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[ Smale’s 18th problem*: What are the limits of artificial intelligence? ]

M. Colbrook, V. Antun, A. Hansen, “The difficulty of computing stable and accurate neural
networks: On the barriers of deep learning and Smale’s 18th problem” (PNAS, 2022)

M. Colbrook, "WARPd: A linearly convergent first-order method for inverse problems with
approximate sharpness conditions” (SIIMS, under revision)

*Steve Smale’s list of problems for the 21st century (requested by Vladimir Arnold), inspired by Hilbert’s list.



Interest in deep learning exponentially growing

Machine learning papers on arXiv

= ML Arxiv Papers = Moore's Law growth rate (2x/2 years)
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To keep up during first lockdown, would need to continually read a paper every 4 mins!



E.g., will Al replace standard algorithms in medical imaging?
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Machine learning improves image
reconstruction

Abstract

Reconstructing images from data, whether for
medical or astronomical purposes, hinges on
well-defined steps. The data sensor encodes an
intermediate representation of the observed

Image reconstruction is essential for imaging applications across the
physical and life sciences, including optical and radar systems, magnetic

resonance imaging, X-ray computed tomography, positron emission show all

Claim: “superior immunity to noise and a reduction in reconstruction artefacts
compared with conventional handcrafted reconstruction methods”.



Very strong confidence in deep learning

Turing Award And $1 Million
Given To 3 Al Pioneers

ﬁ Nicole Martin
i

‘The Association for Computing Machinery (ACM) awarded Yoshua Bengio,

Geoffrey Hinton and Yann LeCun with what many consider the "Nobel Prize

of computing,” for the innovations they've made in AL

Geoffrey Hinton, The New Yorker, April 2017: “They should stop training radiologists now!”



Very strong confidence in deep learning

Turing Award And $1 Million
Given To 3 Al Pioneers

ﬁ Nicole Martin
i

‘The Association for Computing Machinery (ACM) awarded Yoshua Bengio,

Geoffrey Hinton and Yann LeCun with what many consider the "Nobel Prize

of computing,” for the innovations they've made in AL

Geoffrey Hinton, The New Yorker, April 2017: “They should stop training radiologists now!”
BUT ...



Al hallucinations (Facebook and NYU’s 2020 FastMRI challenge)

_ Ground Truth  Reconstruction Residual

“On Al, trust is a must, not a nice to have. High-
risk Al systems will be subject to strict obligations
before they can be put on the market: High level
of robustness, security and accuracy.”

- Europ. Comm. outline for legal Al (April 2021).
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Example of instabilities in inverse problems
x| . |V (AX)|

>

Network (33% subsampling) from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, ‘A deep cascade of convolutional neural
networks for MR image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647-658.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ‘On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020.
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Example of instabilities in inverse problems
x4 n | [V(A(x + r))|

»

Network (33% subsampling) from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, ‘A deep cascade of convolutional neural
networks for MR image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647-658.
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Example of instabilities in inverse problems
x4 13 . [V(A(x + r3))|

»

Network (33% subsampling) from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, ‘A deep cascade of convolutional neural
networks for MR image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647-658.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ‘On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020.




Reconstruction using state-of-the-art standard methods

SoA from Ax SoA from A(x + r3)




Smale’s 18th prob.: What are the limits of artificial intelligence?

“Very often, the creation of a technological artifact precedes the science that goes with
it. The steam engine was invented before thermodynamics. Thermodynamics was
invented to explain the steam engine, essentially the limitations of it.

What we are after is the equivalent of thermodynamics for intelligence.”

— Yann LeCun (NYU, Facebook's chief Al scientist, Turing Award 2018)
“2021 was the year in which the wonders of artificial intelligence stopped being a story.

Many of this year’s top articles grappled with the
limits of deep learning (today’s dominant strand of Al).”

— IEEE Spectrum, 2021's Top Stories About Al (Dec. 2021)



Echoes of an old story

Hilbert's vision (start of 20th century): secure foundations for all mathematics.

> Mathematics written in a precise language.

» Completeness: all true math. statements can be proven.

» Consistency: no contradiction can be obtained.

» Decidability: algorithm for deciding truth of math. statements.

Hilbert’s 10th problem: Provide an algorithm which, for any given polynomial
equation with integer coefficients, can decide whether there is an integer-valued solution.




Foundations = better understanding, feasible directions for
techniques, new methods, ...

Godel (pioneer of modern logic) and Turing (pioneer of modern computer science):
» True statements in mathematics that cannot be proven!

» Computational problems that cannot be computed by an algorithm!

Hilbert’s 10th problem: No such algorithm exists (1970, Matiyasevich).



A program for the foundations of DL and Al

A program determining the foundations/limitations of deep learning and Al is needed:
» Boundaries of methodologies.
» Universal/intrinsic boundaries (e.g., no algorithm can do it).

Key difference between existence and construction.

Two pillars of scientific computation:
> Stability
» Accuracy

[ GOAL of talk: Results in this direction for inverse problems.




Mathematical setup

Given y = Ax + e recover x € CN. Ac C™N m < N (e.g., MRI).

Qutline:
> Paradox.
» Sufficient conditions and Fast lterative REstarted NETworks (FIRENETS).
» Numerical examples (e.g., stability-accuracy trade-off).

P Approximate sharpness conditions and Weighted, Accelerated and Restarted
Primal-dual (WARPd).



Can we train neural networks that solve (P;)?

min ||x||x subject to [[Ax —yl|lp <17 (P1)
xeCN
min Allx[le + [[Ax = y 17 (P2)
x€eCN
min Allx[lp + [|Ax =yl (P3)
xeCN

= = set of solutions.

Why P;?
» Avoid bizarre, unnatural & pathological mappings: (P;) well-understood & well-used!

» Simpler solution map than inverse problem = stronger impossibility results.

» DL has also been used to speed up sparse regularization and tackle (P;).



The set-up
A e C™N (modality), S = {yk}f_; CC™ (samples), R < oo

In practice, A not known exactly or cannot be stored to infinite precision.
Assume access to: {yx ,}R_; and A, (rational approximations, e.g., floats) such that
Vin—yill <277, ||Ap— A <277, VneN.
Training set for (A, S) €
tas = {(kn An) |k=1,...,Rand n € N}.

In a nutshell: allow access to arbitrary precision training data.



The set-up
A e C™N (modality), S = {yk}f_; CC™ (samples), R < oo

In practice, A not known exactly or cannot be stored to infinite precision.

Assume access to: {yx ,}R_; and A, (rational approximations, e.g., floats) such that
Yin = yicll <277, [|An — A <277, VneN.
Training set for (A, S) €
tas = {(kn An) |k=1,...,Rand n € N}.

In a nutshell: allow access to arbitrary precision training data.

Question: Given a collection Q of (A, S), does there exist a neural network
approximating = (solution map of (P;)), and can it be trained by an algorithm?




What could go wrong?

min ||x|[a subject to [[Ax —y|p2 <7
xeCN
- 2
Jmin Alixlles + [1Ax = yllz
min Al x|l + ||Ax —
min Allxlla + [lAx =yl

(i) Non-existence: No neural network approximates =.
(i)
(iii)



What could go wrong?

min ||x|[a subject to [[Ax —y|p2 <7
xeCN
- 2
Jmin Alixlles + [1Ax = yllz
min A||x||gx + ||[Ax —
min Allxlla + [lAx =yl
(ii)
(iii)



What could go wrong?

min ||x|[a subject to [[Ax —y|p2 <7 (P1)
xeCN
- 2
Jmin Alixlles + [1Ax = yllz (P2)
min Allx[[e + [[Ax = y |2 (Ps)
xeCN

(i) Non-trainable: 3 a neural network that approximates =, but it cannot be trained.

(iii)



What could go wrong?

min ||x|[a subject to [[Ax —y|p2 <7 (P1)
xeCN
- 2
Jmin Alixlles + [1Ax = yllz (P2)
min Allx[[e + [[Ax = y |2 (Ps)
xeCN

(i) Non-trainable: 3 a neural network that approximates =, but it cannot be trained.

(iii) Not practical: 3 a neural network that approximates =, and an algorithm training
it. However, the algorithm needs prohibitively many samples.



Paradox

Theorem
For (P;), N> 2 and m < N. Let K > 3 be a positive integer, L € N. Then there exists a
well-conditioned class (condition numbers < 1) Q of elements (A, S) s.t. (Q fixed in what follows):
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Paradox

Theorem
For (P;), N > 2 and m < N. Let K > 3 be a positive integer, L € N. Then there exists a

well-conditioned class (condition numbers < 1) Q of elements (A, S) s.t. (Q fixed in what follows):

(i) There does not exist any algorithm that, given a training set va s, produces a neural network
das with K V(A S) e
—x"||,. <10° . 1
min inf [6as(y) = xlle <107 V(AS) € (1)
Furthermore, for any p > 1/2, no probabilistic algorithm can produce a neural network ¢a s
such that (1) holds with probability at least p.

min in(f




Paradox

Theorem
For (P;), N > 2 and m < N. Let K > 3 be a positive integer, L € N. Then there exists a
well-conditioned class (condition numbers < 1) Q of elements (A, S) s.t. (2 fixed in what follows):
(i) There does not exist any algorithm that, given a training set va s, produces a neural network
¢a,s with . p
ry'rlelgx emf H¢A 3( ) - X ||é2 <107, V(AvS) €. (1)
Furthermore, for any p > 1/2 no probabilistic algorithm can produce a neural network ¢a,s

such that (1) holds with probability at least p.

(ii) There exists an algorithm that produces a neural network ¢a s such that

max |nf |\¢A,S(y) — x|, <1075 (A S)eq.
YES x* €=

However, for any such algor/thm (even probabilistic), M € N and p € [0, 1-— m) there
exists a training set va s such that for ally € S,

]P’( |nf H¢A,5(y) e 10~ %= or size of training data needed > M) > p.
crez :



Paradox

Theorem
For (P;), N > 2 and m < N. Let K > 3 be a positive integer, L € N. Then there exists a
well-conditioned class (condition numbers < 1) Q of elements (A, S) s.t. (2 fixed in what follows):

(i)

(if)

(iii)

There does not exist any algorithm that, given a training set va s, produces a neural network
¢a,s with K
me|g mf HqﬁA sly)=x"|,2 <1077, V(A S)eq. (1)
yES x*€=

Furthermore, for any p > 1/2 no probabilistic algorithm can produce a neural network ¢a,s

such that (1) holds with probability at least p.

There exists an algorithm that produces a neural network ¢a s such that
max _inf lldas() —x*[|,. <1075 D V(A S) € Q.

YES x* €=
However, for any such algor/thm (even probabilistic), M € N and p € [0, 1-— m) there
exists a training set va s such that for ally € S,
]P’( |nf H¢A,5(y) e 10~ %= or size of training data needed > M) > p.
ez 2
There exists an algorithm using only L training data from each va s that produces a neural
network ¢a s(y) such that
max |nf H(;SA s(y) = x|, <1072 v(AS) e

YES x* €=



In words . ..

Nice classes Q where stable and accurate neural networks exist. But:
> K digits: 7 training algorithm for neural network.

» K — 1 digits: d training algorithm for neural network,
but any such algorithm needs arbitrarily many training data.

> K — 2 digits: 3 training algorithm for neural network using L training samples.

Independent of neural network architecture - universal barrier.

Existence vs computation (universal approximation theorems not enough).

Conclusion: Theorems on existence of neural networks may have little to do with
the neural networks produced in practice ...




Numerical example: fails with training methods

- . - : = AT27 [0 %
dist(Wa,(¥n), =(A,y)) | dist(®a,(va),=(A,y)) H}/n _pr <pn 10
0.2999690 0.2597827 n=10 101
0.3000000 0.2598050 n=20 101
0.3000000 0.2598052 n=30 101
0.0030000 0.0025980 n=10 103
0.0030000 0.0025980 n=20 103
0.0030000 0.0025980 n=30 103
0.0000030 0.0000015 n=10 106
0.0000030 0.0000015 n=20 106
0.0000030 0.0000015 n=30 106

Table: (Impossibility of computing the existing neural network to arbitrary accuracy).

Matrix A € C19%20 constructed from discrete cosine transform, R = 8000, solutions are 6-sparse.
LISTA (learned iterative shrinkage thresholding algorithm) W, , and FIRENETs ®,4 . The table
shows the shortest £2 distance between the output from the networks and the true minimizer of

the problem min,ccn ||x]|a + ||Ax — y]| 2, for different values of n and K.




A paradox relevant to applications

Some Al Systems May Be Impossible to Compute >
New research suggests there are limitations to what deep
neural networks can do

BY CHARLES Q. CHOI | 30 MAR 2022 | 4 MIN READ | []

 EurekAlert! s

HOME NEWS RELEASES MULTIMEDIA MEETINGS

Mathematical paradoxes demonstrate
the limits of Al

Peer-Reviewed Publication
UNIVERSITY OF CAMBRIDGE

Proving Existence Is Not Enough:
Mathematical Paradoxes Unravel the Limits




The world of neural networks

Existence of NNs
& training algorithms

M trainable w/ 1 datum

[ trainable w/ 2 data

[ arb. large training data

[ NN exists



The world of neural networks

Existence of NINs Achievable accuracy
& training algorithms of computation

M trainable w/ 1 datum arbitrary accuracy

[ trainable w/ 2 data
3 digits of accuracy
2 digits of accuracy

[ arb. large training data

[0 NN exists 1 digit of accuracy



Need: Classification theory saying what can/cannot be done.

Example:
X € argmin f(x), f*=minf(x)

Problem: f(x) < f* + ¢ does not in general imply x is close to set of minimizers.

Question: Can we find ‘good’ input classes where

fix)<f"+e = inf Ix — %[ < €?
X€argmin f(x)

We shall see that the answer is yes!



State-of-the-art model for sparse regularisation

wavelet levels

%\x

| | | |
vv\ — —_

S§1 Sparse Sg Sparse S3 Sparse

M= (My,...,M,)eN ands=(s1,...,s) € ZL;. x € CNis (s, M)-sparse in levels if
|supp(x) N{Mk—1+1,... , M} <s,, k=1,...,r.
Denote set of (s, M)-sparse vectors by ¥ m, define

gsm(xX)pr = inf{|[x — z||pn : z € g m}-



The robust nullspace property

Definition: A € C™*N satisfies the robust null space property in levels (rNSPL)
of order (s, M) with constants p € (0,1) and > 0 if for any (s, M) support set A,

pllxacllp

+7||Ax]|2,  ¥xeCN
r(si+...+sr)

Ixalle <
Objective function: f(x) = A||x|[p + [|[Ax — y||p2

NSPL = ||z — x|z S osm(X)n + [|Ax — y|| 2

“small”

+ (AMlzlla + 1Az = ylle = Alixl[a = [|Ax =yl 2),

f(z)—f(x) objective function difference

In a nutshell: control ||z — x||,2 by f(z) — f(x), up to small approximation term.



Fast Iterative REstarted NETworks (FIRENETS)

N

Simplified version of Theorem: We provide an algorithm such that:

Input: Sparsity parameters (s, M), A € C™*N satisfying the rNSPL with constants
0<p<land~y >0, neN and positive {0, by, ba}.

Output: A neural network ¢, with O(n) layers and width 2(N + m) such that:

For any x € CN and y € C™ with

s m(X)er + Ax=yle <6, lxlle S b1, lylle < b,
~— —_———

distance to sparse in levels vectors  noise of measurements

we have the following stable and exponential convergence guarantee in n

on(y) — x|l SO+ ".




Demonstration of convergence
Image

Fourier Samplin,

Walsh Sampli
i .

Figure: Images corrupted with 2% Gaussian noise and reconstructed using 15% sampling.
28/40



Relative Error

10°

10

Demonstration of convergence

Convergence, Walsh Sampling

Convergence, Fourier Sampling

reconstruction error

reconstruction error

Relative Error

L L L 104 L

10 20 30 50 60 0 10 20 30 50 60

Number of Hidden Layers Number of Hidden Layers



Stable? AUTOMAP X

Original |z 4 7] |+ 72

- V. Antun et al. “On instabilities of deep learning in image reconstruction and the potential costs of Al,” PNAS, 2021.
- B. Zhu et al. “Image reconstruction by domain-transform manifold learning,” Nature, 2018.




Stable? FIRENETSs

Original

D(A(z)) D(A(z 4+ v1)) D(A(z + v2)) D(A(z + v3))

- M. Colbrook, V. Antun, A. Hansen, “The difficulty of computing stable and accurate neural networks: On the
barriers of deep learning and Smale’s 18th problem,” PNAS, 2022.




Adding FIRENET layers stabilizes AUTOMAP

- M. Colbrook, V. Antun, A. Hansen, “The difficulty of computing stable and accurate neural networks: On the
barriers of deep learning and Smale’s 18th problem,” PNAS, 2022.



Stability vs. accuracy tradeoff

Original x Original Original + detail (x + hy)
(full size) (cropped, red frame) (cropped, blue frame)

- M. Colbrook, V. Antun, A. Hansen, “The difficulty of computing stable and accurate neural networks: On the
barriers of deep learning and Smale’s 18th problem,” PNAS, 2022.



U-net trained without noise

Orig. + worst-case noise Rec. from worst-case noise Rec. of detail

- M. Colbrook, V. Antun, A. Hansen, “The difficulty of computing stable and accurate neural networks: On the
barriers of deep learning and Smale’s 18th problem,” PNAS, 2022.



U-net trained with noise

Orig. + worst-case noise Rec. from worst-case noise Rec. of detail

- M. Colbrook, V. Antun, A. Hansen, “The difficulty of computing stable and accurate neural networks: On the
barriers of deep learning and Smale’s 18th problem,” PNAS, 2022.



FIRENET

Orig. + worst-case noise Rec. from worst-case noise Rec. of detail

Can u

sege 117

- M. Colbrook, V. Antun, A. Hansen, “The difficulty of computing stable and accurate neural networks: On the
barriers of deep learning and Smale’s 18th problem,” PNAS, 2022.



Broader framework: approximate sharpness conditions
Problem: Given y = Ax + e € C™, recover x € CV.
Optimization: min,.cv J(x) + ||Bx||pa s.t. |Ax — y|| <€, B € CP*N.

Assume: [|% — x|l < G J(%) + B8]l — T0x) = 1Bl +Co (A% — vl — ) + ()

objective function difference feasibility gap approx. term

Examples: Sparse vector recovery, low-rank matrix recovery, matrix completion,
¢*-analysis problems, TV minimization, mixed regularization problems, ...

Simplified version of Theorem: Let § > 0. We provide a neural network ¢ of depth
O(log(671)) and width O(N + m + q) such that for all (x,y) € CN x C™

[Ax —ylle <€eandc(x,y) <6 = o(y) —xlla S 6.

- M. Colbrook “WARPd: A linearly convergent first-order method for inverse problems with approximate
sharpness conditions.”



Weighted, Accelerated and Restarted Primal-dual (WARPd)

» Primal-dual iterations starting at xo:

1 (% — x|I? G
TOW 18Xl =T 1Bxla+ G (14X, — bl = g < 5 (P XI2 4 E10) g

=:G(Xy)

» Assumption implies || Xk — x||,2 < Gi(G(Xk) + §), controls RHS of (2) upon restart.
» Reweight and optimize parameters for map Hi using k iterations s.t.

G(x0) < a0 = G(Hi(x0)) < C(6 + o) /k
> Restart when C/k < e~! (optimal). X, after p restarts:

GX)<e '(6+e'(6+...+e'(0+a))=(e ' +e?+...eP)i+e Pan<d+e .
> Apply the assumption to get || X, — x||,2 < 6 4+ e .
Remarks:

» Unrolled as neural networks. NB: Naive unrolling gives slow O(8 + p~*) convergence.

» Stability w.r.t. input (inherent) and execution (numerical).

- M. Colbrook "WARPd: A linearly convergent first-order method for inverse problems with approximate sharpness conditions.”
- A. Chambolle, T. Pock, “A first-order primal-dual algorithm for convex problems with applications to imaging,” J
Math Imaging Vis, 2011.

- V. Monga, Y. Li, Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image
processing,” |EEE Signal Process. Mag., 2021.



A final example with different regularizers

Ais a DFT, 15% subsampled according to an inverse square law (optimal for TV).
Measurements are corrupted with 5% Gaussian noise.

Test Image PSNR=27.9 PSNR=29.8 PSNR=33.1

Figure: Middle-left: Converged reconstruction using TV. Middle-right: Converged reconstruction
using TGV. Right: Reconstruction using (adaptively adjusted weighted) shearlets and TGV, after
25 iterations. All reconstructions were computed using WARPd.

WARPd can easily handle complicated mixed regularization problems.
min [|WD*x|[n + TGV2(x) st. [|Ax — b2 <&,
x€CN



Concluding remarks

There is a need for foundations in Al/deep learning.

» ‘Nice’ inverse problems where stable & accurate neural network exists but cannot be trained
> Existence of training algorithm depends on desired accuracy. VK € Z>3, 3 classes s.t.:
(i) Algorithms may compute neural networks to K — 1 digits of accuracy, but not K.
(i) Achieving K — 1 digits of accuracy requires arbitrarily many training data.
(iii) Achieving K — 2 correct digits requires only one training datum.
» Under specific conditions, algorithms can train stable and accurate neural networks.
E.g., FIRENETS achieve exponential convergence & withstand adversarial attacks.
» Trade-off between stability and accuracy in deep learning.

WARPd provides accelerated recovery under an approximate sharpness condition.
Quantities controlling recovery also provide explicit approximate sharpness constants.
WARPd = FIRENETSs.

unrolled

vyy

Question: How do we optimally traverse the stability & accuracy trade-off?




