Diagonalising the infinite:

How to compute spectra with error control

With a case study on quasicrystals

Matthew Colbrook
University of Cambridge

IMA Lighthill-
Thwaites Session

Paper:
M.J. Colbrook, B. Roman, and A.C. Hansen
"How to compute spectra with error control"
Physical Review Letters 122.25 (2019)

The infinite-dimensional spectral problem

In many applications, we are given an operator acting on $\ell^{2}(\mathbb{N})$ $\left(\ell^{2}(\mathbb{N})=\right.$ canonical inner product space in infinite dimensions):

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \cdots \\
a_{21} & a_{22} & a_{23} & \cdots \\
a_{31} & a_{32} & a_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad\left[A\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots
\end{array}\right)\right]_{j}=\sum_{k \in \mathbb{N}} a_{j k} x_{k}
$$

$$
\begin{array}{ccc}
\text { Finite Case } & \Rightarrow & \text { Infinite Case } \\
\text { Eigenvalues } & \Rightarrow & \text { Spectrum, } \operatorname{Sp}(A) \\
\{z \in \mathbb{C}: \operatorname{det}(A-z I)=0\} & \Rightarrow & \{z \in \mathbb{C}: A-z l \text { not invertible }\}
\end{array}
$$

GOAL: compute spectrum of A from matrix elements
Many applications: quantum mechanics, chemistry, matter physics, stat. mechanics, optics, number theory, PDEs, math. of info., quasicrystals,...
MUCH harder and more subtle than finite dimensions!

London Millennium Bridge:
 When computing spectra goes badly wrong!

- Opened on 10 June 2000.
- Spectra correspond to vibrations or "resonances" of bridge.
- Unexpected resonances caused bridge closure on 12 June.
- Closed for two years and cost several million pounds to fix.

Things that typically go wrong

Fundamental challenges:

- Miss parts of the spectrum.
- Approximate false $z \notin \operatorname{Sp}(A)$ - "spectral pollution".

Open problem (even for Schrödinger operators) for >50 years:

Can we overcome these issues in the general case?
"Most operators that arise in practice are not presented in a representation in which they are diagonalized, and it is often very hard to locate even a single point in the spectrum. Thus, one often has to settle for numerical approximations to compute the spectra of infinite dimensional operators. Unfortunately, there is a dearth of literature on this basic problem and, so far as we have been able to tell, there are no proven techniques."
W. Arveson, Berkeley (1994)

Things that typically go wrong

Fundamental challenges:

- Miss parts of the spectrum.
- Approximate false $z \notin \operatorname{Sp}(A)$ - "spectral pollution".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we know what part of approximation to trust?
- Methods can be inefficient and slow to converge.

Things that typically go wrong

Fundamental challenges:

- Miss parts of the spectrum.
- Approximate false $z \notin \operatorname{Sp}(A)$ - "spectral pollution".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we know what part of approximation to trust?
- Methods can be inefficient and slow to converge.

Method of this talk:

Things that typically go wrong

Fundamental challenges:

- Aliss parts of the specturne
- Approximate false $z \notin \operatorname{Sp}(A)$ - "spectral pollution".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we know what part of approximation to trust?
- Methods can be inefficient and slow to converge.

Method of this talk:

- Converges without missing parts of spectrum.

Things that typically go wrong

Fundamental challenges:

- Ahiss parts of the spectratre

Open problem (even for Schrödinger operators) for > >50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we know what part of approximation to trust?
- Methods can be inefficient and slow to converge.

Method of this talk:

- Converges without missing parts of spectrum.
- Avoids spectral pollution.

Things that typically go wrong

Fundamental challenges:

- Nives parts of the spectratre
- Appioximate faise \& \& SP(A) "spectiai poimuivi".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- How do we krrovv vitat part of computation to trast?
- Methods can be inefficient and slow to converge.

Method of this talk:

- Converges without missing parts of spectrum.
- Avoids spectral pollution.
- Provides error control (guaranteed certificate of accuracy) \Rightarrow computations reliable and useful in applications.

Things that typically go wrong

Fundamental challenges:

- Nios parts of the spectratr.
- Appioximate faise \& \& SP(A) "spectiai poimuivi".

Open problem (even for Schrödinger operators) for > 50 years: Can we overcome these issues in the general case?

Even if a method converges, still face:

- Hewn do wve Antow witat part of computation to trast?

Method of this talk:
- Converges without missing parts of spectrum.
- Avoids spectral pollution.
- Provides error control (guaranteed certificate of accuracy) \Rightarrow computations reliable and useful in applications.
- Computationally efficient.

Case study: Quasicrystals

Quasicrystals: aperiodic structures with long-range order.

Left: D. Shechtman, Nobel Prize in Chem. 2011 for discovering quasicrystals. Right: Penrose tile, canonical model used in physics.

Vertex model: site at each vertex and bonds along edges of tiles.

Case study: Quasicrystals

Motivation:

- We understand periodic systems really well but not aperiodic.
- Long range order \& short range disorder everywhere in nature.
- What's the analogy of periodic physics for aperiodic systems?
- Many exotic physical properties and beginning to be used in
- heat insulation
- LEDs, solar absorbers, and energy coatings
- reinforcing materials, e.g. low-friction gears
- bone repair (hardness, low friction, corrosion resistance)...
- Understanding spectral properties key for physical insight.

Case study: Quasicrystals

Motivation:

- We understand periodic systems really well but not aperiodic.
- Long range order \& short range disorder everywhere in nature.
- What's the analogy of periodic physics for aperiodic systems?
- Many exotic physical properties and beginning to be used in
- heat insulation
- LEDs, solar absorbers, and energy coatings
- reinforcing materials, e.g. low-friction gears
- bone repair (hardness, low friction, corrosion resistance)...
- Understanding spectral properties key for physical insight.

BUT: Aperiodic nature of quasicrystals has made it a considerable challenge to approximate spectrum of full infinite-dimensional operator!

Case study: Quasicrystals

Model 1: Perpendicular magnetic field (of strength B).

$$
\left[A\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots
\end{array}\right)\right]_{j}=-\sum_{j \sim k} e^{\mathrm{i} \theta_{j k}(B)} x_{k},
$$

Model 2: Graph Laplacian (electronic/vibrational properties)

$$
\left[A\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots
\end{array}\right)\right]_{j}=\sum_{j \sim k}\left(x_{k}-x_{j}\right),
$$

Very hard problems - no previous method even converges to spectrum.

Model 1: Magnetic field

Finite truncations Spectral pollution.

Unreliable
Does not converge No error control

New method

First convergent computation.

Reliable
Converges
Error control

Idea: Rectangular truncations

Idea: Rectangular truncations

Idea: Rectangular truncations

Locally compute distance function and minimisers

Rectangular truncation $P_{f(n)}(A-z I) P_{n}$
\Downarrow smallest singular values $\sigma_{1}\left(P_{f(n)}(A-z I) P_{n}\right)$

Approximate distance function $\operatorname{dist}(z, \operatorname{Sp}(A))$
\Downarrow local minimisers
Output $\Gamma_{n}(A) \rightarrow \operatorname{Sp}(A)$ and error bound $\sup _{z \in \Gamma_{n}(A)} E(n, z) \rightarrow 0$

Provably OPTIMAL: no algorithm or method can do better.

Model 2: Graph Laplacian (electronic properties)

Model 2: Graph Laplacian (electronic properties)

Advantages

- First method that always converges to correct solution. (e.g. no spectral pollution)
- Local and parallelisable \Rightarrow FAST!
- Explicitly bounds the error:

$$
\text { Error } \leq E_{n} \downarrow 0
$$

- Can prove it is OPTIMAL (see paper).
- Rigorously compute approximate states...

Published by
American Physical Society $\underset{\text { DPS }}{\text { Qhysics }}$
Volume 122, Number 25

Background

Periodic systems have extended states (not localised), but add disorder...

Left: P. Anderson, Nobel Prize in Phys. 1977 for discovering Anderson localisation. Right: Examples in 1D and 2D photonic lattices.

What happens in aperiodic systems? Do we need disorder?

Bulk Localised States: A new state for quasicrystals

- Bulk Localised States (BLSs): New states for magnetic quasicrystals
- localised
- "in-gap" (confirmed via comp. of inf-dim (topological) Chern numbers)
- support transport
- Cause (also confirmed with toy models): Interplay of magnetic field with incommensurate areas of building blocks of quasicrystal.
- Not due to an internal edge, impurity or defect in the system.

Transport: Error control allows us to be certain of this phenomenon.

Conclusion

- Can now compute spectra of large class of operators.
- Computation has explicit error control.
- New method does not suffer from spectral pollution.
- New algorithm is fast, local and parallelisable.
- Extensions: non-Hermitian operators, general infinite matrices, PDEs, etc.
- New type of Bulk Localised State (BLS) for magnetic quasicrystals that support localised transport within the bulk.

Future/ongoing work:

- What other spectral problems can be computed in infinite dimensions?
- Further applications in quantum mechanics.
- Further study of BLSs.

Contents of extra slides

- Extension to PDEs.
- Extension to non-Hermitian operators.
- BLSs without rotational symmetry.
- Chern number.
- Program on infinite-dimensional spectral problems.
- Fractal dimensions.
- Naive approximations for quasicrystals (e.g. periodic approximations)

Extensions to PDEs

Closed operator L on \mathbb{R}^{d} of form

$$
L u(x)=\sum_{k \in \mathbb{Z}_{\geq 0}^{d}:|k| \leq N} a_{k}(x) \partial^{k} u(x)
$$

Assume coefficient functions:

- polynomially bounded
- of bounded total variation on compact balls
(+ some standard technical assumptions)
\Rightarrow Compute $\mathrm{Sp}(L)$ locally uniformly on compact subsets with error control
NB: Open problem since Schwinger's work in the 1960s to do this for general Schrödinger operators (even without error control)

Executive summary

- Build matrix rep. w.r.t. basis of tensorised Hermite functions.
- Use bound on total variation and quasi-Monte Carlo integration to compute matrix entries of $L, L^{*} L$ and $L L^{*}$ with error control.
- Use these estimates to directly approximate $\operatorname{dist}(z, \operatorname{Sp}(L))$.
- Apply (roughly) the same algorithm as before.

NB: Can extend technique to other discretisation methods such as FEM.

Example: Eigenvalues with guaranteed error bounds

$$
L=-\Delta+x^{2}+V(x) \text { on } L^{2}(\mathbb{R})
$$

V	$\cos (x)$	$\tanh (x)$	$\exp \left(-x^{2}\right)$	$\left(1+x^{2}\right)^{-1}$
E_{0}	1.7561051579	0.8703478514	1.6882809272	1.7468178026
E_{1}	3.3447026910	2.9666370800	3.3395578680	3.4757613534
E_{2}	5.0606547136	4.9825969775	5.2703748823	5.4115076464
E_{3}	6.8649969390	6.9898951678	7.2225903394	7.3503220313
E_{4}	8.7353069954	8.9931317537	9.1953373991	9.3168983920

Extension to non-Hermitian operators

Definition (Known off-diagonal decay)

Dispersion of A bounded by function $f: \mathbb{N} \rightarrow \mathbb{N}$ and null sequence $\left\{c_{n}\right\}$ if

$$
\max \left\{\left\|\left(I-P_{f(n)}\right) A P_{n}\right\|,\left\|P_{n} A\left(I-P_{f(n)}\right)\right\|\right\} \leq c_{n} .
$$

Definition (Well-conditioned)

Continuous increasing function $g:[0, \infty) \rightarrow[0, \infty)$ with $g(x) \leq x$. Controlled growth of the resolvent by g if

$$
g(\operatorname{dist}(z, \operatorname{Sp}(A))) \leq\left\|(A-z)^{-1}\right\|^{-1} \quad \forall z \in \mathbb{C} .
$$

- Measures conditioning of the problem through

$$
\left\{z \in \mathbb{C}:\left\|(A-z)^{-1}\right\|^{-1} \leq \epsilon\right\}=: \operatorname{Sp}_{\epsilon}(A)=\bigcup_{\|B\| \leq \epsilon} \operatorname{Sp}(A+B) .
$$

- Normal operators (A commutes with A^{*}) well-conditioned with

$$
\left\|(A-z)^{-1}\right\|^{-1}=\operatorname{dist}(z, \operatorname{Sp}(A)), \quad g(x)=x
$$

Idea II: Locally compute distance function and minimisers

Step 1: Smallest singular value of rectangular truncations:

$$
\gamma_{n}(z):=\min \left\{\sigma_{1}\left(P_{f(n)}(A-z) P_{n}\right), \sigma_{1}\left(P_{f(n)}\left(A^{*}-\bar{z}\right) P_{n}\right)\right\} .
$$

This converges locally uniformly down to $\left\|(A-z)^{-1}\right\|^{-1}$.
Step 2: Bound the distance to the spectrum:

$$
\left\|(A-z)^{-1}\right\|^{-1} \leq \operatorname{dist}(z, \operatorname{Sp}(A)) \leq g^{-1}\left(\left\|(A-z)^{-1}\right\|^{-1}\right) \leq g^{-1}\left(\gamma_{n}(z)\right)
$$

For Hermitian operators: take $g(z)=z$.
Step 3: Find 'local minimisers' and output $\Gamma_{n}(A)$ with
$\Gamma_{n}(A) \rightarrow \operatorname{Sp}(A), \quad \operatorname{dist}(z, \operatorname{Sp}(A)) \leq \underbrace{g^{-1}\left(\gamma_{n}(z)\right)}_{E(n, z) \text { (error bound) }}, \sup _{z \in \Gamma_{n}(A)} E(n, z) \rightarrow 0$

Example: PT symmetry (non-Hermitian QM)

- PT symmetry: invariance w.r.t. simultaneous action of parity-inversion and time reversal.
- Operators with unbroken PT symmetry may poses real spectra, unitary time evolution etc.

$$
[A x]_{n}=x_{n-1}+x_{n+1}+(\cos (n)+\mathrm{i} \gamma \sin (n)), \quad n \in \mathbb{Z}
$$

- Increase γ to get complex spectrum.
- Phase transition depends on boundary conditions.
- Rigorously compute this at $\gamma_{P T} \approx 1$.

Example: PT symmetry (non-Hermitian QM)

$\gamma=1$, Periodic BCs

BLS for symmetry broken tilings

PhD Program: Foundations of Infinite-Dimensional
 Spectral Computations

How: Deal with operators directly, instead of previous 'truncate-then-solve'
\Rightarrow Compute many spectral properties for the first time.

Framework: Classify problems in a computational hierarchy measuring their intrinsic difficulty and the optimality of algorithms. ${ }^{1}$
\Rightarrow Algorithms that realise the boundaries of what computers can achieve.

Also have foundations for: spectral type (pure point, absolutely continuous, singularly continuous), Lebesgue measure and fractal dimensions of spectra, discrete spectra, essential spectra, eigenvectors + multiplicity, spectral radii, essential numerical ranges, geometric features of spectra (e.g. capacity), spectral gap problem, spectral measures, ...

[^0]
Chern numbers

Fractal dimension of spectrum (Model 1)

Naive Approximations

(1) Finite section with open boundary conditions: compute eigenvalues of truncated matrix $P_{n} H P_{n}$ for large n. Similar "Galerkin" methods suffer from spectral pollution.
(2) Can construct Penrose tile via "Pentagrid" \rightsquigarrow "Periodic Approximants"

Eigenvalue hunting without spectral pollution

Example: Dirac operator.

- Describes the motion of a relativistic spin-1/2 particle.
- Essential spectrum given by $\mathbb{R} \backslash(-1,1) \Rightarrow$ spectral pollution!
- Consider radially symmetric potential...

Eigenvalue hunting without spectral pollution

NB: Previous state-of-the-art achieves a few digits for a few excited states.

[^0]: ${ }^{1}$ Holds regardless of model of computation (Turing, analog, ...).

