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“To classify is to bring order into chaos.” -  George Pólya

For papers and talk slides/videos, visit: 
http://www.damtp.cam.ac.uk/user/mjc249/home.html

Spectral Computations in
Infinite Dimensions:

Classifications and Applications
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• Solvability Complexity Index Hierarchy and spectral problems.

• Example: Spectra with error control.

• Example: Adversaries and data-driven dynamical systems.

• Concluding remarks

Outline

Broad goal: classify difficulty of problems, prove optimality of algorithms, 
figure out what can and cannot be done computationally.

2



A "="
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯

⋮ ⋮ ⋱
,  𝐴 ෍

𝑘=1

∞

𝑥𝑘𝑒𝑘 = ෍

𝑗=1

∞

෍

𝑘=1

∞

𝑎𝑗𝑘𝑥𝑘 𝑒𝑗

Also deal with PDEs, integral operators etc. 

Finite-dimensional            ⟹ Infinite-dimensional

Eigenvalues of 𝐵 ∈ ℂ𝑛×𝑛 ⟹ Spectrum, Sp(𝐴)

𝜆𝑗 ∈ ℂ: det 𝐵 − 𝜆𝑗𝐼 = 0       ⟹ 𝜆 ∈ ℂ: 𝐴 − 𝜆𝐼 is not invertible  

Canonical basis vectors of 𝑙2(ℕ)

Classical infinite-dimensional spectral problem
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Also deal with PDEs, integral operators etc. 

“Most operators that arise in practice are not presented in a representation in which 
they are diagonalized, and it is often very hard to locate even a single point in the 
spectrum. Thus, one often has to settle for numerical approximations. Unfortunately, 
there is a dearth of literature on this basic problem and, so far as we have been able to 
tell, there are no proven [general] techniques.”    W. Arveson, Berkeley (1994)

Finite-dimensional            ⟹ Infinite-dimensional

Eigenvalues of 𝐵 ∈ ℂ𝑛×𝑛 ⟹ Spectrum, Sp(𝐴)

𝜆𝑗 ∈ ℂ: det 𝐵 − 𝜆𝑗𝐼 = 0       ⟹ 𝜆 ∈ ℂ: 𝐴 − 𝜆𝐼 is not invertible  

Canonical basis vectors of 𝑙2(ℕ)

Classical infinite-dimensional spectral problem
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Typical approach:

• Matrix case (𝑙2(ℕ)): truncate to 𝒫𝑛𝐴𝒫𝑛
∗ ∈ ℂ𝑛×𝑛.

• PDE on unbounded domain: truncate domain then discretise.

Some key issues:

• Spectral pollution (evals accumulate at points not in Sp(𝐴) as 𝑛 → ∞)

• Spectral invisibility.

• Dealing with essential spectra and continuous spectra.

• Stability, non-normality etc.

• Verification – can we compute spectral properties with error bounds?

What can go wrong?

two sources of error
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• Applications: Quantum mechanics, structural mechanics, optics, acoustics, 
statistical physics, number theory, matter physics, PDEs, data analysis, neural 
networks and AI, nuclear scattering, optics, computational chemistry, …

• Specific open problems, e.g., computational quantum mechanics  
   (Schwinger 1960), (Digernes, Varadarajan, Varadhan, 1994):

Given a self-adjoint Schrödinger operator −∆ + 𝑉 on ℝ,

can we approximate its spectrum from sampling 𝑉?

• Verified computations: Many computer-assisted proofs involve spectra. E.g., 

𝐸 𝑍 = ground state energy of 𝐻 = σ𝑘=1
𝑁 −∆𝑥𝑘

− 𝑍 𝑥𝑘
−1 + σ𝑗≤𝑘 𝑥𝑗 − 𝑥𝑘

−1
.

   Dirac-Schwinger conjecture: asymptotics of 𝐸(𝑍) (Fefferman, Seco 1996)

• Foundations: What is computationally possible? Beyond spectra etc.

Motivation
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Not all spectral problems
are equally hard …

7



A =
𝑎1

𝑎2

⋱

Assumption: Algorithm can query entries of 𝐴

Algorithm: Γ𝑛 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 → Sp 𝐴 = 𝑎1, 𝑎2, … in Haus. Metric.

One-sided error control: Γ𝑛 𝐴 ⊂ Sp(𝐴)

Optimal: Can’t obtain ෠Γ𝑛 𝐴  → Sp 𝐴  with Sp(𝐴) ⊂ ෠Γ𝑛 𝐴 .

 

Warm-up: bounded diagonal operators

𝑑H 𝑋, 𝑌 = max sup
𝑥∈𝑋

𝑑(𝑥, 𝑌) , sup
𝑦∈𝑌

𝑑(𝑦, 𝑋)
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A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯

⋮ ⋮ ⋱

Algorithm: Γ𝑛 𝐴 = Sp 𝒫𝑛𝐴𝒫𝑛
∗  converges to Sp(𝐴) in Haus. Metric.

Question: Can we verify the output?

i.e., Does there exist some alg. ෠Γ𝑛(𝐴) → Sp 𝐴  with ෠Γ𝑛 𝐴 ⊂ Sp 𝐴 + 𝐵2−𝑛?

Warm-up: compact self-adjoint operators

classic method
“finite section”
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A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
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Algorithm: Γ𝑛 𝐴 = Sp 𝒫𝑛𝐴𝒫𝑛
∗  converges to Sp(𝐴) in Haus. Metric.

Question: Can we verify the output?

i.e., Does there exist some alg. ෠Γ𝑛(𝐴) → Sp 𝐴  with ෠Γ𝑛 𝐴 ⊂ Sp 𝐴 + 𝐵2−𝑛?

Answer: No algorithm can do this on whole class!

Warm-up: compact self-adjoint operators

classic method
“finite section”
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A =

𝑎1 𝑏1

𝑏1 𝑎2 𝑏2

𝑏2 𝑎3 ⋱

⋱ ⋱

, 𝑏𝑘 > 0, 𝑎𝑘 ∈ ℝ

Non-trivial, e.g., spurious eigenvalues.

 

What about Jacobi operators?
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A =

𝑎1 𝑏1

𝑏1 𝑎2 𝑏2

𝑏2 𝑎3 ⋱

⋱ ⋱

, 𝑏𝑘 > 0, 𝑎𝑘 ∈ ℝ

Non-trivial, e.g., spurious eigenvalues.

Enlarge class to sparse normal operators - surely now much harder?!

 

What about Jacobi operators?

Sparse: finitely many
non-zeros in each column
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A =

𝑎1 𝑏1

𝑏1 𝑎2 𝑏2

𝑏2 𝑎3 ⋱

⋱ ⋱

, 𝑏𝑘 > 0, 𝑎𝑘 ∈ ℝ

Non-trivial, e.g., spurious eigenvalues.

Enlarge class to sparse normal operators - surely now much harder?!

Answer: ∃{Γ𝑛} s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Sp(𝐴) and Γ𝑛 𝐴 ⊂ Sp 𝐴 + 𝐵2−𝑛,

       for any sparse normal operator 𝐴

What about Jacobi operators?

• C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett.,2019.

Sparse: finitely many
non-zeros in each column

13



A curious case of limits

General bounded:       A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯

⋮ ⋮ ⋱

Algorithm: ∃{Γ𝑛3,𝑛2,𝑛1
} s.t. lim

𝑛3→∞
lim

𝑛2→∞
lim

𝑛1→∞
Γ𝑛3,𝑛2,𝑛1

𝐴 = Sp(𝐴) 

Question: Can we do better?

• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
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A curious case of limits

General bounded:       A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯

⋮ ⋮ ⋱

Algorithm: ∃{Γ𝑛3,𝑛2,𝑛1
} s.t. lim

𝑛3→∞
lim

𝑛2→∞
lim

𝑛1→∞
Γ𝑛3,𝑛2,𝑛1

𝐴 = Sp(𝐴) 

Question: Can we do better?

Answer: No! Canonically embed problems such as:

Given 𝐵 ∈ 0,1 ℕ×ℕ, does 𝐵 have a column with infinitely many 1’s?

⟹ lower bound on number of “successive limits” needed (indep. of comp. model).

Explains Arveson’s lament!

• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.
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General algorithm: beyond recursion theory

Computational problem:

• Class of objects Ω (e.g., operators).

• Metric space ℳ, 𝑑  (e.g., Hausdorff metric).

• Thing we want to compute Ξ: Ω → ℳ.

• Info we can access, Λ a set of functions Ω → ℂ (e.g., matrix entries).

General algorithm: map Γ: Ω → ℳ such that for any 𝐴 ∈ Ω, ∃ a finite 
non-empty subset ΛΓ(𝐴) ⊆ Λ such that

𝐵 ∈ Ω, 𝑓 𝐵 = 𝑓 𝐴  ∀𝑓 ∈ ΛΓ 𝐴 ⇒ ΛΓ 𝐴 = ΛΓ 𝐵 , Γ(𝐴) = Γ(𝐵)

A lower bound for general algorithms 
holds in ALL models of computation.
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• ∆0: Solved in finite time (v. rare for cts problems).

• ∆1: Solved in “one limit” with full error control:

𝑑(Γ𝑛 𝐴 , Ξ(𝐴)) ≤ 2−𝑛

• ∆2: Solved in “one limit”:

lim
𝑛→∞

Γ𝑛(𝐴) = Ξ(𝐴)

• ∆3: Solved in “two successive limits”:

lim
𝑛→∞

lim
𝑚→∞

Γ𝑛,𝑚(𝐴) = Ξ(𝐴)

  

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.

Solvability Complexity Index Hierarchy

⋮

Can work in any model. E.g., BSS machine, Turing machine, interval arithmetic, inexact input etc.
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• ∆0: Solved in finite time (v. rare for cts problems).

• ∆1: Solved in “one limit” with full error control:

𝑑(Γ𝑛 𝐴 , Ξ(𝐴)) ≤ 2−𝑛

• ∆2: Solved in “one limit”:

lim
𝑛→∞

Γ𝑛(𝐴) = Ξ(𝐴)

• ∆3: Solved in “two successive limits”:

lim
𝑛→∞

lim
𝑚→∞

Γ𝑛,𝑚(𝐴) = Ξ(𝐴)

  

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.
• Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.

Solvability Complexity Index Hierarchy

⋮

Can work in any model. E.g., BSS machine, Turing machine, interval arithmetic, inexact input etc.

Steve Smale: “Is there 
any purely [rational] 
iterative generally 
convergent algorithm 
for polynomial zero 
finding?”

Curt McMullen: “Yes, if the degree 
is three; no, if the degree is higher.”

Peter Doyle & Curt McMullen: 
“The problem can be solved 
using successive limits for the 
quartic and quintic, but not 
the sextic.”
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Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛  s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

Ξ 𝐴 = Sp(𝐴)

• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

𝑑H 𝑋, 𝑌 = max sup
𝑥∈𝑋

𝑑(𝑥, 𝑌) , sup
𝑦∈𝑌

𝑑(𝑦, 𝑋)
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• Σ1: ∃ alg. Γ𝑛  s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

• Π1: ∃ alg. Γ𝑛  s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Ξ(𝐴)dist(𝑧, Γ𝑛 𝐴 ) ≤ 2−𝑛

Such problems can be used in a proof!

Ξ 𝐴 = Sp(𝐴)

• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

Error control for spectral problems
𝑑H 𝑋, 𝑌 = max sup

𝑥∈𝑋
𝑑(𝑥, 𝑌) , sup

𝑦∈𝑌
𝑑(𝑦, 𝑋)
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3 ⋯

Σ1

Sampler of results for bounded op. on 𝑙2(ℕ)
increasing difficulty

Error control 2 limits 3 limits1 limit 3 limits
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Compact operators

Sampler of results for bounded op. on 𝑙2(ℕ)
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Sampler of results for bounded op. on 𝑙2(ℕ)
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• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2023.
• C., “Computing spectral measures and spectral types,” Commun. Math. Phys., 2021.
• C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

Zoo of problems: spectral type (pure point, absolutely continuous, singularly continuous), Lebesgue measure and 
fractal dimensions of spectra, discrete spectra, essential spectra, eigenspaces + multiplicity, spectral radii, essential 
numerical ranges, geometric features of spectrum (e.g., capacity), spectral gap problem, resonances ...

Sampler of results for bounded op. on 𝑙2(ℕ)
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Example 1: 𝛴1 algorithm for spectra
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Two reasons its hard!

𝐴 = ⨁𝑟=1
∞  𝐽𝑙𝑟

, 𝐽𝑙𝑟
=

0 1
0  ⋱

 ⋱ 1
0

∈ ℂ𝑙𝑟×𝑙𝑟

Sp(𝐴) = ቊ
 0 ,  sup 𝑙𝑟 < ∞

𝑧: 𝑧 ≤ 1 ,  otherwise

No algorithm when given 𝑙𝑟 𝑟=1
∞   can determine if it is bounded.

           ⟹ No algorithm computes spectra of gen. tridiagonal operators.
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Two reasons its hard!

𝐴 = ⨁𝑟=1
∞  𝐽𝑙𝑟

, 𝐽𝑙𝑟
=

0 1
0  ⋱

 ⋱ 1
0

∈ ℂ𝑙𝑟×𝑙𝑟

Sp(𝐴) = ቊ
 0 ,  sup 𝑙𝑟 < ∞

𝑧: 𝑧 ≤ 1 ,  otherwise

No algorithm when given 𝑙𝑟 𝑟=1
∞   can determine if it is bounded.

           ⟹ No algorithm computes spectra of gen. tridiagonal operators.

Always have:
(𝐴 − 𝑧)−1 −1 ≤ dist(𝑧, Sp(𝐴))
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Two reasons its hard!

𝐴 = ⨁𝑟=1
∞  𝐽𝑙𝑟

, 𝐽𝑙𝑟
=

0 1
0  ⋱

 ⋱ 1
0

∈ ℂ𝑙𝑟×𝑙𝑟

Sp(𝐴) = ቊ
 0 ,  sup 𝑙𝑟 < ∞

𝑧: 𝑧 ≤ 1 ,  otherwise

No algorithm when given 𝑙𝑟 𝑟=1
∞   can determine if it is bounded.

           ⟹ No algorithm computes spectra of gen. tridiagonal operators.

Always have:
(𝐴 − 𝑧)−1 −1 ≤ dist(𝑧, Sp(𝐴)) Assume:

𝑔(dist(𝑧, Sp(𝐴))) ≤ (𝐴 − 𝑧)−1 −1

known function
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Two reasons its hard!

𝐴 = ⨁𝑟=1
∞  𝐴𝑙𝑟

, 𝐴𝑙𝑟
=

1 1
0

1

⋱
0

1

∈ ℂ𝑙𝑟×𝑙𝑟

Sp 𝐴 = 0,2 ,  Sp diag 1,0, … = 0,1

More involved: choose 𝑙𝑟 𝑟=1
∞  to trick any supposed algorithm (try it!)
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Two reasons its hard!

𝐴 = ⨁𝑟=1
∞  𝐴𝑙𝑟

, 𝐴𝑙𝑟
=

1 1
0

1

⋱
0

1

∈ ℂ𝑙𝑟×𝑙𝑟

Sp 𝐴 = 0,2 ,  Sp diag 1,0, … = 0,1

More involved: choose 𝑙𝑟 𝑟=1
∞  to trick any supposed algorithm (try it!)

Assume:
We have access (Λ) to inner products

𝐴𝑒𝑗 , 𝑒𝑖 , 𝐴𝑒𝑗 , 𝐴𝑒𝑖 , 𝐴∗𝑒𝑗 , 𝐴∗𝑒𝑖

33



Sketch of method

𝜎inf 𝑇 = inf 𝑇𝑣 : 𝑣 ∈ 𝔇 𝑇 , 𝑣 = 1

(𝐴 − 𝑧)−1 −1 = min 𝜎inf 𝐴 − 𝑧 , 𝜎inf 𝐴∗ − ҧ𝑧

𝜎inf 𝒫𝑛 𝐴 − 𝑧 ∗(𝐴 − 𝑧)𝒫𝑛
∗ = 𝜎inf [𝐴 − 𝑧]𝒫𝑛

∗ ↓ 𝜎inf 𝐴 − 𝑧

𝑔−1 𝜎inf 𝒫𝑛[𝐴 − 𝑧]∗[𝐴 − 𝑧]𝒫𝑛
∗ ↓ 𝑔−1 𝐴 − 𝑧 −1 −1 ≥ dist 𝑧, Sp 𝐴

Error control!

(𝐴 − 𝑧)−1 −1 ≥ 𝑔(dist(𝑧, Sp(𝐴)))

Spectra through
injection moduli
(smallest singular value)

Final ingredient: adaptive search for local minimisers.

34



• Lower bound: embed a problem of known difficulty.

 Now have canonical ways to do this.

 Holds regardless of computational model.

• Upper bound: build an algorithm.

 Problem dependent.

 Typically involves resolvent (𝐴 − 𝑧)−1 for spectral problems.

NB: One can show without 𝑔 or 𝐴𝑒𝑗 , 𝐴𝑒𝑖 , 𝐴∗𝑒𝑗 , 𝐴∗𝑒𝑖 , SCI ≥ 2.

What did we do?

Often, infinite-dimensional 
solve-then-discretise needed

See conditions to 
make possible!
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Example: Quasicrystal

Dan Shechtman
(Nobel Prize in 

Chemistry 2011.)

Graph Laplacian

SCI alg.

SCI alg.

Er
ro

r
Er

ro
r

Er
ro

r

spectral pollution

Er
ro

r spectral
pollution
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Example with non-trivial 𝑔 

𝑇 = −
𝑑2

𝑑𝑥2
+ 𝑖𝑥3 on ℝ

𝑗 𝐸𝑗  to 30 digits with int. arith.

• C., “INFINITE-DIMENSIONAL SPECTRAL COMPUTATIONS, Foundations, Algorithms, and Modern Applications.,” CUP, to appear.

(𝑇 − 𝑧)−1 −1

Carl Bender

Small even away from evals

Michael Berry
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Example 2: Data-driven learning 
for dynamical systems

Lower bounds: The method of adversarial dynamical systems.

“Very often, the creation of a technological artifact precedes the 
science that goes with it. The steam engine was invented before 
thermodynamics. Thermodynamics was invented to explain the steam 
engine, essentially the limitations of it. What we are after is the 
equivalent of thermodynamics for intelligence.”                  Yann LeCun

capture adaptive and probabilistic 
choice of training data, stochastic 

gradient descent etc.

randomized general 
algorithms
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• Compact metric space (𝒳, 𝑑) – the state space

• 𝑥 ∈ 𝒳 – the state

• Unknown cts 𝐹: 𝒳 → 𝒳 – the dynamics: 𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Borel measure 𝜔 on 𝒳

• Function space 𝐿2 = 𝐿2(𝒳, 𝜔) (elements 𝑔 called “observables”)

• Koopman operator 𝒦𝐹: 𝐿2 → 𝐿2; [𝒦𝐹𝑔] 𝑥 = 𝑔(𝐹(𝑥))

• Available snapshot data: 𝑥 𝑚 , 𝑦 𝑚 = 𝐹 𝑥 𝑚 : 𝑚 = 1, … , 𝑀

NB: Pointwise definition of 𝒦𝐹 needs 𝐹#𝜔 ≪ 𝜔 – this will hold throughout.
NB: 𝒦𝐹 bounded equivalent to d𝐹#𝜔/d𝜔 ∈ 𝐿∞ – this will hold throughout (can be dropped).

Data-driven dynamical systems

Dynamics (geometry)
19th century
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• Compact metric space (𝒳, 𝑑) – the state space

• 𝑥 ∈ 𝒳 – the state

• Unknown cts 𝐹: 𝒳 → 𝒳 – the dynamics: 𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Borel measure 𝜔 on 𝒳

• Function space 𝐿2 = 𝐿2(𝒳, 𝜔) (elements 𝑔 called “observables”)

• Koopman operator 𝒦𝐹: 𝐿2 → 𝐿2; [𝒦𝐹𝑔] 𝑥 = 𝑔(𝐹(𝑥))

• Available snapshot data: 𝑥 𝑚 , 𝑦 𝑚 = 𝐹 𝑥 𝑚 : 𝑚 = 1, … , 𝑀

NB: Pointwise definition of 𝒦𝐹 needs 𝐹#𝜔 ≪ 𝜔 – this will hold throughout.
NB: 𝒦𝐹 bounded equivalent to d𝐹#𝜔/d𝜔 ∈ 𝐿∞ – this will hold throughout (can be dropped).

Analysis
20th century

Dynamics (geometry)
19th century

Data-driven dynamical systems
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• Compact metric space (𝒳, 𝑑) – the state space

• 𝑥 ∈ 𝒳 – the state

• Unknown cts 𝐹: 𝒳 → 𝒳 – the dynamics: 𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Borel measure 𝜔 on 𝒳

• Function space 𝐿2 = 𝐿2(𝒳, 𝜔) (elements 𝑔 called “observables”)

• Koopman operator 𝒦𝐹: 𝐿2 → 𝐿2; [𝒦𝐹𝑔] 𝑥 = 𝑔(𝐹(𝑥))

• Available snapshot data: 𝑥 𝑚 , 𝑦 𝑚 = 𝐹 𝑥 𝑚 : 𝑚 = 1, … , 𝑀

NB: Pointwise definition of 𝒦𝐹 needs 𝐹#𝜔 ≪ 𝜔 – this will hold throughout.
NB: 𝒦𝐹 bounded equivalent to d𝐹#𝜔/d𝜔 ∈ 𝐿∞ – this will hold throughout (can be dropped).

Data
21st century

Dynamics (geometry)
19th century

Data-driven dynamical systems

Analysis
20th century
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Fundamental in ergodic theory

E.g., key to ergodic theorems of 
Birkhoff and von Neumann.

Why you should care about Koopman

Trades: Nonlinear, finite-dimensional ⟹ Linear, infinite-dimensional.
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Fundamental in ergodic theory

E.g., key to ergodic theorems of 
Birkhoff and von Neumann.

Can provide a diagonalization of a nonlinear system.

𝑔(𝑥) = ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗
𝜑𝜆𝑗

(𝑥) + න

−𝜋

𝜋

𝜙𝜃,𝑔 𝑥  d𝜃

𝑔 𝑥𝑛 = 𝒦𝑛𝑔 𝑥0  

= ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗
𝜆𝑗

𝑛𝜑𝜆𝑗
𝑥0 + න

−𝜋

𝜋

𝑒𝑖𝑛𝜃𝜙𝜃,𝑔 𝑥0  d𝜃

Spectral properties encode: geometric features, 
invariant measures, transient behavior, long-time 
behavior, coherent structures, quasiperiodicity, etc.

continuous 
spectrum

eigenfunction of 𝒦

Why you should care about Koopman

Trades: Nonlinear, finite-dimensional ⟹ Linear, infinite-dimensional.
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Fundamental in ergodic theory

E.g., key to ergodic theorems of 
Birkhoff and von Neumann.

Can provide a diagonalization of a nonlinear system.

𝑔(𝑥) = ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗
𝜑𝜆𝑗

(𝑥) + න

−𝜋

𝜋

𝜙𝜃,𝑔 𝑥  d𝜃

𝑔 𝑥𝑛 = 𝒦𝑛𝑔 𝑥0  

= ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗
𝜆𝑗

𝑛𝜑𝜆𝑗
𝑥0 + න

−𝜋

𝜋

𝑒𝑖𝑛𝜃𝜙𝜃,𝑔 𝑥0  d𝜃

Spectral properties encode: geometric features, 
invariant measures, transient behavior, long-time 
behavior, coherent structures, quasiperiodicity, etc.

continuous 
spectrum

eigenfunction of 𝒦

Why you should care about Koopman

Trades: Nonlinear, finite-dimensional ⟹ Linear, infinite-dimensional.

+ HUGE recent interest in 
their spectral properties!
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New Papers on
“Koopman Operators”

number of papers

doubles every 5 yrs

44



𝜓𝑘, 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 =

𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))
⋮ ⋱ ⋮

𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))
⋮ ⋱ ⋮

𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋 𝑗𝑘

Extended Dynamic Mode Decomposition (EDMD)

𝒦𝜓𝑘, 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

=
𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))

⋮ ⋱ ⋮
𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑦(1)) ⋯ 𝜓𝑁(𝑦(1))
⋮ ⋱ ⋮

𝜓1(𝑦(𝑀)) ⋯ 𝜓𝑁(𝑦(𝑀))

Ψ𝑌 𝑗𝑘

𝑥(𝑚), 𝑦(𝑚) = 𝐹(𝑥(𝑚))
𝑚=1

𝑀

• Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
• Rowley, Mezić, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.

quadrature weights

quadrature points

Functions 𝜓𝑗: 𝒳 → ℂ, 𝑗 = 1, … , 𝑁 
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Functions 𝜓𝑗: 𝒳 → ℂ, 𝑗 = 1, … , 𝑁 

𝒦 ⟶ 𝕂 = Ψ𝑋
∗𝑊Ψ𝑋

−1Ψ𝑋
∗𝑊Ψ𝑌 = ( 𝑊Ψ𝑋)† 𝑊Ψ𝑌 ∈ ℂ𝑁×𝑁

𝜓𝑘, 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 =

𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))
⋮ ⋱ ⋮

𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))
⋮ ⋱ ⋮

𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋 𝑗𝑘

Extended Dynamic Mode Decomposition (EDMD)

𝒦𝜓𝑘, 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

=
𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))

⋮ ⋱ ⋮
𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑦(1)) ⋯ 𝜓𝑁(𝑦(1))
⋮ ⋱ ⋮

𝜓1(𝑦(𝑀)) ⋯ 𝜓𝑁(𝑦(𝑀))

Ψ𝑌 𝑗𝑘

𝑥(𝑚), 𝑦(𝑚) = 𝐹(𝑥(𝑚))
𝑚=1

𝑀

• Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
• Rowley, Mezić, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.

Galerkin
Approximation
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Example: EDMD does NOT converge
• Duffing oscillator: ሶ𝑥 = 𝑦, ሶ𝑦 = −𝛼𝑦 + 𝑥(1 − 𝑥2), sampled Δ𝑡 = 0.3.

• Gaussian radial basis functions, Monte Carlo integration (𝑀 = 50000)

𝛼 = 0 𝛼 = 0.3

Spε(𝒦𝐹) = 𝑧 ∈ ℂ: 𝒦𝐹 − 𝑧𝐼 −1 −1 ≤ 𝜀
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• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

Residual DMD (ResDMD)
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• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

?

What’s the missing

Residual DMD (ResDMD)
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• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦 𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌
∗𝑊Ψ𝑌

𝐾2 𝑗𝑘

Residual DMD (ResDMD)
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Residuals:  𝑔 = σ𝑗=1
𝑁 𝐠𝑗𝜓𝑗 , 𝒦𝑔 − 𝜆𝑔 2 = 𝒦𝑔 − 𝜆𝑔, 𝒦𝑔 − 𝜆𝑔

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦 𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌
∗𝑊Ψ𝑌

𝐾2 𝑗𝑘

Residual DMD (ResDMD)
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Residuals:  𝑔 = σ𝑗=1
𝑁 𝐠𝑗𝜓𝑗 , 𝒦𝑔 − 𝜆𝑔 2 = σ𝑘,𝑗=1

𝑁 𝐠𝑘𝐠𝑗 𝒦𝜓𝑘 − 𝜆𝜓𝑘 , 𝒦𝜓𝑗 − 𝜆𝜓𝑗

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦 𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌
∗𝑊Ψ𝑌

𝐾2 𝑗𝑘

Residual DMD (ResDMD)
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Residuals:  𝑔 = σ𝑗=1
𝑁 𝐠𝑗𝜓𝑗 , 𝒦𝑔 − 𝜆𝑔 2 = lim

𝑀→∞
𝐠∗ 𝐾2 − 𝜆𝐾1

∗ − ҧ𝜆𝐾1 + 𝜆 2𝐺 𝐠 

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋

𝐺 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌

𝐾1 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦 𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌
∗𝑊Ψ𝑌

𝐾2 𝑗𝑘

Infinite-
dimensional 

residual

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

Bound projection errors!
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Practical Gains: Arctic Sea Ice Forecasting

Motivation: Arctic amplification, polar bears, local communities, effect 
on extreme weather in Northern hemisphere,…

Problem: Very hard to predict more than two months in advance.

Monthly average from satellite passive 
microwave sensors.
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• Andersson et al, “Seasonal Arctic sea ice forecasting with probabilistic deep learning.” Nature Communications, 2021.
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Class of systems: Ω𝔻 = 𝐹: ഥ𝔻 → ഥ𝔻| 𝐹 cts, measure preserving, invertible .

Data an algorithm can use: 𝒯𝐹 = 𝑥, 𝑦𝑚 |𝑥 ∈ ഥ𝔻, 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚 .

Theorem: There does not exist any sequence of deterministic algorithms Γ𝑛  
using 𝒯𝐹 such that lim

𝑛→∞
Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

NB: Similarly, no random algorithms converging with probability > 1/2.hhhh

Double limit is necessary!

• For any sequence of random algorithms Γ𝑛  that uses 𝒯𝐹 

inf
𝐹∈Ω𝔻

ℙ lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹 ≤ 1/2.

Remarks:
• Universal - any type of algorithm or computational model.
• Phase transition at ℙ = 1/2 optimal.
• Possible to learn statistics for Ω𝔻, doesn’t help!
• Extends to other 𝒳.

Theorem (impossibility)
Implies 𝓚 is unitary

56



Proof idea: Constructing an adversary

𝐹0: rotation by 𝜋, Sp 𝒦𝐹0
= {±1}

Phase transition lemma: Let 𝑋 = 𝑥1, … , 𝑥𝑁 ,𝑌 = 𝑦1, … , 𝑦𝑁  be distinct 
points in annulus 𝒜 = 𝑥 ∈ 𝔻|0 < 𝑅 < 𝑥 < 𝑟 < 1  with 𝑋 ∩ 𝑌 = ∅. 
There exists a measure-preserving homeomorphism 𝐻 such that 𝐻 acts as 
the identity on 𝔻\𝒜 and 𝐻(𝑦𝑗) = 𝐹0(𝐻(𝑥𝑗)), 𝑗 = 1, … , 𝑁.

Conjugacy of data (𝒙𝒋 → 𝒚𝒋) with 𝑭𝟎

Idea: Use lemma to trick any algorithm into oscillating between spectra.

• Brown and Halperin. “On certain area-preserving maps.” Annals of Mathematics, 1935.
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Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

Proof idea: Constructing an adversary

𝒯𝐹 = 𝑥, 𝑦𝑚  | 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚
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Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

෪𝐹1 𝑟, 𝜃 = 𝑟, 𝜃 + 𝜋 + 𝜙 𝑟 , supp(𝜙) ⊂ [1/4, 3/4]
Sp(𝒦෪𝐹1

) = 𝕋 (unit circle).
snapshots
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Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

෪𝐹1 𝑟, 𝜃 = 𝑟, 𝜃 + 𝜋 + 𝜙 𝑟 , supp(𝜙) ⊂ [1/4, 3/4]
Sp(𝒦෪𝐹1

) = 𝕋 (unit circle).

lim
𝑛→∞

Γ𝑛
෪𝐹1 = Sp(𝒦෪𝐹1

) ⇒ ∃𝑛1 s.t. dist(𝑖, Γ𝑛1
෪𝐹1 ) ≤ 1.

BUT Γ𝑛1
 uses finite amount of info to output Γ𝑛1

෪𝐹1 .
Let X, Y correspond to these snapshots.
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Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

෪𝐹1 𝑟, 𝜃 = 𝑟, 𝜃 + 𝜋 + 𝜙 𝑟 , supp(𝜙) ⊂ [1/4, 3/4]
Sp(𝒦෪𝐹1

) = 𝕋 (unit circle).

lim
𝑛→∞

Γ𝑛
෪𝐹1 = Sp(𝒦෪𝐹1

) ⇒ ∃𝑛1 s.t. dist(𝑖, Γ𝑛1
෪𝐹1 ) ≤ 1.

BUT Γ𝑛1
 uses finite amount of info to output Γ𝑛1

෪𝐹1 .
Let X, Y correspond to these snapshots.

Lemma: 𝐹1 = 𝐻1
−1 ∘ 𝐹0 ∘ 𝐻1 on annulus 𝒜1.

Consistent data ⇒ Γ𝑛1
𝐹1 = Γ𝑛1

෪𝐹1 , dist(𝑖, Γ𝑛1
𝐹1 ) ≤ 1

BUT Sp(𝒦𝐹1
) = Sp(𝒦𝐹0

) = {±1}

snapshots

Sp(𝒦) = 𝕋

Sp 𝒦 = {±1}

snapshots

Rotation by 𝜋
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, 𝐹𝑘 = 𝐻𝑘
−1 ∘ 𝐹0 ∘ 𝐻𝑘 on 𝒜𝑘. 𝐹 = lim

𝑘→∞
𝐹𝑘

Consistent data ⇒ Γ𝑛𝑘
𝐹 = Γ𝑛𝑘

(෪𝐹𝑘), dist(𝑖, Γ𝑛𝑘
𝐹 ) ≤ 1, 𝑛𝑘 → ∞

BUT Sp(𝒦𝐹) = Sp(𝒦𝐹0
) = {±1}

𝒜1

𝒜2

𝒜3

⋮

CANNOT CONVERGE

62



Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, 𝐹𝑘 = 𝐻𝑘
−1 ∘ 𝐹0 ∘ 𝐻𝑘 on 𝒜𝑘. 𝐹 = lim

𝑘→∞
𝐹𝑘

Consistent data ⇒ Γ𝑛𝑘
𝐹 = Γ𝑛𝑘

(෪𝐹𝑘), dist(𝑖, Γ𝑛𝑘
𝐹 ) ≤ 1, 𝑛𝑘 → ∞

BUT Sp(𝒦𝐹) = Sp(𝒦𝐹0
) = {±1}

𝒜1

𝒜2

𝒜3

⋮

CANNOT CONVERGE
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Classification for Koopman

Different classes:

Ω𝒳 = 𝐹: 𝒳 → 𝒳 | 𝐹 cts  

Ω𝒳
𝑚 = 𝐹: 𝒳 → 𝒳 | 𝐹 cts, m. p.  

Ω𝒳
𝛼 = 𝐹: 𝒳 → 𝒳 | 𝐹 mod. cty. 𝛼  

[𝑑𝒳(𝐹(𝑥), 𝐹(𝑦)) ≤ 𝛼(𝑑𝒳 𝑥, 𝑦 )]

Optimal algorithms and 
classifications of 
dynamical systems.

3 limits needed 
in general!

Lower + upper bounds
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Why study this hierarchy?

• Optimality: understand boundaries of what’s possible.

• Lower bounds ⟹ spot assumptions needed to lower SCI.

• Upper bounds ⟹ new algorithms and methods.

FOUNDATIONS  ⟷  METHODS

• Σ1 ∪ Π1 ⟹ computer-assisted proofs.

• Much of computational literature not sharp!

Remarks:

• Can use any model of computation.

• Existing hierarchies (e.g., arithmetic, Baire etc.) included as particular cases.
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Summary
SCI hierarchy is a tool for discovering the foundations of computation.

Example 1: The zoo of spectral problems.

• Many spectral problems in infinite dimensions are impossible.                      
     Some are more impossible than others!

• New suite of “infinite-dimensional” algorithms for spectral problems.             
     Rigorous, optimal, practical.

Example 2: Need for foundations in data-driven learning.

• Adversarial dynamical systems: Widespread and prevent learning of properties.

• New provably convergent and optimal algorithms for Koopman operators.

Examples not covered: foundations of AI, optimization, PDEs, resonances, computer-
assisted proofs, spectral measures,…

Could this framework be useful in your area?
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• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• Ben-Artzi, Marletta, Rösler, “Computing scattering resonances,” J. Eur. Math. Soc., 2022.
• Bastounis, Hansen, Vlačić, “The extended Smale's 9th problem,” preprint.
• Webb, Olver, “Spectra of Jacobi operators via connection coefficient matrices,” CIMP, 2021. 
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
• C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.
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