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• Compact metric space (𝒳, 𝑑) – the state space

• 𝑥 ∈ 𝒳 – the state

• Unknown cts 𝐹: 𝒳 → 𝒳 – the dynamics: 𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Borel measure 𝜔 on 𝒳

• Function space 𝐿2 = 𝐿2(𝒳, 𝜔) (elements 𝑔 called “observables”)

• Koopman operator 𝒦𝐹: 𝐿2 → 𝐿2; [𝒦𝐹𝑔] 𝑥 = 𝑔(𝐹(𝑥))

• Available snapshot data: 𝑥 𝑚 , 𝑦 𝑚 = 𝐹 𝑥 𝑚 : 𝑚 = 1, … , 𝑀

NB: Pointwise definition of 𝒦𝐹 needs 𝐹#𝜔 ≪ 𝜔 – this will hold throughout.
NB: 𝒦𝐹 bounded equivalent to d𝐹#𝜔/d𝜔 ∈ 𝐿∞ – this will hold throughout (can be dropped).

Data-driven dynamical systems

Dynamics (geometry)
19th century
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20th century

Dynamics (geometry)
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Data-driven dynamical systems
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• Compact metric space (𝒳, 𝑑) – the state space

• 𝑥 ∈ 𝒳 – the state

• Unknown cts 𝐹: 𝒳 → 𝒳 – the dynamics: 𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Borel measure 𝜔 on 𝒳

• Function space 𝐿2 = 𝐿2(𝒳, 𝜔) (elements 𝑔 called “observables”)

• Koopman operator 𝒦𝐹: 𝐿2 → 𝐿2; [𝒦𝐹𝑔] 𝑥 = 𝑔(𝐹(𝑥))

• Available snapshot data: 𝑥 𝑚 , 𝑦 𝑚 = 𝐹 𝑥 𝑚 : 𝑚 = 1, … , 𝑀

(DO NOT ASSUME MEASURE-PRESERVING)

Data
21st century

Dynamics (geometry)
19th century

Data-driven dynamical systems

Analysis
20th century
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Fundamental in ergodic theory

E.g., key to ergodic theorems of 
Birkhoff and von Neumann.

Why you should care about Koopman

Trades: Nonlinear, finite-dimensional ⟹ Linear, infinite-dimensional.
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Fundamental in ergodic theory

E.g., key to ergodic theorems of 
Birkhoff and von Neumann.

Can provide a diagonalization of a nonlinear system.

𝑔(𝑥) = ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗
𝜑𝜆𝑗

(𝑥) + න

−𝜋

𝜋

𝜙𝜃,𝑔 𝑥  d𝜃

𝑔 𝑥𝑛 = 𝒦𝑛𝑔 𝑥0  

= ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗
𝜆𝑗

𝑛𝜑𝜆𝑗
𝑥0 + න

−𝜋

𝜋

𝑒𝑖𝑛𝜃𝜙𝜃,𝑔 𝑥0  d𝜃

Spectral properties encode: geometric features, 
invariant measures, transient behavior, long-time 
behavior, coherent structures, quasiperiodicity, etc.

continuous 
spectrum

eigenfunction of 𝒦

Why you should care about Koopman

Trades: Nonlinear, finite-dimensional ⟹ Linear, infinite-dimensional.
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Fundamental in ergodic theory

E.g., key to ergodic theorems of 
Birkhoff and von Neumann.

Can provide a diagonalization of a nonlinear system.

𝑔(𝑥) = ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗
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(𝑥) + න

−𝜋

𝜋

𝜙𝜃,𝑔 𝑥  d𝜃

𝑔 𝑥𝑛 = 𝒦𝑛𝑔 𝑥0  

= ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗
𝜆𝑗

𝑛𝜑𝜆𝑗
𝑥0 + න

−𝜋

𝜋

𝑒𝑖𝑛𝜃𝜙𝜃,𝑔 𝑥0  d𝜃

Spectral properties encode: geometric features, 
invariant measures, transient behavior, long-time 
behavior, coherent structures, quasiperiodicity, etc.

continuous 
spectrum

eigenfunction of 𝒦

Why you should care about Koopman

Trades: Nonlinear, finite-dimensional ⟹ Linear, infinite-dimensional.

+ HUGE recent interest in 
their spectral properties!
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doubles every 5 yrs
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Example

Trades: Nonlinear, finite-dimensional ⟹ Linear, infinite-dimensional.

If 𝒦𝑔 − 𝜆𝑔 ≤ 𝜀, then 𝑔 𝑥𝑛 = [𝒦𝑛𝑔] 𝑥0 = 𝜆𝑛𝑔 𝑥0 + 𝒪(𝑛𝜀)

Spap,ε 𝒦 = 𝑧 ∈ ℂ: ∃𝑔, 𝑔 = 1, 𝒦𝑔 − 𝑧𝑔 ≤ 𝜀

Coherent features!
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∈ ℂ𝑁×𝑁

Perils of discretization: Warmup on 𝓁2 ℤ

• Spectrum is unit circle.

• Spectrum is stable.

• Continuous spectra.

• Unitary evolution.

• Spectrum is 0 .

• Spectrum is unstable.

• Discrete spectra.

• Nilpotent evolution.

Lots of Koopman operators are built up from operators like these!
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Functions 𝜓𝑗: 𝒳 → ℂ, 𝑗 = 1, … , 𝑁 

𝒦 ⟶ 𝕂 = Ψ𝑋
∗𝑊Ψ𝑋

−1Ψ𝑋
∗𝑊Ψ𝑌 = ( 𝑊Ψ𝑋)† 𝑊Ψ𝑌 ∈ ℂ𝑁×𝑁

𝜓𝑘, 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 =

𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))
⋮ ⋱ ⋮

𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))
⋮ ⋱ ⋮

𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋 𝑗𝑘

Extended Dynamic Mode Decomposition (EDMD)

𝒦𝜓𝑘, 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

=
𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))

⋮ ⋱ ⋮
𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑦(1)) ⋯ 𝜓𝑁(𝑦(1))
⋮ ⋱ ⋮

𝜓1(𝑦(𝑀)) ⋯ 𝜓𝑁(𝑦(𝑀))

Ψ𝑌 𝑗𝑘

𝑥(𝑚), 𝑦(𝑚) = 𝐹(𝑥(𝑚))
𝑚=1

𝑀

• Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
• Rowley, Mezić, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.

Galerkin
Approximation

quadrature weights

quadrature points
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Residual DMD (ResDMD)

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘
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• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

Residual DMD (ResDMD)
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• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

?

What’s the missing

Residual DMD (ResDMD)
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• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦 𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌
∗𝑊Ψ𝑌

𝐾2 𝑗𝑘

Residual DMD (ResDMD)
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Residuals:  𝑔 = σ𝑗=1
𝑁 𝐠𝑗𝜓𝑗 , 𝒦𝑔 − 𝜆𝑔 2 = 𝒦𝑔 − 𝜆𝑔, 𝒦𝑔 − 𝜆𝑔

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦 𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌
∗𝑊Ψ𝑌

𝐾2 𝑗𝑘

Residual DMD (ResDMD)
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Residuals:  𝑔 = σ𝑗=1
𝑁 𝐠𝑗𝜓𝑗 , 𝒦𝑔 − 𝜆𝑔 2 = σ𝑘,𝑗=1

𝑁 𝐠𝑘𝐠𝑗 𝒦𝜓𝑘 − 𝜆𝜓𝑘 , 𝒦𝜓𝑗 − 𝜆𝜓𝑗

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦 𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌
∗𝑊Ψ𝑌

𝐾2 𝑗𝑘

Residual DMD (ResDMD)
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Residuals:  𝑔 = σ𝑗=1
𝑁 𝐠𝑗𝜓𝑗 , 𝒦𝑔 − 𝜆𝑔 2 = lim

𝑀→∞
𝐠∗ 𝐾2 − 𝜆𝐾1

∗ − ҧ𝜆𝐾1 + 𝜆 2𝐺 𝐠 

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦 𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌
∗𝑊Ψ𝑌

𝐾2 𝑗𝑘

Infinite-
dimensional 

residual

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

Bound projection errors!
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https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition


Example: EDMD doesn’t converge
• Duffing oscillator: ሶ𝑥 = 𝑦, ሶ𝑦 = −𝛼𝑦 + 𝑥(1 − 𝑥2), sampled Δ𝑡 = 0.3.

• Gaussian radial basis functions, Monte Carlo integration (𝑀 = 50000)

𝛼 = 0 𝛼 = 0.3

Spε(𝒦𝐹) = 𝑧 ∈ ℂ: 𝒦𝐹 − 𝑧𝐼 −1 −1 ≤ 𝜀

Compute Spap,ε 𝒦 , local adaptive control on 𝜀 ↓ 0
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Practical Gains: Arctic Sea Ice Forecasting

Motivation: Arctic amplification, polar bears, local communities, effect 
on extreme weather in Northern hemisphere,…

Problem: Very hard to predict more than two months in advance.

Monthly average from 
satellite passive 
microwave sensors.
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Relative mean squared error over 2016-2020. Model built 
from 2005-2015 data. (Solid lines moving 12-month mean.)

Mean binary accuracy over test years 2012-2020. (IceNet: 
Andersson et al, “Seasonal Arctic sea ice forecasting with 
probabilistic deep learning.” Nature Communications, 2021.)

Arctic case: Avoiding spurious eigenvalues helps!

• C., Mezić, Stepanenko, “Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning,” preprint, 2025.

EDMD
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Good news!

𝑵 = size of basis,      𝑴 = amount of data (quadrature)

Theorem A: There exists deterministic algorithms Γ𝑁,𝑀  using snapshots 
such that lim

𝑁→∞
lim

𝑀→∞
Γ𝑁,𝑀 𝐹 = Spap,ε 𝒦𝐹  for all systems.

• C., Mezić, Stepanenko, “Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning,” preprint, 2025.
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Question?

𝑵 = size of basis,      𝑴 = amount of data (quadrature)

Double limit lim
𝑁→∞

lim
𝑀→∞

        Can we do better?

Theorem A: There exists deterministic algorithms Γ𝑁,𝑀  using snapshots 
such that lim

𝑁→∞
lim

𝑀→∞
Γ𝑁,𝑀 𝐹 = Spap,ε 𝒦𝐹  for all systems.

• C., Mezić, Stepanenko, “Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning,” preprint, 2025.
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Class of systems: Ω𝔻 = 𝐹: ഥ𝔻 → ഥ𝔻| 𝐹 cts, measure preserving, invertible .

Data an algorithm can use: 𝒯𝐹 = 𝑥, 𝑦𝑚 |𝑥 ∈ ഥ𝔻, 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚 .

NB:
• 𝑛 can index anything.
• Universal - any type of algorithm or computational model.
•  Similarly, no random algorithms converging with probability > 1/2.

• For any sequence of random algorithms Γ𝑛  that uses 𝒯𝐹 

inf
𝐹∈Ω𝔻

ℙ lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹 ≤ 1/2.

Remarks:
• Universal - any type of algorithm or computational model.
• Phase transition at ℙ = 1/2 optimal.
• Possible to learn statistics for Ω𝔻, doesn’t help!
• Extends to other 𝒳.

Adversaries: Double limit is necessary!
Implies 𝓚 is unitary

Theorem B: There does not exist any sequence of deterministic algorithms 
Γ𝑛  using 𝒯𝐹 such that lim

𝑛→∞
Γ𝑛 𝐹 = Spap,ε 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

• C., Mezić, Stepanenko, “Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning,” preprint, 2025.

Adversaries occur 
with high probability.
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Proof idea: Constructing an adversary

𝐹0: rotation by 𝜋, Sp 𝒦𝐹0
= {±1}

Phase transition lemma: Let 𝑋 = 𝑥1, … , 𝑥𝑁 ,𝑌 = 𝑦1, … , 𝑦𝑁  be distinct 
points in annulus 𝒜 = 𝑥 ∈ 𝔻|0 < 𝑅 < 𝑥 < 𝑟 < 1  with 𝑋 ∩ 𝑌 = ∅. 
There exists a measure-preserving homeomorphism 𝐻 such that 𝐻 acts as 
the identity on 𝔻\𝒜 and 𝐻(𝑦𝑗) = 𝐹0(𝐻(𝑥𝑗)), 𝑗 = 1, … , 𝑁.

Conjugacy of data (𝒙𝒋 → 𝒚𝒋) with 𝑭𝟎

Idea: Use lemma to trick any algorithm into oscillating between spectra.

• Brown and Halperin. “On certain area-preserving maps.” Annals of Mathematics, 1935.

Phase transition lemma: Let 𝑋 = 𝑥1, … , 𝑥𝑁 ,𝑌 = 𝑦1, … , 𝑦𝑁  be distinct 
points in annulus 𝒜 = 𝑥 ∈ 𝔻|0 < 𝑅 < 𝑥 < 𝑟 < 1  with 𝑋 ∩ 𝑌 = ∅ . 
There exists a measure-preserving homeomorphism 𝐻 such that 𝐻 acts as 
the identity on 𝔻\𝒜 and 𝐻(𝑦𝑗) = 𝐹0(𝐻(𝑥𝑗)), 𝑗 = 1, … , 𝑁.
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Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

Proof idea: Constructing an adversary

𝒯𝐹 = 𝑥, 𝑦𝑚  | 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚

25



Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

෪𝐹1 𝑟, 𝜃 = 𝑟, 𝜃 + 𝜋 + 𝜙 𝑟 , supp(𝜙) ⊂ [1/4, 3/4]
Sp(𝒦෪𝐹1

) = 𝕋 (unit circle).
snapshots

Proof idea: Constructing an adversary

𝒯𝐹 = 𝑥, 𝑦𝑚  | 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚
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Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

෪𝐹1 𝑟, 𝜃 = 𝑟, 𝜃 + 𝜋 + 𝜙 𝑟 , supp(𝜙) ⊂ [1/4, 3/4]
Sp(𝒦෪𝐹1

) = 𝕋 (unit circle).

lim
𝑛→∞

Γ𝑛
෪𝐹1 = Sp(𝒦෪𝐹1

) ⇒ ∃𝑛1 s.t. dist(𝑖, Γ𝑛1
෪𝐹1 ) ≤ 1.

BUT Γ𝑛1
 uses finite amount of info to output Γ𝑛1

෪𝐹1 .
Let X, Y correspond to these snapshots.

Proof idea: Constructing an adversary

𝒯𝐹 = 𝑥, 𝑦𝑚  | 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚

snapshots
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Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

෪𝐹1 𝑟, 𝜃 = 𝑟, 𝜃 + 𝜋 + 𝜙 𝑟 , supp(𝜙) ⊂ [1/4, 3/4]
Sp(𝒦෪𝐹1

) = 𝕋 (unit circle).

lim
𝑛→∞

Γ𝑛
෪𝐹1 = Sp(𝒦෪𝐹1

) ⇒ ∃𝑛1 s.t. dist(𝑖, Γ𝑛1
෪𝐹1 ) ≤ 1.

BUT Γ𝑛1
 uses finite amount of info to output Γ𝑛1

෪𝐹1 .
Let X, Y correspond to these snapshots.

Lemma: 𝐹1 = 𝐻1
−1 ∘ 𝐹0 ∘ 𝐻1 on annulus 𝒜1.

Consistent data ⇒ Γ𝑛1
𝐹1 = Γ𝑛1

෪𝐹1 , dist(𝑖, Γ𝑛1
𝐹1 ) ≤ 1

BUT Sp(𝒦𝐹1
) = Sp(𝒦𝐹0

) = {±1}

snapshots

Sp(𝒦) = 𝕋

Sp 𝒦 = {±1}

snapshots

Rotation by 𝜋

Proof idea: Constructing an adversary
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, 𝐹𝑘 = 𝐻𝑘
−1 ∘ 𝐹0 ∘ 𝐻𝑘 on 𝒜𝑘. 𝐹 = lim

𝑘→∞
𝐹𝑘

Consistent data ⇒ Γ𝑛𝑘
𝐹 = Γ𝑛𝑘

(෪𝐹𝑘), dist(𝑖, Γ𝑛𝑘
𝐹 ) ≤ 1, 𝑛𝑘 → ∞

BUT Sp(𝒦𝐹) = Sp(𝒦𝐹0
) = {±1}

𝒜1

𝒜2

𝒜3

⋮

CANNOT CONVERGE
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, 𝐹𝑘 = 𝐻𝑘
−1 ∘ 𝐹0 ∘ 𝐻𝑘 on 𝒜𝑘. 𝐹 = lim

𝑘→∞
𝐹𝑘

Consistent data ⇒ Γ𝑛𝑘
𝐹 = Γ𝑛𝑘

(෪𝐹𝑘), dist(𝑖, Γ𝑛𝑘
𝐹 ) ≤ 1, 𝑛𝑘 → ∞

BUT Sp(𝒦𝐹) = Sp(𝒦𝐹0
) = {±1}

𝒜1

𝒜2

𝒜3

⋮

CANNOT CONVERGE
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Successive limits seems unavoidable!?!?

Def: Γ𝑛𝑘,…,𝑛1
 with lim

𝑛𝑘→∞
… lim

𝑛1→∞
 Γ𝑛𝑘,…,𝑛1

 convergent a tower of algorithms.

First appeared in dynamical systems theory:

Steve Smale

“Is there any purely 
iterative convergent 
rational map for 
polynomial zero 
finding?” Curtis McMullen

“Yes for cubic, no for higher 
degree. Quartic and quintic can 
be solved using towers of 
algorithms. Sextic cannot be 
solved in any number of limits.”

• Smale, “On the efficiency of algorithms of analysis.” Bull. Am. Math. Soc., 1985.
• McMullen, “Families of rational maps and iterative root-finding algorithms.” Annals Math., 1987.
• McMullen, “Braiding of the attractor and the failure of iterative algorithms.” Invent. Math. 1988.
• Doyle, McMullen, “Solving the quintic by iteration.” Acta Math., 1989.

algorithms
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Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

          Theorem A: SCI ≤ 2

          Theorem B: SCI > 1

 

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

combine SCI = 2
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Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

          Theorem A: SCI ≤ 2

          Theorem B: SCI > 1

 

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

combine SCI = 2

So far literature has only 
proven upper bounds, 
that need not be sharp…
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Lots of SCI upper bounds lurking in Koopman literature!

SCI: Fewest number of limits needed to solve a computational problem.

Previous techniques prove upper bounds on SCI.              
“N/C”: method need not converge. “n/a”: algorithm not applicable to problem. 

Also in Ulam’s method for Markov processes, SRB measure computation, control,…

Superscript ∗: SCI upper bound reduced by 1 if we can control quadrature errors.

Are these sharp?
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Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

• Δ1: One limit, full error control. E.g., 𝑑(Γ𝑛 𝐹 , Sp(𝒦𝐹)) ≤ 2−𝑛.

• Δ𝑚+1: SCI ≤ 𝑚.

• Σ𝑚: SCI ≤ 𝑚, final limit from below.      
   E.g., Σ1: sup

𝑧∈Γ𝑛 𝐹
 dist 𝑧, Sp(𝒦𝐹) ≤ 2−𝑛.

• Π𝑚: SCI ≤ 𝑚, final limit from above.      

   E.g., Π1: sup
𝑧∈Sp 𝒦𝐹

 dist 𝑧, Γ𝑛 𝐹 ≤ 2−𝑛.

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
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Classifications: Solvability Complexity Index (SCI)

SCI: Fewest number of limits needed to solve a computational problem.

• Δ1: One limit, full error control. E.g., 𝑑(Γ𝑛 𝐹 , Sp(𝒦𝐹)) ≤ 2−𝑛.

• Δ𝑚+1: SCI ≤ 𝑚.

• Σ𝑚: SCI ≤ 𝑚, final limit from below.      
   E.g., Σ1: sup

𝑧∈Γ𝑛 𝐹
 dist 𝑧, Sp(𝒦𝐹) ≤ 2−𝑛.

• Π𝑚: SCI ≤ 𝑚, final limit from above.      

   E.g., Π1: sup
𝑧∈Sp 𝒦𝐹

 dist 𝑧, Γ𝑛 𝐹 ≤ 2−𝑛.

• Hansen, “On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.” J. Am. Math. Soc., 2011.
• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

verification

trust output
covers spectrum
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Classification for Koopman

Different classes:

Ω𝒳 = 𝐹: 𝒳 → 𝒳 | 𝐹 cts  

Ω𝒳
𝑚 = 𝐹: 𝒳 → 𝒳 | 𝐹 cts, m. p.  

Ω𝒳
𝛼 = 𝐹: 𝒳 → 𝒳 | 𝐹 mod. cty. 𝛼  

[𝑑𝒳(𝐹(𝑥), 𝐹(𝑦)) ≤ 𝛼(𝑑𝒳 𝑥, 𝑦 )]

Optimal algorithms and 
classifications of 
dynamical systems.

3 limits needed 
in general!

Lower + upper bounds

• C., Mezić, Stepanenko, “Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning,” preprint, 2025.
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Conclusion: FOUNDATIONS  ⟷  METHODS

• Data-driven spectral problems for Koopman operators are hugely popular.    
BUT: Standard truncation methods often fail.

• SCI hierarchy classifies computational problems:

 Lower bounds through method of adversarial dynamics.

 Upper bounds ⟹ new “inf.-dim.” algorithms. Rigorous, optimal, practical.

  (spectra, pseudospectra, spectral measures etc.)   
  E.g., Verification of approximate eigenfunctions leads to practical gains.

⟶ We now have a near complete picture for Koopman on 𝑳𝟐(𝓧, 𝝎)!

NB: Similar story for spectral measures, dealing with continuous spectra (versus 
eigenvalues) and spectral type (different flavors of dynamics).

Further examples not covered in talk: foundations of AI, optimization, PDEs, 
resonances, computer-assisted proofs, spectral measures,…

• Much of computational literature not sharp!

• The resolvent plays a key role in computations.

Example 2: Need for foundations in data-driven learning.

• Adversarial dynamical systems: Widespread and prevent learning of properties.

• New provably convergent and optimal algorithms for Koopman operators.

Could this framework be useful in your area?

• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• Ben-Artzi, Marletta, Rösler, “Computing scattering resonances,” J. Eur. Math. Soc., 2022.
• Bastounis, Hansen, Vlačić, “The extended Smale's 9th problem,” preprint.
• Webb, Olver, “Spectra of Jacobi operators via connection coefficient matrices,” CIMP, 2021. 
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
• C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.
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Shameless final plug…
Upcoming book with CUP:

INFINITE-DIMENSIONAL SPECTRAL 
COMPUTATIONS

Foundations, Algorithms, and Modern 
Applications

100s of: classifications, algorithms,  
examples (including full code), figures, 
exercises (including full solutions).

**Out this (2025) holiday season 
(hopefully!)…**

If something interests you, 
please speak to me after.
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