

# Spectral Learning for Dynamical Systems

Matthew Colbrook 11<sup>th</sup> Sep 2025



"To <u>classify</u> is to bring order into chaos." - **George Pólya** 

#### What is a Koopman operator?

- $\mathcal{X} \subset \mathbb{R}^d$  the state space
- $X \ni x$  the state

cts  $F: \mathcal{X} \to \mathcal{X}$  – the dynamics:  $x_{n+1} = F(x_n)$ 

Henri Poincaré (Sorbonne)



#### What is a Koopman operator?

- $\mathcal{X} \subset \mathbb{R}^d$  the state space
- $X \ni x$  the state

cts 
$$F: \mathcal{X} \to \mathcal{X}$$
 – the dynamics:  $x_{n+1} = F(x_n)$ 

- Function space  $L^2 = L^2(\mathcal{X}, \omega)$  (elements g called "observables")
- Koopman operator  $\mathcal{K}_F$ :  $[\mathcal{K}_F g](x) = g(F(x))$





**NB:** Pointwise definition of  $\mathcal{K}_F$  needs  $F\#\omega \ll \omega$  – this will hold throughout.

**NB:**  $\mathcal{K}_F$  bounded equivalent to  $\mathrm{d}F\#\omega/\mathrm{d}\omega\in L^\infty$  – this will hold throughout (can be dropped).





John von Neumann (IAS)



- Koopman, "Hamiltonian systems and transformation in Hilbert space," Proc. Natl. Acad. Sci. USA, 1931.
- Koopman, v. Neumann, "Dynamical systems of continuous spectra," Proc. Natl. Acad. Sci. USA, 1932.

#### What is a Koopman operator?

- $\mathcal{X} \subset \mathbb{R}^d$  the state space
- $X \ni x$  the state
- <u>Unknown</u> cts  $F: \mathcal{X} \to \mathcal{X}$  the dynamics:  $x_{n+1} = F(x_n)$
- Function space  $L^2 = L^2(\mathcal{X}, \omega)$  (elements g called "observables")
- Koopman operator  $\mathcal{K}_F$ :  $[\mathcal{K}_F g](x) = g(F(x))$  LINEAR!
- <u>Available</u> snapshot data:  $\{(x^{(m)}, y^{(m)} = F(x^{(m)})) : m = 1, ..., M\}$

Can we compute spectral properties from trajectory data?

$$g(x_n) = [\mathcal{K}^n g](x_0)$$

#### Why?

If 
$$\|\mathcal{K}g - \lambda g\| \le \varepsilon$$
, then  $g(x_n) = [\mathcal{K}^n g](x_0) = \lambda^n g(x_0) + \mathcal{O}(n\varepsilon)$ 

**Trades:** Nonlinear, finite-dimensional  $\Rightarrow$  Linear, infinite-dimensional.

$$g(x_n) = [\mathcal{K}^n g](x_0)$$

## Why?

If 
$$\|\mathcal{K}g - \lambda g\| \le \varepsilon$$
, then  $g(x_n) = [\mathcal{K}^n g](x_0) = \lambda^n g(x_0) + \mathcal{O}(n\varepsilon)$ 



**Coherent features!** 

Lorenz attractor

**Trades:** Nonlinear, finite-dimensional  $\Rightarrow$  Linear, infinite-dimensional.

$$g(x_n) = [\mathcal{K}^n g](x_0)$$

### Why?

If 
$$\|\mathcal{K}g - \lambda g\| \le \varepsilon$$
, then  $g(x_n) = [\mathcal{K}^n g](x_0) = \lambda^n g(x_0) + \mathcal{O}(n\varepsilon)$ 



#### **Coherent features!**

$$\operatorname{Sp}_{\operatorname{ap},\varepsilon}(\mathcal{K}) = \{ z \in \mathbb{C} : \exists g, ||g|| = 1, ||\mathcal{K}g - zg|| \le \varepsilon \}$$

**Trades:** Nonlinear, finite-dimensional  $\Rightarrow$  Linear, infinite-dimensional.

#### Koopman Mode Decomposition

- Find  $(g_j, \lambda_j)$  with  $\|\mathcal{K}g_j \lambda_j g_j\| \le \varepsilon$
- Expand state:

Verified Eigenfunctions

Coefficients  $\in \mathbb{R}^d$ , called "Koopman modes"

$$x \approx \sum_{j} c_{j} g_{j}(x) \in \mathbb{R}^{d}$$

Forecasts:

$$x_n = \sum_j \lambda_j^n c_j g_j(x_0) + \mathcal{O}(n\varepsilon)$$

 $g(x_n) = [\mathcal{K}^n g](x_0)$ 

**Intuition:** A nonlinear separation of variables through a linear operator!

# GOAL: Compute spectral properties and figure out how hard this is.

DATA + DISCRETIZE  ${\cal K}$ 

DATA + DISCRETIZE X



FINITE-DIMENSIONAL NUMERICAL LINEAR ALGEBRA

DATA + DISCRETIZE X



FINITE-DIMENSIONAL NUMERICAL LINEAR ALGEBRA



EIGENVALUES etc.

DATA + DISCRETIZE  $\mathcal{K}$ 



FINITE-DIMEN NUMERICAL LINE

Works great if you have a selfadjoint operator that is compact or has compact resolvent!

#### Eigenvalue Problems

#### I. Babuška\*

Institute for Physical Science and Technology and Department of Mathematics University of Maryland College Park, MD 20742, USA

#### J. Osborn\*\*

Department of Mathematics University of Maryland College Park, MD 20742, USA

\*Partially supported by the Office of Naval Research under contract N00014-85-K-0169 and by the National Science Foundation under grant DMS-85-16191

\*\*Partially supported by the National Science Foundation under grant DMS-84-10324.

HANDBOOK OF NUMERICAL ANALYSIS, VOL. II Finite Blement Methods (Part 1) Edited by P.G. Carlet and J.L. Lions © 1991. Elsevier Science Publishers B.V. (North-Holland)

EIGENVALUES etc.



## Perils of discretization: Warmup on $\ell^2(\mathbb{Z})$



- Spectrum is unit circle.
- Spectrum is stable.
- Continuous spectra.
- Unitary evolution.

- Spectrum is  $\{0\}$ .
- Spectrum is unstable.
- Discrete spectra.
- Nilpotent evolution.

Lots of Koopman operators are built up from operators like these!

## Explicit example: Matrix approximation of ${\mathcal K}$ (EDMD)

Observables 
$$\psi_j: \mathcal{X} \to \mathbb{C}, j = 1, ..., N$$

$$\left\{x^{(m)}, y^{(m)} = F(x^{(m)})\right\}_{m=1}^{M}$$

quadrature points

$$\langle \psi_k, \psi_j \rangle \approx \sum_{m=1}^M w_m \overline{\psi_j(x^{(m)})} \psi_k(x^{(m)}) = \begin{bmatrix} \begin{pmatrix} \psi_1(x^{(1)}) & \cdots & \psi_N(x^{(1)}) \\ \vdots & \ddots & \vdots \\ \psi_1(x^{(M)}) & \cdots & \psi_N(x^{(M)}) \end{pmatrix}^* \underbrace{\begin{pmatrix} w_1 & & \\ & \ddots & \\ & & w_M \end{pmatrix}}_{\hat{W}} \underbrace{\begin{pmatrix} \psi_1(x^{(1)}) & \cdots & \psi_N(x^{(1)}) \\ \vdots & \ddots & \vdots \\ \psi_1(x^{(M)}) & \cdots & \psi_N(x^{(M)}) \end{pmatrix}}_{jk}$$
quadrature weights

$$\langle \mathcal{K}\psi_{k},\psi_{j}\rangle \approx \sum_{m=1}^{M} w_{m}\overline{\psi_{j}(x^{(m)})}\underbrace{\psi_{k}(y^{(m)})}_{[\mathcal{K}\psi_{k}](x^{(m)})} = \underbrace{\begin{bmatrix} \psi_{1}(x^{(1)}) & \cdots & \psi_{N}(x^{(1)}) \\ \vdots & \ddots & \vdots \\ \psi_{1}(x^{(M)}) & \cdots & \psi_{N}(x^{(M)}) \end{bmatrix}^{*}}_{\psi_{X}} \underbrace{\begin{pmatrix} w_{1} & & & \\ & \ddots & & \\ & & w_{M} \end{pmatrix}}_{W} \underbrace{\begin{pmatrix} \psi_{1}(y^{(1)}) & \cdots & \psi_{N}(y^{(1)}) \\ \vdots & \ddots & \vdots \\ \psi_{1}(y^{(M)}) & \cdots & \psi_{N}(y^{(M)}) \end{pmatrix}}_{ik}$$

Galerkin Approximation

$$\mathcal{K} \longrightarrow (\Psi_X^* W \Psi_X)^{-1} \Psi_X^* W \Psi_Y \in \mathbb{C}^{N \times N}$$

- Schmid, "Dynamic mode decomposition of numerical and experimental data," J. Fluid Mech., 2010.
- Rowley, Mezić, Bagheri, Schlatter, Henningson, "Spectral analysis of nonlinear flows," J. Fluid Mech., 2009.
- Williams, Kevrekidis, Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlinear Sci., 2015.

#### EDMD doesn't converge!

- Duffing oscillator:  $\dot{x}=y$ ,  $\dot{y}=-\alpha y+x(1-x^2)$ , sampled  $\Delta t=0.3$ .
- Gaussian radial basis functions, Monte Carlo integration (M = 50000)



$$\langle \psi_k, \psi_j \rangle \approx \sum_{m=1}^{M} w_m \overline{\psi_j(x^{(m)})} \, \psi_k(x^{(m)}) = \left[ \underbrace{\Psi_X^* W \Psi_X}_{G} \right]_{jk}$$

$$\langle \mathcal{K} \psi_k, \psi_j \rangle \approx \sum_{m=1}^{M} w_m \overline{\psi_j(x^{(m)})} \, \underbrace{\psi_k(y^{(m)})}_{[\mathcal{K} \psi_k](x^{(m)})} = \left[ \underbrace{\Psi_X^* W \Psi_Y}_{K_1} \right]_{jk}$$

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," Commun. Pure Appl. Math., 2023.
- C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., 2023.
- Code: <a href="https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition">https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition</a>

$$\langle \psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \psi_{k}(x^{(m)}) = \left[ \underline{\Psi_{x}^{*}W\Psi_{x}} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \underbrace{\psi_{k}(y^{(m)})}_{[\mathcal{K}\psi_{k}](x^{(m)})} = \left[ \underline{\Psi_{x}^{*}W\Psi_{y}} \right]_{jk}$$

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," Commun. Pure Appl. Math., 2023.
- C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., 2023.
- Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

$$\langle \psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \psi_{k}(x^{(m)}) = \left[ \underbrace{\Psi_{X}^{*}W\Psi_{X}}_{G} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \underbrace{\psi_{k}(y^{(m)})}_{[\mathcal{K}\psi_{k}](x^{(m)})} = \left[ \underbrace{\Psi_{X}^{*}W\Psi_{Y}}_{K_{1}} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \mathcal{K}\psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(y^{(m)})} \psi_{k}(y^{(m)}) = \left[ \underbrace{\Psi_{Y}^{*}W\Psi_{Y}}_{K_{2}} \right]_{jk}$$

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," Commun. Pure Appl. Math., 2023.
- C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., 2023.
- Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

$$\langle \psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \psi_{k}(x^{(m)}) = \left[ \underbrace{\Psi_{X}^{*}W\Psi_{X}}_{G} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \underbrace{\psi_{k}(y^{(m)})}_{[\mathcal{K}\psi_{k}](x^{(m)})} = \left[ \underbrace{\Psi_{X}^{*}W\Psi_{Y}}_{K_{1}} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \mathcal{K}\psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(y^{(m)})} \psi_{k}(y^{(m)}) = \left[ \underbrace{\Psi_{Y}^{*}W\Psi_{Y}}_{K_{2}} \right]_{jk}$$

**Residuals:** 
$$g = \sum_{j=1}^{N} \mathbf{g}_{j} \psi_{j}$$
,  $\|\mathcal{K}g - \lambda g\|^{2} = \langle \mathcal{K}g - \lambda g, \mathcal{K}g - \lambda g \rangle$ 

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," Commun. Pure Appl. Math., 2023.
- C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., 2023.
- Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

$$\langle \psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \psi_{k}(x^{(m)}) = \left[ \underbrace{\Psi_{X}^{*}W\Psi_{X}}_{G} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \underbrace{\psi_{k}(y^{(m)})}_{[\mathcal{K}\psi_{k}](x^{(m)})} = \left[ \underbrace{\Psi_{X}^{*}W\Psi_{Y}}_{K_{1}} \right]_{jk}$$

$$\langle \mathcal{K}\psi_{k}, \mathcal{K}\psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(y^{(m)})} \psi_{k}(y^{(m)}) = \left[ \underbrace{\Psi_{Y}^{*}W\Psi_{Y}}_{K_{2}} \right]_{jk}$$

Residuals: 
$$g = \sum_{j=1}^{N} \mathbf{g}_j \psi_j$$
,  $\|\mathcal{K}g - \lambda g\|^2 = \sum_{k,j=1}^{N} \mathbf{g}_k \overline{\mathbf{g}_j} \langle \mathcal{K}\psi_k - \lambda \psi_k, \mathcal{K}\psi_j - \lambda \psi_j \rangle$ 

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," Commun. Pure Appl. Math., 2023.
- C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., 2023.
- Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

$$\langle \psi_k, \psi_j \rangle \approx \sum_{m=1}^M w_m \overline{\psi_j(x^{(m)})} \, \psi_k(x^{(m)}) = \left[ \underbrace{\Psi_X^* W \Psi_X}_{\widehat{G}} \right]_{jk}$$
 Infinite-dimensional error bound! 
$$\langle \mathcal{K} \psi_k, \psi_j \rangle \approx \sum_{m=1}^M w_m \overline{\psi_j(x^{(m)})} \, \underbrace{\psi_k(y^{(m)})}_{[\mathcal{K} \psi_k](x^{(m)})} = \left[ \underbrace{\Psi_X^* W \Psi_Y}_{\widehat{K}_1} \right]_{jk}$$
 error bound! 
$$\langle \mathcal{K} \psi_k, \mathcal{K} \psi_j \rangle \approx \sum_{m=1}^M w_m \overline{\psi_j(y^{(m)})} \, \psi_k(y^{(m)}) = \left[ \underbrace{\Psi_Y^* W \Psi_Y}_{\widehat{K}_2} \right]_{jk}$$

**Residuals:** 
$$g = \sum_{j=1}^{N} \mathbf{g}_{j} \psi_{j}$$
,  $\|\mathcal{K}g - \lambda g\|^{2} = \lim_{M \to \infty} \mathbf{g}^{*} [K_{2} - \lambda K_{1}^{*} - \bar{\lambda} K_{1} + |\lambda|^{2} G] \mathbf{g}$ 

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," Commun. Pure Appl. Math., 2023.
- C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., 2023.
- Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

#### ResDMD does converge!

- Duffing oscillator:  $\dot{x}=y$ ,  $\dot{y}=-\alpha y+x(1-x^2)$ , sampled  $\Delta t=0.3$ .
- Gaussian radial basis functions, Monte Carlo integration (M = 50000)

Compute  $\operatorname{Sp}_{\operatorname{ap},\varepsilon}(\mathcal{K})$ , local adaptive control on  $\varepsilon\downarrow 0$ 





## Can maths help guide the way?

If (X, d) is a compact measure space and  $\omega$  a Borel measure...

**Theorem:** There **exists** algorithms  $\Gamma_{N,M}$  that sample F such that

$$\lim_{N\to\infty}\lim_{M\to\infty}\Gamma_{N,M}(F)=\mathrm{Sp}_{\mathrm{ap},\varepsilon}(\mathcal{K}_F)$$

for all systems.



N =size of basis, M =amount of data (quadrature)

$$\operatorname{Sp}_{\operatorname{ap},\varepsilon}(\mathcal{K}) = \{ z \in \mathbb{C} : \exists g, ||g|| = 1, ||\mathcal{K}g - zg|| \le \varepsilon \}$$

## Can maths help guide the way?

If (X, d) is a compact measure space and  $\omega$  a Borel measure...

**Theorem:** There **exists** algorithms  $\Gamma_{N,M}$  that sample F such that

$$\lim_{N\to\infty}\lim_{M\to\infty}\Gamma_{N,M}(F)=\mathrm{Sp}_{\mathrm{ap},\varepsilon}(\mathcal{K}_F)$$

for all systems.

N =size of basis, M =amount of data (quadrature)

## **Double** limit $\lim_{N\to\infty} \lim_{N\to\infty}$

Can we do better?

#### Adversaries: **Double** limit is necessary!

Implies  ${\mathcal K}$  is unitary

Class of systems:  $\Omega_{\mathbb{D}} = \{F : \overline{\mathbb{D}} \to \overline{\mathbb{D}} | F \text{ cts, measure preserving, invertible} \}$ .

Data an algorithm can use:  $\mathcal{T}_F = \{(x, y_m) | x \in \overline{\mathbb{D}}, || F(x) - y_m || \le 2^{-m} \}.$ 

Theorem: There does not exist any sequence of deterministic algorithms  $\{\Gamma_n\}$  using  $\mathcal{T}_F$  such that  $\lim_{n\to\infty}\Gamma_n(F)=\operatorname{Sp}_{\mathrm{ap},\epsilon}(\mathcal{K}_F)\ \forall F\in\Omega_{\mathbb{D}}.$ 

#### NB:

- n can index anything.
- <u>Universal</u> any type of algorithm or computational model.
- Similarly, no <u>random</u> algorithms converging with probability > 1/2.

• C., Mezić, Stepanenko, "Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning," preprint, 2025.

$$F_0$$
: rotation by  $\pi$ ,  $\mathrm{Sp}(\mathcal{K}_{F_0})=\{\pm 1\}$ 

**Phase transition lemma:** Let  $X = \{x_1, ..., x_N\}, Y = \{y_1, ..., y_N\}$  be distinct points in annulus  $\mathcal{A} = \{x \in \mathbb{D} | 0 < R < \|x\| < r < 1\}$  with  $X \cap Y = \emptyset$ . There exists a measure-preserving homeomorphism H such that H acts as the identity on  $\mathbb{D} \setminus \mathcal{A}$  and  $H(y_j) = F_0(H(x_j)), j = 1, ..., N$ .

Conjugacy of data  $(x_i \rightarrow y_i)$  with  $F_0$ 

Idea: Use lemma to trick any algorithm into oscillating between spectra.

• Brown and Halperin. "On certain area-preserving maps." Annals of Mathematics, 1935.

Suppose (for contradiction)  $\{\Gamma_n\}$  uses  $\mathcal{T}_F$ ,  $\lim_{n\to\infty}\Gamma_n(F)=\operatorname{Sp}(\mathcal{K}_F)\ \forall F\in\Omega_{\mathbb{D}}$ . Build an adversarial F...

Suppose (for contradiction)  $\{\Gamma_n\}$  uses  $\mathcal{T}_F$ ,  $\lim_{n\to\infty}\Gamma_n(F)=\operatorname{Sp}(\mathcal{K}_F)\ \forall F\in\Omega_{\mathbb{D}}$ .

Build an adversarial F...

$$\widetilde{F_1}(r,\theta) = (r,\theta + \pi + \phi(r)), \operatorname{supp}(\phi) \subset [1/4, 3/4]$$
  
  $\operatorname{Sp}(\mathcal{K}_{\widetilde{F_1}}) = \mathbb{T}$  (unit circle).



Suppose (for contradiction)  $\{\Gamma_n\}$  uses  $\mathcal{T}_F$ ,  $\lim_{n\to\infty}\Gamma_n(F)=\operatorname{Sp}(\mathcal{K}_F)\ \forall F\in\Omega_{\mathbb{D}}$ .

Build an adversarial F...

$$\widetilde{F_1}(r,\theta) = (r,\theta + \pi + \phi(r)), \operatorname{supp}(\phi) \subset [1/4, 3/4]$$
  
  $\operatorname{Sp}(\mathcal{K}_{\widetilde{F_1}}) = \mathbb{T}$  (unit circle).

 $\lim_{n\to\infty}\Gamma_n\big(\widetilde{F_1}\big)=\operatorname{Sp}(\mathcal{K}_{\widetilde{F_1}})\Rightarrow \exists n_1 \text{ s.t. } \operatorname{dist}(i,\Gamma_{n_1}\big(\widetilde{F_1}\big))\leq 1.$ 

**BUT**  $\Gamma_{n_1}$  uses finite amount of info to output  $\Gamma_{n_1}(\widetilde{F_1})$ . Let X, Y correspond to these snapshots.



Suppose (for contradiction)  $\{\Gamma_n\}$  uses  $\mathcal{T}_F$ ,  $\lim_{n\to\infty}\Gamma_n(F)=\operatorname{Sp}(\mathcal{K}_F)\ \forall F\in\Omega_{\mathbb{D}}$ .

Build an adversarial F...

$$\widetilde{F_1}(r,\theta) = (r,\theta + \pi + \phi(r)), \operatorname{supp}(\phi) \subset [1/4, 3/4]$$
  
 $\operatorname{Sp}(\mathcal{K}_{\widetilde{F_1}}) = \mathbb{T}$  (unit circle).

 $\lim_{n\to\infty}\Gamma_n\big(\widetilde{F_1}\big)=\operatorname{Sp}(\mathcal{K}_{\widetilde{F_1}})\Rightarrow \exists n_1 \text{ s.t. } \operatorname{dist}(i,\Gamma_{n_1}\big(\widetilde{F_1}\big))\leq 1.$ 

**BUT**  $\Gamma_{n_1}$  uses finite amount of info to output  $\Gamma_{n_1}(\widetilde{F_1})$ . Let X, Y correspond to these snapshots.

Lemma:  $F_1 = H_1^{-1} \circ F_0 \circ H_1$  on annulus  $\mathcal{A}_1$ . Consistent data  $\Rightarrow \Gamma_{n_1}(F_1) = \Gamma_{n_1}(\widetilde{F_1})$ , dist $(i, \Gamma_{n_1}(F_1)) \leq 1$ BUT  $\operatorname{Sp}(\mathcal{K}_{F_1}) = \operatorname{Sp}(\mathcal{K}_{F_0}) = \{\pm 1\}$ 

snapsho<sup>\*</sup>  $\operatorname{Sp}(\mathcal{K}) = \mathbb{T}$ Rotation by  $\pi$  $Sp(\mathcal{K}) = \{\pm 1\}$ 

Inductive step: Repeat on annuli,  $F_k = H_k^{-1} \circ F_0 \circ H_k$  on  $\mathcal{A}_k$ .  $F = \lim_{k \to \infty} F_k$ Consistent data  $\Rightarrow \Gamma_{n_k}(F) = \Gamma_{n_k}(\widetilde{F_k})$ ,  $\operatorname{dist}(i, \Gamma_{n_k}(F)) \leq 1$ ,  $n_k \to \infty$ 

BUT  $\operatorname{Sp}(\mathcal{K}_F) = \operatorname{Sp}(\mathcal{K}_{F_0}) = \{\pm 1\}$ 

**CANNOT CONVERGE** 



Cascade of disks

Inductive step: Repeat on annuli,  $F_k = H_k^{-1} \circ F_0 \circ H_k$  on  $\mathcal{A}_k$ .  $F = \lim_{k \to \infty} F_k$ 

Consistent data  $\Rightarrow \Gamma_{n_k}(F) = \Gamma_{n_k}(\widetilde{F_k})$ , dist $(i, \Gamma_{n_k}(F)) \leq 1$ ,  $n_k \to \infty$ 

**BUT** Sp( $\mathcal{K}_F$ ) = Sp( $\mathcal{K}_{F_0}$ ) = {±1}



#### Classifications: Solvability Complexity Index (SCI)

**SCI:** Fewest number of limits needed to solve a computational problem.

- $\Delta_1$ : One limit, full error control. E.g.,  $d(\Gamma_n(F), \operatorname{Sp}(\mathcal{K}_F)) \leq 2^{-n}$ .
- $\Delta_{m+1}$ :  $SCI \leq m$ .
- $\Sigma_m$ : SCI  $\leq m$ , final limit from below.

E.g., 
$$\Sigma_1$$
:  $\sup_{z \in \Gamma_n(F)} \operatorname{dist}(z, \operatorname{Sp}(\mathcal{K}_F)) \leq 2^{-n}$ .

•  $\Pi_m$ : SCI  $\leq m$ , final limit from above.

E.g., 
$$\Pi_1$$
:  $\sup_{z \in \operatorname{Sp}(\mathcal{K}_F)} \operatorname{dist}(z, \Gamma_n(F)) \leq 2^{-n}$ .

- Hansen, "On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators." J. Am. Math. Soc., 2011.
- C., "The foundations of infinite-dimensional spectral computations," PhD diss., University of Cambridge, 2020.
- C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2022.
- C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," arXiv, 2020.

# Classifications: Solvability Complexity Index (SCI)

**SCI:** Fewest number of limits needed to solve a computational problem.

- $\Delta_1$ : One limit, full error control. E.g.,  $d(\Gamma_n(F), \operatorname{Sp}(\mathcal{K}_F)) \leq 2^{-n}$ .
- $\Delta_{m+1}$ :  $SCI \leq m$ .

trust output

•  $\Sigma_m$ : SCI  $\leq m$ , final limit from below.

E.g., 
$$\Sigma_1$$
:  $\sup_{z \in \Gamma_n(F)} \operatorname{dist}(z, \operatorname{Sp}(\mathcal{K}_F)) \leq 2^{-n}$ . al limit from above.

•  $\Pi_m$ : SCI  $\leq m$ , final limit from above.

E.g., 
$$\Pi_1$$
:  $\sup_{z \in \operatorname{Sp}(\mathcal{K}_F)} \operatorname{dist}(z, \Gamma_n(F)) \leq 2^{-n}$ .

covers spectrum

- Hansen, "On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators." J. Am. Math. Soc., 2011.
- C., "The foundations of infinite-dimensional spectral computations," PhD diss., University of Cambridge, 2020.
- C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2022.
- C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks," Proc. Natl. Acad. Sci. USA, 2022.
- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," arXiv, 2020.

# Lots of SCI upper bounds lurking in Koopman literature!

**SCI:** Fewest number of limits needed to solve a computational problem.

| Algorithm                           | Comments/Assumptions                                     | Spectral Problem's Corresponding SCI Upper Bound |               |                                                          |                                                       |
|-------------------------------------|----------------------------------------------------------|--------------------------------------------------|---------------|----------------------------------------------------------|-------------------------------------------------------|
| Aigontiili                          |                                                          | KMD                                              | Spectrum      | Spectral Measure (if m.p.)                               | Spectral Type (if m.p.)                               |
| Extended DMD [47]                   | general $L^2$ spaces                                     | $SCI \le 2^*$                                    | N/C           | N/C                                                      | n/a                                                   |
| Residual DMD [44]                   | general $L^2$ spaces                                     | $SCI \le 2^*$                                    | $SCI \le 3^*$ | $SCI \le 2^*$                                            | varies, see [84]<br>e.g., a.c. density: $SCI \le 2^*$ |
| Measure-preserving EDMD [45]        | m.p. systems                                             | $SCI \le 1$                                      | N/C           | $SCI \le 2^*$ (general)<br>$SCI \le 1$ (delay-embedding) | n/a                                                   |
| Hankel DMD [85]                     | m.p. ergodic systems                                     | $SCI \le 2^*$                                    | N/C           | N/C                                                      | n/a                                                   |
| Periodic approximations [86]        | m.p. $+\omega$ a.c.                                      | $SCI \leq 2$                                     | N/C           | $SCI \le 2$ (see [87])                                   | a.c. density: $SCI \leq 3$                            |
| Christoffel–Darboux kernel [40]     | m.p. ergodic systems                                     | $SCI \leq 3$                                     | n/a           | $SCI \leq 2$                                             | e.g., a.c. density: $SCI \leq 2$                      |
| Generator EDMD [88]                 | ctstime, samples $\nabla F$ (otherwise additional limit) | $SCI \le 2$                                      | N/C           | $SCI \leq 2$ (see [89])                                  | n/a                                                   |
| Compactification [42]               | ctstime, m.p. ergodic systems                            | $SCI \le 4$                                      | N/C           | $ SCI  \le 4$                                            | n/a                                                   |
| Resolvent compactification [43]     | ctstime, m.p. ergodic systems                            | $SCI \leq 5$                                     | N/C           | $SCI \leq 5$                                             | n/a                                                   |
| Diffusion maps [90] (see also [10]) |                                                          | •                                                | •••••         | n/a                                                      |                                                       |
| D                                   |                                                          |                                                  | •             |                                                          | Are these sharp?                                      |

### Previous techniques prove upper bounds on SCI.

"N/C": method need not converge. "n/a": algorithm not applicable to problem.

Also in Ulam's method for Markov processes, SRB measure computation, control,...

Lower + upper bounds

Classification for Koopman

3 limits needed in general!



### **Different classes:**

$$\Omega_{\mathcal{X}} = \{F: \mathcal{X} \to \mathcal{X} \mid F \text{ cts}\}$$

$$\Omega_{\mathcal{X}}^{m} = \{F: \mathcal{X} \to \mathcal{X} \mid F \text{ cts, m. p.}\}$$

$$\Omega_{\mathcal{X}}^{\alpha} = \{F: \mathcal{X} \to \mathcal{X} \mid F \text{ mod. cty. } \alpha\}$$

$$[d_{\mathcal{X}}(F(x), F(y)) \leq \alpha(d_{\mathcal{X}}(x, y))]$$

Optimal algorithms and classifications of dynamical systems.

C., Mezić, Stepanenko, "Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning," preprint, 2025.

### **Peter Lax:**

"The trick of the successful mathematician is to turn the question being asked into one he knows how to answer."

### **Johann Wolfgang von Goethe:**

"Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely different."

Let's perform this trick by changing the space...

# Reproducing kernel Hilbert space (RKHS)

Hilbert space of functions on  $\mathcal{X}$  s.t.  $g \mapsto g(x)$  bounded  $\forall x \in \mathcal{X}$ .

Generated by a kernel  $\Re: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ 

$$g(x) = \langle g, \mathfrak{K}_{\chi} \rangle, \qquad \mathfrak{K}(x, y) = \langle \mathfrak{K}_{\chi}, \mathfrak{K}_{\gamma} \rangle = \mathfrak{K}_{\chi}(y)$$

## Advantages over $L^2(X, \omega)$ :

- Forecasts: space bounds ⇒ pointwise bounds.
- High-dimensional systems practical through kernel trick.
- Fast methods for evaluating  $\Re$ .
- Different  $\Re \Rightarrow$  different  $\Re!$  Can be tailored to application. (This is where the community is currently heading.)
- Leads to fundamental "possibility" gains...

An Introduction to the Theory of Reproducing Kernel Hilbert Spaces

VERN I. PAULSEN MRINAL RAGHUPATHI

E.g., Sobolev spaces (of sufficient regularity)

# Reproducing kernel Hilbert space (RKHS)

Hilbert space of functions on  $\mathcal{X}$  s.t.  $g \mapsto g(x)$  bounded  $\forall x \in \mathcal{X}$ .

Generated by a kernel  $\Re: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ 

$$g(x) = \langle g, \mathfrak{K}_{\chi} \rangle, \qquad \mathfrak{K}(x, y) = \langle \mathfrak{K}_{\chi}, \mathfrak{K}_{y} \rangle = \mathfrak{K}_{\chi}(y)$$

### Advantages over $L^2(X, \omega)$ :

- Forecasts: space bounds ⇒ pointwise bounds.
- High-dimensional systems practical through kernel trick.
- Fast methods for evaluating  $\Re$ .
- Different  $\Re \Rightarrow$  different  $\Re!$  Can be tailored to application. (This is where the community is currently heading.)
- Leads to fundamental "possibility" gains...

An Introduction to the Theory of Reproducing Kernel Hilbert Spaces

VERN I. PAULSEN MRINAL RAGHUPATHI

E.g., Sobolev spaces (of sufficient regularity)

# SpecRKHS: Avoiding large was Look at "Left eigenpairs" through $\mathcal{K}^*$ : $\mathcal{K}^*\mathfrak{K}_\chi = \mathfrak{K}_{F(\chi)}$

$$\mathcal{K}^*\mathfrak{K}_{\chi}=\mathfrak{K}_{F(\chi)}$$

$$G_{jk} = \left\langle \mathfrak{K}_{\chi(k)}, \mathfrak{K}_{\chi(j)} \right\rangle = \mathfrak{K}(\chi^{(k)}, \chi^{(j)})$$

$$A_{jk} = \left\langle \mathcal{K}^* \mathfrak{K}_{\chi(k)}, \mathfrak{K}_{\chi(j)} \right\rangle = \left\langle \mathfrak{K}_{y(k)}, \mathfrak{K}_{\chi(j)} \right\rangle = \mathfrak{K}(y^{(k)}, \chi^{(j)})$$

$$R_{jk} = \left\langle \mathcal{K}^* \mathfrak{K}_{\chi(k)}, \mathcal{K}^* \mathfrak{K}_{\chi(j)} \right\rangle = \left\langle \mathfrak{K}_{y(k)}, \mathfrak{K}_{y(j)} \right\rangle = \mathfrak{K}(y^{(k)}, y^{(j)})$$

$$g = \sum_{m=1}^{M} \mathbf{g}_m \mathfrak{K}_{\chi(m)}, \quad \|\mathcal{K}^* g - \lambda g\|_{\mathcal{H}}^2 = \mathbf{g}^* (R - \lambda A^* - \bar{\lambda} A + G) \mathbf{g}$$

Boullé, C., Conradie, "Convergent Methods for Koopman Operators on Reproducing Kernel Hilbert Spaces," preprint, 2025.

# SpecRKHS: Example algorithm

$$\operatorname{res}^*(\lambda, \mathbf{g})^2 = \frac{\|\mathcal{K}^*g - \lambda g\|_{\mathcal{H}}^2}{\|g\|_{\mathcal{H}}^2} = \frac{\mathbf{g}^*[R - \lambda A^* - \bar{\lambda}A + G]\mathbf{g}}{\mathbf{g}^*G\mathbf{g}}$$

- 1. Compute  $G, A, R \in \mathbb{C}^{N \times N}$  (N = M)
- 2. For  $z_k$  in grid, compute  $\tau_k = \min_{g = \sum_{m=1}^N \mathbf{g}_m \mathfrak{R}_{\chi(m)}} \operatorname{res}^*(z_k, \mathbf{g})$ , corresponding  $g_k$  (gen. SVD).
- **3.** Output:  $\{z_k: \tau_k < \varepsilon\}$ ,  $\{g_k: \tau_k < \varepsilon\}$  ( $\varepsilon$ -pseudoeigenfunctions).

### **Theorem:**

First convergent method for general  ${\mathcal K}$ 

- Error control:  $\{z_k : \tau_k < \varepsilon\} \subseteq \operatorname{Sp}_{ap,\varepsilon}(\mathcal{K}^*)$
- Convergence: Converges locally uniformly to  $\operatorname{Sp}_{\operatorname{ap},\epsilon}(\mathcal{K}^*)$  (as  $N \to \infty$ )

$$\operatorname{Sp}_{\operatorname{ap},\varepsilon}(\mathcal{K}^*) = \{ z \in \mathbb{C} : \exists g, \|g\|_{\mathcal{H}} = 1, \|\mathcal{K}^*g - zg\|_{\mathcal{H}} \le \varepsilon \}$$

• Boullé, C., Conradie, "Convergent Methods for Koopman Operators on Reproducing Kernel Hilbert Spaces," preprint, 2025.

# Practical gains: Sea ice forecasting





**Motivation:** Arctic amplification, polar bears, local communities, effect on extreme weather in Northern hemisphere,...

**Problems:** 1. Very hard to locate geographical significant regions.

2. Very hard to predict more than two months in advance.



• C., Mezić, Stepanenko, "Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning," preprint, 2025.

# Avoid spurious evals ⇒ State-of-the-art forecasts



Relative mean squared error over 2016-2020. Model built from 2005-2015 data. (Solid lines moving 12-month mean.)

Mean binary accuracy over test years 2012-2020. (IceNet: Andersson et al, "Seasonal Arctic sea ice forecasting with probabilistic deep learning." Nature Communications, 2021.)

• C., Mezić, Stepanenko, "Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning," preprint, 2025.









# **Pointers**

- Data-driven spectral problems for Koopman operators are hugely popular.
   BUT: Standard truncation methods often fail.
- 2. General method with convergence for spectral properties

  (spectra, pseudospectra, spectral measures etc.) of K. operators!

  E.g., Verification of approximate eigenfunctions leads to practical gains.
- 3. SCI hierarchy classifies computational problems:
   Lower bounds through method of <u>adversarial dynamics</u>.
   Upper bounds ⇒ new "inf.-dim." algorithms. <u>Rigorous, optimal, practical.</u>
- $\longrightarrow$  We now have a near complete picture for Koopman on  $L^2(\mathcal{X},\omega)$  and RKHS!

**NB:** Similar picture has emerged for spectral measures, dealing with continuous spectra (versus eigenvalues) and spectral type (different flavors of dynamics).

# Shameless plug...

Upcoming book with CUP:

# INFINITE-DIMENSIONAL SPECTRAL COMPUTATIONS

Foundations, Algorithms, and Modern Applications

100s of: classifications, algorithms, examples (webpage: full code), figures, exercises (webpage: full solutions).

\*\*Out by end of 2025 (hopefully!)... \*\*

### Contents

|                                                   |                                                                         | If something interests you,                           |                  |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------|------------------|--|--|--|
| Preface<br>Notation                               |                                                                         | If something interests you, please speak to me after. |                  |  |  |  |
| Exan                                              | tion<br>nple Classifications<br>chart                                   |                                                       | xiv<br>xv<br>xvi |  |  |  |
| 1                                                 | Spectral Problems in Infinite D                                         | vimensions                                            |                  |  |  |  |
| 2                                                 | The Solvability Complexity Index: A Toolkit for Classifying Problems    |                                                       |                  |  |  |  |
| 3                                                 | Computing Spectra with Error Control                                    |                                                       |                  |  |  |  |
| 4                                                 | Spectral Measures of Self-Adjoint Operators                             |                                                       |                  |  |  |  |
| 5                                                 | Spectral Measures of Unitary Operators                                  |                                                       |                  |  |  |  |
| 6                                                 | Spectral Types of Self-Adjoint and Unitary Operators                    |                                                       |                  |  |  |  |
| 7                                                 | Quantifying the Size of Spectra                                         |                                                       |                  |  |  |  |
| 8                                                 | Essential Spectra                                                       |                                                       |                  |  |  |  |
| 9                                                 | Spectral Radii, Abscissas, and Gaps                                     |                                                       |                  |  |  |  |
| 10                                                | Nonlinear Spectral Problems                                             |                                                       |                  |  |  |  |
| 11                                                | 1 Data-Driven Koopman Spectral Problems for Nonlinear Dynamical Systems |                                                       |                  |  |  |  |
| Appe                                              | Appendix A Some brief preliminaries                                     |                                                       |                  |  |  |  |
| Appendix B A bluffer's guide to the SCI hierarchy |                                                                         |                                                       |                  |  |  |  |
| Bibli                                             | Bibliography                                                            |                                                       |                  |  |  |  |

# References

- [1] Colbrook, Matthew J., and Alex Townsend. "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems." Communications on Pure and Applied Mathematics 77.1 (2024): 221-283.
- [2] Colbrook, Matthew J., Loma J. Ayton, and Máté Szőke. "Residual dynamic mode decomposition: robust and verified Koopmanism." Journal of Fluid Mechanics 955 (2023): A21.
- [3] Colbrook, M. J., Li, Q., Raut, R. V., & Townsend, A. "Beyond expectations: residual dynamic mode decomposition and variance for stochastic dynamical systems." Nonlinear Dynamics 112.3 (2024): 2037-2061.
- [4] Colbrook, Matthew J. "The Multiverse of Dynamic Mode Decomposition Algorithms." Handbook of Numerical Analysis, vol. 25, pp. 127-230. Elsevier, 2024...
- [5] Colbrook, Matthew J. "The mpEDMD algorithm for data-driven computations of measure-preserving dynamical systems." SIAM Journal on Numerical Analysis 61.3 (2023): 1585-1608.
- [6] Colbrook, Matthew J., Catherine Drysdale, and Andrew Horning. "Rigged Dynamic Mode Decomposition: Data-Driven Generalized Eigenfunction Decompositions for Koopman Operators." SIAM Journal on Applied Dynamical Systems 24, no. 2 (2025): 1150-1190.
- [7] Boullé, Nicolas, and Matthew J. Colbrook. "Multiplicative Dynamic Mode Decomposition." SIAM Journal on Applied Dynamical Systems 24, no. 2 (2025): 1945-1968.
- [8] Boullé, Nicolas and Matthew J. Colbrook, "On the Convergence of Hermitian Dynamic Mode Decomposition" Physica D: Nonlinear Phenomena, 472 (2025).
- [9] Colbrook, Matthew J., Andrew Horning, and Tianyiwa Xie. "Computing Generalized Eigenfunctions in Rigged Hilbert Spaces." arXiv preprint arXiv:2410.08343 (2024).
- [10] Zagli, Niccolò, et al. "Bridging the Gap between Koopmanism and Response Theory: Using Natural Variability to Predict Forced Response." arXiv preprint arXiv:2410.01622 (2024).
- [11] Colbrook, Matthew J. "Another look at Residual Dynamic Mode Decomposition in the regime of fewer Snapshots than Dictionary Size." Physica D: Nonlinear Phenomena 469 (2024).
- [12] Colbrook, Matthew. "The foundations of infinite-dimensional spectral computations." Diss. University of Cambridge, 2020.
- [13] Ben-Artzi, J., Colbrook, M. J., Hansen, A. C., Nevanlinna, O., & Seidel, M. (2020). "Computing Spectra--On the Solvability Complexity Index Hierarchy and Towers of Algorithms." arXiv preprint arXiv:1508.03280.
- [14] Colbrook, Matthew J., Vegard Antun, and Anders C. Hansen. "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem." Proceedings of the National Academy of Sciences 119.12 (2022): e2107151119.
- [15] Colbrook, Matthew, Andrew Horning, and Alex Townsend. "Computing spectral measures of self-adjoint operators." SIAM review 63.3 (2021): 489-524.
- [16] Colbrook, Matthew J., Bogdan Roman, and Anders C. Hansen. "How to compute spectra with error control." Physical Review Letters 122.25 (2019): 250201.
- [17] Colbrook, Matthew J., and Anders C. Hansen. "The foundations of spectral computations via the solvability complexity index hierarchy." Journal of the European Mathematical Society (2022).
- [18] Colbrook, Matthew J. "Computing spectral measures and spectral types." Communications in Mathematical Physics 384 (2021): 433-501.
- [19] Colbrook, Matthew J., and Anders C. Hansen. "On the infinite-dimensional QR algorithm." Numerische Mathematik 143 (2019): 17-83.
- [20] Colbrook, Matthew J. "On the computation of geometric features of spectra of linear operators on Hilbert spaces." Foundations of Computational Mathematics (2022): 1-82.
- [21] Brunton, Steven L., and Matthew J. Colbrook. "Resilient Data-driven Dynamical Systems with Koopman: An Infinite-dimensional Numerical Analysis Perspective."
- [22] Colbrook, Matthew J., Igor Mezić, and Alexei Stepanenko. "Limits and Powers of Koopman Learning." arXiv preprint arxiv:2407.06312 (2024).
- [23] Herwig, April, Matthew J. Colbrook, Oliver Junge, Péter Koltai, and Julia Slipantschuk. "Avoiding spectral pollution for transfer operators using residuals." arXiv preprint arXiv:2507.16915 (2025).
- [24] Boullé, Nicolas, Matthew J. Colbrook, and Gustav Conradie. "Convergent Methods for Koopman Operators on Reproducing Kernel Hilbert Spaces." arXiv preprint arXiv:2506.15782 (2025).