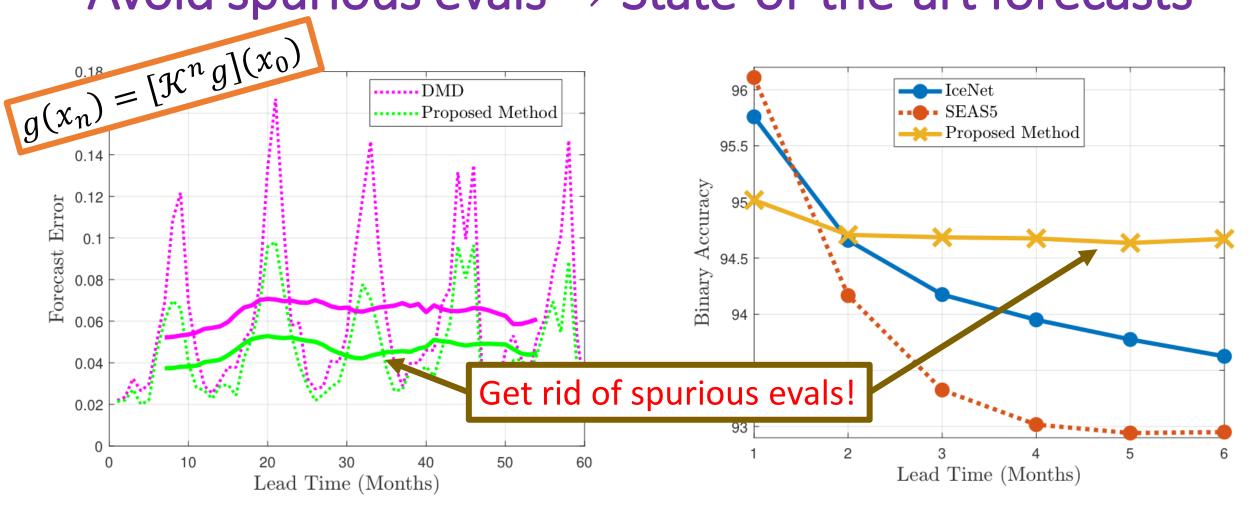
Problems: 1. Very hard to locate geographical significant regions.

2. Very hard to predict more than two months in advance.



• C., Mezić, Stepanenko, "Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning," preprint, 2025.

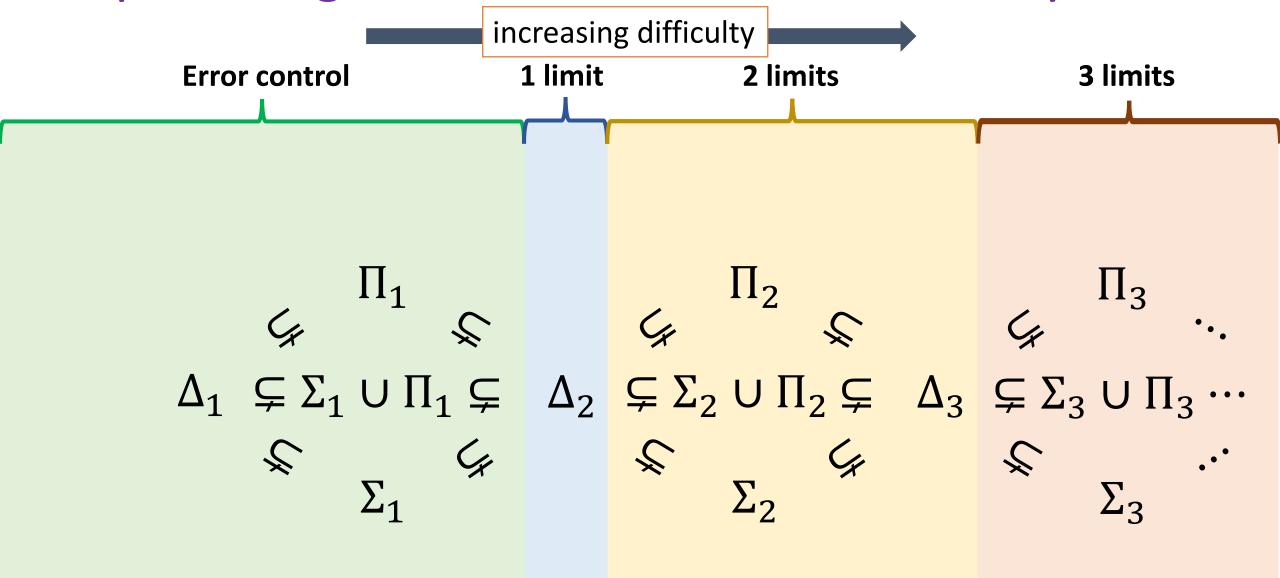
Avoid spurious evals ⇒ State-of-the-art forecasts

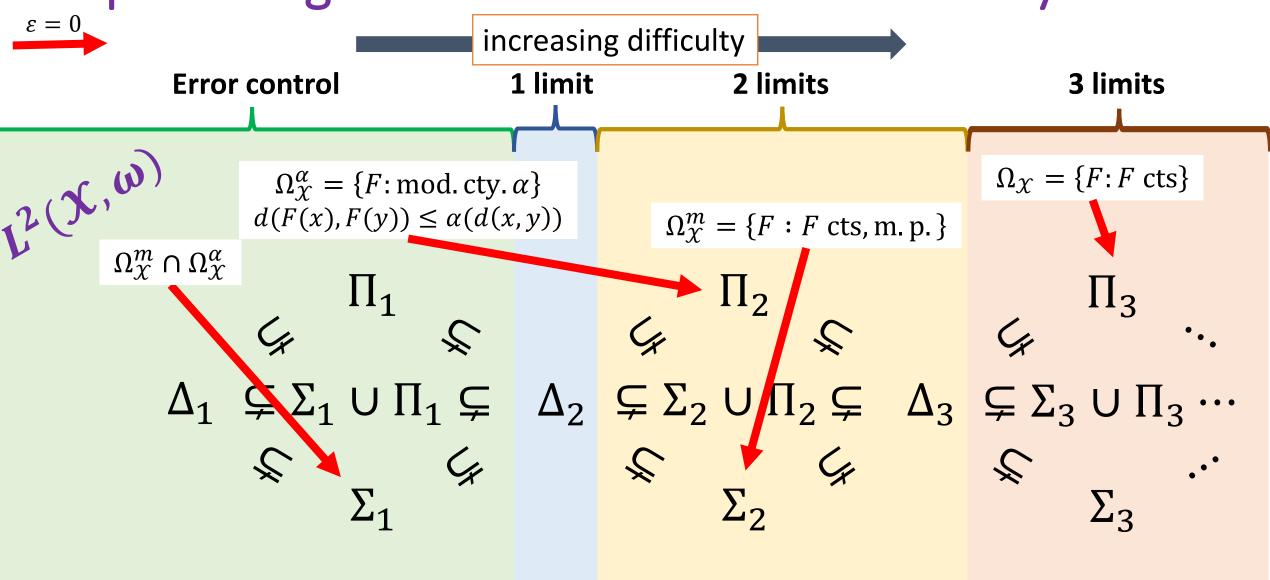


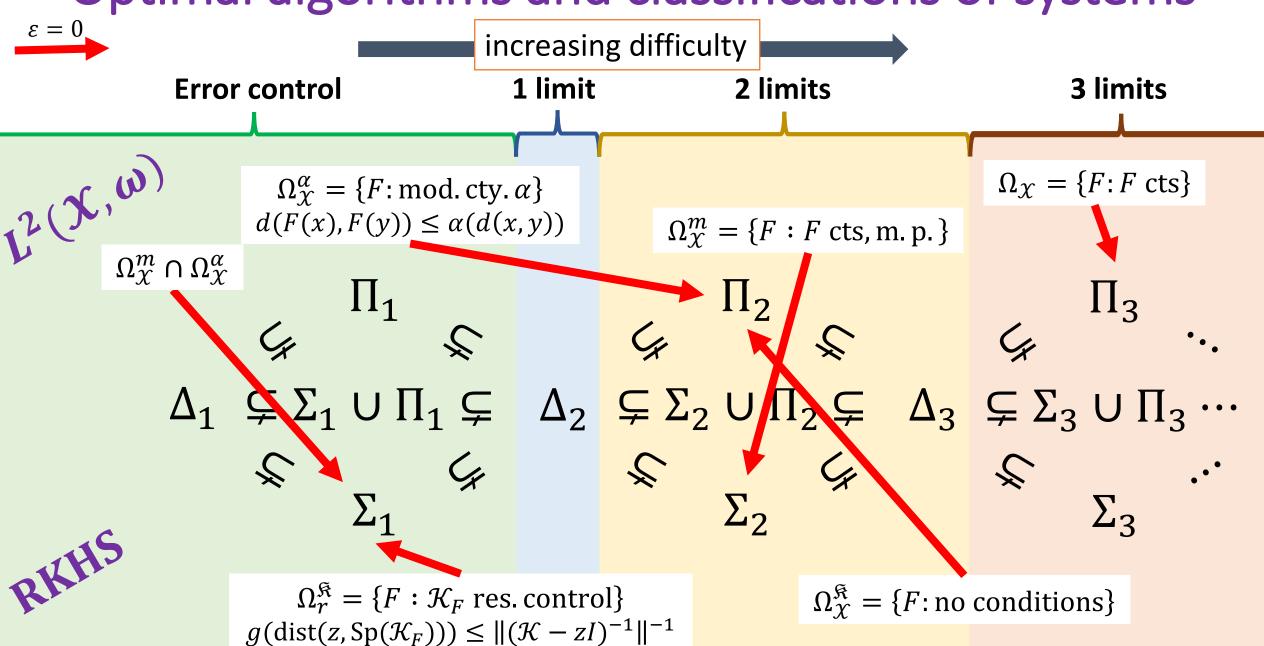
Relative mean squared error over 2016-2020. Model built from 2005-2015 data. (Solid lines moving 12-month mean.)

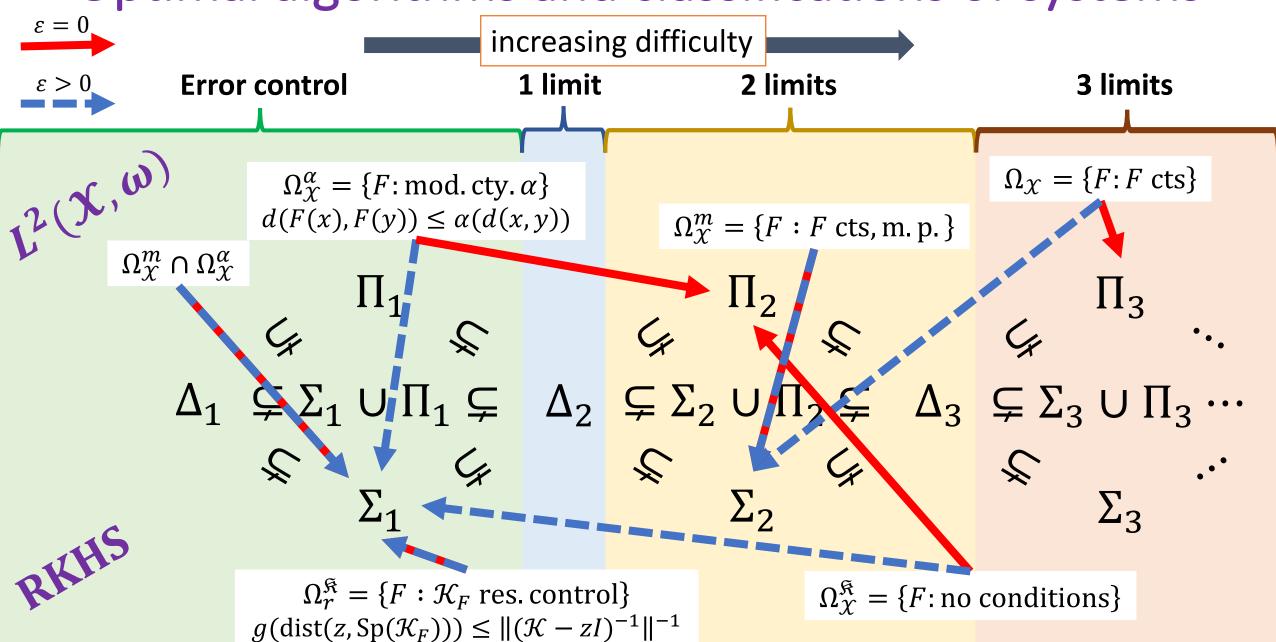
Mean binary accuracy over test years 2012-2020. (IceNet: Andersson et al, "Seasonal Arctic sea ice forecasting with probabilistic deep learning." Nature Communications, 2021.)

• C., Mezić, Stepanenko, "Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning," preprint, 2025.









Pointers

- Data-driven spectral problems for Koopman operators are hugely popular.
 BUT: Standard truncation methods often fail.
- 2. General method with convergence for spectral properties

 (spectra, pseudospectra, spectral measures etc.) of K. operators!

 E.g., Verification of approximate eigenfunctions leads to practical gains.
- 3. SCI hierarchy classifies computational problems:
 Lower bounds through method of <u>adversarial dynamics</u>.
 Upper bounds ⇒ new "inf.-dim." algorithms. <u>Rigorous, optimal, practical.</u>
- \longrightarrow We now have a near complete picture for Koopman on $L^2(\mathcal{X},\omega)$ and RKHS!

NB: Similar picture has emerged for spectral measures, dealing with continuous spectra (versus eigenvalues) and spectral type (different flavors of dynamics).

Shameless plug...

Upcoming book with CUP:

INFINITE-DIMENSIONAL SPECTRAL COMPUTATIONS

Foundations, Algorithms, and Modern Applications

100s of: classifications, algorithms, examples (webpage: full code), figures, exercises (webpage: full solutions).

**Out by end of 2025 (hopefully!)... **

Contents

		If something interests you, please speak to me after.				
Preface		please speak to me after.				
lotai		predate apear to me diften	xiv			
	ple Classifications		xvi			
low	chart		xvii			
	Spectral Problems in Infinite I	Dimensions	1			
	The Solvability Complexity Inc	dex: A Toolkit for Classifying Problems	43			
	Computing Spectra with Error Control					
	Spectral Measures of Self-Adjoint Operators					
;	Spectral Measures of Unitary Operators					
,	Spectral Types of Self-Adjoint and Unitary Operators					
,	Quantifying the Size of Spectra					
;	Essential Spectra					
)	Spectral Radii, Abscissas, and Gaps					
0	Nonlinear Spectral Problems					
1	Data-Driven Koopman Spectra	al Problems for Nonlinear Dynamical Systems	493			
ppe	ndix A Some brief prelimin	naries	582			
Appendix B A bluffer's guide to		the SCI hierarchy	588			
Biblio	ography		590			
nder			648			

Some Open Problems

- 1. To capture nonlinearity, infinite dimensions are crucial! Can we develop infinite-dimensional NLA to tackle these problems? Solve-then-discretize!
- 2. Other spaces of observables? When is this useful?
- 3. Data perturbation analysis almost completely missing for DMD type algorithms.
- 4. Stronger links between dynamical systems classes and complexity?
- 5. What about partial measurements? I.e., access to h(x) or sketches?
- 6. What are classifications for control in this domain? (Linear control \Rightarrow convex optimization problems.)
- 7. Can lower bounds be proven for PDE learning? E.g., hyperbolic PDEs.
- 8. Links between methods for continuous spectra (not in this talk!), quadrature, and iterative methods.
- 9. Continuous-time systems.
- 10. Links between Markov chains and LLMs can ChatGPT be studied as a big Koopman operator?

To get started in Koopman (from a data-driven NA perspective):

- C. "The multiverse of dynamic mode decomposition algorithms." Handbook of Numerical Analysis, 2024.
- Out soon: C., Drmač, Horning, "An Introductory Guide to Computations with Koopman Operators"

References

- [1] Colbrook, Matthew J., and Alex Townsend. "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems." Communications on Pure and Applied Mathematics 77.1 (2024): 221-283.
- [2] Colbrook, Matthew J., Loma J. Ayton, and Máté Szőke. "Residual dynamic mode decomposition: robust and verified Koopmanism." Journal of Fluid Mechanics 955 (2023): A21.
- [3] Colbrook, M. J., Li, Q., Raut, R. V., & Townsend, A. "Beyond expectations: residual dynamic mode decomposition and variance for stochastic dynamical systems." Nonlinear Dynamics 112.3 (2024): 2037-2061.
- [4] Colbrook, Matthew J. "The Multiverse of Dynamic Mode Decomposition Algorithms." Handbook of Numerical Analysis, vol. 25, pp. 127-230. Elsevier, 2024...
- [5] Colbrook, Matthew J. "The mpEDMD algorithm for data-driven computations of measure-preserving dynamical systems." SIAM Journal on Numerical Analysis 61.3 (2023): 1585-1608.
- [6] Colbrook, Matthew J., Catherine Drysdale, and Andrew Horning. "Rigged Dynamic Mode Decomposition: Data-Driven Generalized Eigenfunction Decompositions for Koopman Operators." SIAM Journal on Applied Dynamical Systems 24, no. 2 (2025): 1150-1190.
- [7] Boullé, Nicolas, and Matthew J. Colbrook. "Multiplicative Dynamic Mode Decomposition." SIAM Journal on Applied Dynamical Systems 24, no. 2 (2025): 1945-1968.
- [8] Boullé, Nicolas and Matthew J. Colbrook, "On the Convergence of Hermitian Dynamic Mode Decomposition" Physica D: Nonlinear Phenomena, 472 (2025).
- [9] Colbrook, Matthew J., Andrew Horning, and Tianyiwa Xie. "Computing Generalized Eigenfunctions in Rigged Hilbert Spaces." arXiv preprint arXiv:2410.08343 (2024).
- [10] Zagli, Niccolò, et al. "Bridging the Gap between Koopmanism and Response Theory: Using Natural Variability to Predict Forced Response." arXiv preprint arXiv:2410.01622 (2024).
- [11] Colbrook, Matthew J. "Another look at Residual Dynamic Mode Decomposition in the regime of fewer Snapshots than Dictionary Size." Physica D: Nonlinear Phenomena 469 (2024).
- [12] Colbrook, Matthew. "The foundations of infinite-dimensional spectral computations." Diss. University of Cambridge, 2020.
- [13] Ben-Artzi, J., Colbrook, M. J., Hansen, A. C., Nevanlinna, O., & Seidel, M. (2020). "Computing Spectra--On the Solvability Complexity Index Hierarchy and Towers of Algorithms." arXiv preprint arXiv:1508.03280.
- [14] Colbrook, Matthew J., Vegard Antun, and Anders C. Hansen. "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem." Proceedings of the National Academy of Sciences 119.12 (2022): e2107151119.
- [15] Colbrook, Matthew, Andrew Horning, and Alex Townsend. "Computing spectral measures of self-adjoint operators." SIAM review 63.3 (2021): 489-524.
- [16] Colbrook, Matthew J., Bogdan Roman, and Anders C. Hansen. "How to compute spectra with error control." Physical Review Letters 122.25 (2019): 250201.
- [17] Colbrook, Matthew J., and Anders C. Hansen. "The foundations of spectral computations via the solvability complexity index hierarchy." Journal of the European Mathematical Society (2022).
- [18] Colbrook, Matthew J. "Computing spectral measures and spectral types." Communications in Mathematical Physics 384 (2021): 433-501.
- [19] Colbrook, Matthew J., and Anders C. Hansen. "On the infinite-dimensional QR algorithm." Numerische Mathematik 143 (2019): 17-83.
- [20] Colbrook, Matthew J. "On the computation of geometric features of spectra of linear operators on Hilbert spaces." Foundations of Computational Mathematics (2022): 1-82.
- [21] Brunton, Steven L., and Matthew J. Colbrook. "Resilient Data-driven Dynamical Systems with Koopman: An Infinite-dimensional Numerical Analysis Perspective."
- [22] Colbrook, Matthew J., Igor Mezić, and Alexei Stepanenko. "Limits and Powers of Koopman Learning." arXiv preprint arxiv:2407.06312 (2024).
- [23] Herwig, April, Matthew J. Colbrook, Oliver Junge, Péter Koltai, and Julia Slipantschuk. "Avoiding spectral pollution for transfer operators using residuals." arXiv preprint arXiv:2507.16915 (2025).
- [24] Boullé, Nicolas, Matthew J. Colbrook, and Gustav Conradie. "Convergent Methods for Koopman Operators on Reproducing Kernel Hilbert Spaces." arXiv preprint arXiv:2506.15782 (2025).