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Outline

* Solvability Complexity Index Hierarchy and spectral problems.
 Example: Spectra with error control.

* Example: Adversaries and data-driven dynamical systems.

* Concluding remarks

Broad goal: classify difficulty of problems, prove optimality of algorithms,
figure out what can and cannot be done computationally.



Classical infinite-dimensional spectral problem

aj1 QAqp v > e
A"'=" Ar1 A9p ], A Zxkek =Z Zajkxk ej

k=1 ]=1 k=1

] ] Canonical basis vectors of lz(N)
Also deal with PDEs, integral operators etc.

Finite-dimensional — Infinite-dimensional
Eigenvalues of B € C™**" = Spectrum, Sp(4)

{/1]- e C: det(B — Ajl) = O} — {1 € C:A — Al isnotinvertible}




Classical infinite-dimensional spectral problem

aj1 QAqp v > e
A'="az1 az; -, A zxkek =Z Zajkxk €j

Canonical basis vectors of [?(N)

Also deal with PDEs, integral operators etc.

Finite-dimensional = Infinite-dimensional
Eigenvalues of B € C"*" = Spectrum, Sp(4)
{/1]- e C: det(B — Ajl) = O} — {1 € C: A — Al isnotinvertible}

“Most operators that arise in practice are not presented in a representation in which
they are diagonalized, and it is often very hard to locate even a single point in the
spectrum. Thus, one often has to settle for numerical approximations. Unfortunately,
there is a dearth of literature on this basic problem and, so far as we have been able to
tell, there are no proven [general] techniques.” W. Arveson, Berkeley (1994)




What can go wrong?

Typical approach:
e Matrix case ([%(N)): truncate to P,AP,; € C™*",
* PDE on unbounded domain: truncate domain then discretise.

~—— g

. two sources of error
Some key issues:

* Spectral pollution (evals accumulate at points not in Sp(4) as n — o0)
e Spectral invisibility.

* Dealing with essential spectra and continuous spectra.

e Stability, non-normality etc.

* Verification — can we compute spectral properties with error bounds?



Motivation

e Applications: Quantum mechanics, structural mechanics, optics, acoustics,
statistical physics, number theory, matter physics, PDEs, data analysis, neural
networks and Al, nuclear scattering, optics, computational chemistry, ...

 Specific open problems, e.g., computational quantum mechanics
(Schwinger 1960), (Digernes, Varadarajan, Varadhan, 1994):

Given a self-adjoint Schrodinger operator —A + V on R,
can we approximate its spectrum from sampling V?

* Verified computations: Many computer-assisted proofs involve spectra. E.g.,
~1
E(Z) = ground state energy of H = Z’,X:l(—Axk — lekl_l) + Z]-Sk‘xj — xk‘ .
Dirac-Schwinger conjecture: asymptotics of E(Z) (Fefferman, Seco 1996)

* Foundations: What is computationally possible? Beyond spectra etc.



Not all spectral problems
are equally hard ...



Warm-up: bounded diagonal operators

Assumption: Algorithm can query entries of A

Algorithm: I, (A) = {a,a,, ...,a,,} = Sp(4) = {a4, a,, ... } in Haus. Metric.

One-sided error control: I, (A) < Sp(4) /
dy(X,Y) = max {sup d(x,Y),supd(y, X)}
xeX yeY

Optimal: Can’t obtain I, (4) — Sp(4) with Sp(4) c [, (4).



Warm-up: compact self-adjoint operators

: a a
classic method 11 12
“finite section” A= a.21 agz

\

Algorithm: I’,,(A) = Sp(P,AP,;) converges to Sp(A) in Haus. Metric.
Question: Can we verify the output?

i.e., Does there exist some alg. I}, (4) — Sp(4) with I},(4) € Sp(4) + B,-n?



Warm-up: compact self-adjoint operators
classic method a1 Qqp
“finite section” A= a.21 a.22

\

Algorithm: I’,,(A) = Sp(P,AP,;) converges to Sp(A) in Haus. Metric.

Question: Can we verify the output?

i.e., Does there exist some alg. I}, (4) — Sp(4) with I},(4) € Sp(4) + B,-n?

Answer: No algorithm can do this on whole class!

10



What about Jacobi operators?

a; by
A= b1 42 bz . ) bk > O, ay, eER
b2 a3 ‘e

Non-trivial, e.g., spurious eigenvalues.
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What about Jacobi operators?

a; by
bi a> b
A= 1 2 2 , b, > 0, a, € R
b2 a3 ... k k

Sparse: finitely many

4— non-zeros in each column

Enlarge class to sparse normal operators - surely now much harder?!

Non-trivial, e.g., spurious eigenvalues.
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What about Jacobi operators?

a; by
bi a> b
A= 1 2 2 , b, > 0, a, € R
b, as - k k

Sparse: finitely many

4— non-zeros in each column

Enlarge class to sparse normal operators - surely now much harder?!

Answer: 3{[},} s.t. lim I},(4) = Sp(4) and I,,(A) < Sp(4) + B,-n,
n—00

Non-trivial, e.g., spurious eigenvalues.

for any sparse normal operator A

* C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett.,2019.



A curious case of limits

d11  d12
General bounded: A=|ay; a,

Algorithm: 3{[},_, , }st. lim lim lim I3, , , (A) = Sp(A)

n3—)00n2—)00'n1—)00

Question: Can we do better?

14

Hansen, “On the solvability complexity index, the 7=pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
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A curious case of limits

d11  Ag2
General bounded: A=\|ay; ay

Algorithm: 3{[},_, , }st. lim lim lim I3, , , (A) = Sp(A)

N3— 007, =007 —00
Question: Can we do better?
Answer: No! Canonically embed problems such as:  Explains Arveson’s lament!
Given B € {0,1}¥*N does B have a column with infinitely many 1’s?

= lower bound on number of “successive limits” needed (indep. of comp. model).

Hansen, “On the solvability complexity index, the 7=pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.



16

General algorithm: beyond recursion theory

Computational problem:

* Class of objects () (e.g., operators).

* Metric space (M, d) (e.g., Hausdorff metric).
* Thing we want to compute Z: Q) - M.

* Info we can access, A a set of functions (0 — C (e.g., matrix entries).

General algorithm: map I': 0 = M such that for any A € (), 3 a finite
non-empty subset Ar(A) € A such that

BeQf(B)=f(A4) Vf €Ar(A) > Ar(4) = Ar(B),T'(4) =T(B)

A lower bound for general algorithms
holds in ALL models of computation.



Solvability Complexity Index Hierarchy

* Ay: Solved in finite time (v. rare for cts problems).
* A;: Solved in “one limit” with full error control:
d(l,(4),2(4)) < 27"
* A,:Solved in “one limit”:
IimI;,(4A) = Z2(4)

Nn—>00
* A3: Solved in “two successive limits”:
‘ lim lim I[3},,,(4) = Z2(4)
. n-oo m-oo -’

17

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
Hansen, “On the solvability complexity index, the 7=pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
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Steve Smale: “Is there

Solvability Complexity Index Hierarchy |

any purely [rational]
* Ay: Solved in finite time (v. rare for cts problems). iterative generally
convergent algorithm
* A;: Solved in “one limit” with full error control: g for polynomial zero
_ ~ finding?”

d(Tn(A),E(4)) = 27"
* A,:Solved in “one limit”:
IimI;,(4A) = Z2(4)

n—>00

* A3: Solved in “two successive limits”:
. lim lim I3,,,(4) = E(4)

° Nn—>00 M — 00

Curt McMullen: “Yes, if the degree
is three; no, if the degree is higher.”

Peter Doyle & Curt McMullen:
“The problem can be solved
using successive limits for the
quartic and quintic, but not
the sextic.”

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
Hansen, “On the solvability complexity index, the 7=pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.

Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.

Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.
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Error control for spectral problems

dy(X,Y) = max {sug d(x,Y), SUI; d(y, X)}
XE yE

i1 convergence

Z(A) = Sp(4)

e ¥,:3alg. {l,} s.t. lim[,,(A) = Z(4), maXZan(A)diSt(Z, E(4)) <27
Nn—>00

., 'The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
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Error control for spectral problems

dy(X,Y) = max {sup d(x,Y),supd(y, X)}
xeX yeY
i1 convergence II; convergence

-

Z(A) = Sp(4)

e ¥,:3alg. {l,} s.t. lim[,,(A) = Z(4), maXZan(A)diSt(Z, E(A)) <2
Nn—>00

* I[I;: Falg. {l,} s.t. im [, (A) = E(A), max ez g dist(z, [;,(4)) <277
Nn—>00

Such problems can be used in a proof!

* C, “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
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Sampler of results for bounded op. on [%(N)
s increasing difficulty m—)

Error control 1 limit 2 limits 3 limits
| : - —— - : v—H‘—\
[1 1 2 3
0 & S & S &
Ay & A €3,UILE A, S5, UILE A; €3, UIL
I < & < G <

20 D D T
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Sampler of results for bounded op. on [%(N)
s increasing difficulty m—)

Error control 1 limit 2 limits 3 limits
l—[ 1 ompact operators 2 l‘[3
I G e | < < G
Ay & A S22, UILLE Ay S22, UILE Az S E3UIL; -
” S & IS & IS

ZO z:1 z:2 23
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Sampler of results for bounded op. on [%(N)
s increasing difficulty m—)

Error control 1 limit 2 limits 3 limits
l—[ 1 ompact operators 2 l‘[3
I G e | < < G
Ay & A S22, UILLE Ay S22, UILE Az S E3UIL; -
” S & IS & IS

Normal operators
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Sampler of results for bounded op. on [%(N)
s increasing difficulty m—)

Error iontrol 1 limit 2 Iir‘nits 3 limits
’ 1 Hl Commrators Hz «—"Sparse” op'erators_l‘[;_‘
I G e | < < G
Ay & A S UILLE A, SX,UIILE Ay S3E3UIll; -
5 < & S & <
0 2 _ 2 2

Normal operators
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Sampler of results for bounded op. on [%(N)
s increasing difficulty m—)

Error control 1 limit 2 limits 3 limits
’ ‘ Compact operators ‘ “Sparse” operators
HO ]‘[1 pact op ]‘[24/ P P 1‘[3
| Z e 1 < < G
AO ; Al ;ZlUnlg Az QZZUI_IZ; AB ; 3UH3"’
I < & < G
ZO 21 / 22 23

Normal operators General operators
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Sampler of results for bounded op. on [%(N)
s increasing difficulty m—)

Error control 1 limit 2 limits 3 limits
’ 1 ‘ Hl Commrators HZ:,"Sparse" op'erators_l‘[;_‘
I G e | < < G
Ay & A S UILLE A, S22, UIILE Ay X Ullg -
: < & S %
20 ) _ 2 2

Approx. sparse normal op Normal operators General operators
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Sampler of results for bounded op. on [%(N)

d increasing difficulty _

Error control 1 limit 2 limits 3 limits
Compact operators “Sparse” operators
[, [l [l«— [13

I G < 1 & L &

Ay & A S2,UILLE A, S22, UILE Az &3 UIl; -
: < G < %

ZO g 21 /V 22 23

Approx. sparse normal op Normal operators General operators
Zoo of problems: spectral type (pure point, absolutely continuous, singularly continuous), Lebesgue measure and

fractal dimensions of spectra, discrete spectra, essential spectra, eigenspaces + multiplicity, spectral radii, essential
numerical ranges, geometric features of spectrum (e.g., capacity), spectral gap problem, resonances ...

C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.
C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2023.
C., “Computing spectral measures and spectral types,” Commun. Math. Phys., 2021.

C., Horning, Townsend, “Computing sloectral measures of self-adjoint operators,” SIAM Rev., 2021.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.



Example 1: ) algorithm for spectra

>.1 convergence

28



Two reasons its hard!

0 1
0o 0
A=®r=1]i,, i, = . 1 |E Clrxtr
() °
| {0}, sup [, < o
>p(4) = {{Z: |z| < 1}, otherwise

No algorithm when given {L,.};2, can determine if it is bounded.

— No algorithm computes spectra of gen. tridiagonal operators.

29



Two reasons its hard!

0 1
0o 0
A=®r=1]i,, i, = . 1 |E Clrxtr
() °
| {0}, sup [, < o
>p(4) = {{Z: |z| < 1}, otherwise

No algorithm when given {L,.};2, can determine if it is bounded.

— No algorithm computes spectra of gen. tridiagonal operators.

Always have:
1(A —z)~*|™" < dist(z, Sp(4))

30



Two reasons its hard!

0 1
o0 O .'.
A=®r=1]i,, i, = . 1 |E Clrxtr
(] °
| {0}, sup [, < o
>p(d) = {{Z: |z| < 1}, otherwise

No algorithm when given {L,.};2, can determine if it is bounded.
— No algorithm computes spectra of gen. tridiagonal operators.

Always have:
I(A —2)71||7! < dist(z, Sp(4)) Assume:
o g(dist(z,Sp(A))) < |4 — 21|

known function

31



Two reasons its hard!

[t
\1

A=@; 4, A =

2

0

E (Cerlr

Sp(4) = {0,2}, Sp(diag(1,0,...)) = {0,13

More involved: choose {l,-},~-; to trick any supposed algorithm (try it!)

32



Two reasons its hard!

oo

A= @?O:l Alr’ Al = . (- (ClTXIT'

r

\1 a 1/

Sp(4) = {0,2}, Sp(diag(1,0,...)) = {0,13

More involved: choose {l,-},~-; to trick any supposed algorithm (try it!)

Assume:
We have access (A) to inner products

(Aej,ei), <A€j,A€i>, (A*ej,A*ei)
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Sketch of method Spectra through

injection moduli
0(\’10593“{3 12’(\6%%} (smallest singular value)
¢ C‘:\Oﬂ *.@ﬂ'
\\og’&)‘o\e P -
?“;(.)(1;0@”@' oine(T) = inf{||Tv||: v € D(T), lIv|l = 1}
»

“(A o Z)_lll_l — min{o_inf(A — Z)» O-inf(A* T Z_)}
VOint(Pu(A — 2)* (A — 2)Py) = oint([A — 2]P;) L 0ine(A — 2)

97 (VomPulA— 2l TA— 217 L g7 (I(A = 2)71|7) 2 dist(z, Sp(4))

(4 —2)"H~ = g(dist(z, Sp(4)))
Error control!

Final ingredient: adaptive search for local minimisers.
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What did we do?
See conditions to
/ make possible!

* Lower bound: embed a problem of known difficulty.
Now have canonical ways to do this.
Holds regardless of computational model.
* Upper bound: build an algorithm. Often, infinite-dimensional

4/ solve-then-discretise needed

Typically involves resolvent (A — z)~?! for spectral problems.

Problem dependent.

NB: One can show without g or (Aej,Ael-), (A*ej,A*ei), SCI = 2.



Error

Error

Output

Finite Section

Example: Quasicrystal

spectral pollution

A AN Y SN SN AW VA

q

Error

BN e 2T

.
p Graph Laplacian A

I.
<>
: 'O':ﬂ‘h' Q."':O'

]
\ V]
o

Dan Shechtman
(Nobel Prize in
Chemistry 2011.)

R L

\ spectral
pollution

- |——Finite Section
" |--E- Periodic Approximation
" |—@— SClI alg.

10°

10* 10°



l\ ! ‘ y"‘“

arl Bender  Michael Berry

(T —2)~ ™

C
100 1
{1e-02

1 1e-04

1e-06

1e-08

1e-10

1e-12

Small even away from evals X3 s

Vo B
Re(z)

T =

.

Example with non-trivial g

dZ
_W-I_ ix3on R

E; to 30 digits with int. arith.

0O ~1 O U W =

—
o O

100

1.156 267 071 988 113 293 799 219 177 999 9
4.109 228 752 809 651 535 843 668 478 561 3
7.962 273 854 978 828 041 351 809 110 631 4

11.314 421 820 195 804 402 233 783 948 426 9
15.291 553 750 392 532 388 181 630 791 751 9
19.451 529 130 691 728 314 686 111 714 104 4
23.766 740 435 485 819 131 558 025 968 789 9
28.217 524 972 981 193 297 595 053 878 268 9
32.789 082 781 862 957 492 447 371 485 046 3
37.469 825 360 516 046 866 428 873 594 530 5
627.694 712 248 436 511 352 673 702 901 153 6

37

C., “INFINITE-DIMENSIONAL SPECTRAL COMPUTATIONS, Foundations, Algorithms, and Modern Applications.,” CUP, to appear.



Example 2: Data-driven learning
for dynamical systems

“Very often, the creation of a technological artifact precedes the
science that goes with it. The steam engine was invented before
thermodynamics. Thermodynamics was invented to explain the steam
engine, essentially the limitations of it. What we are after is the
equivalent of thermodynamics for intelligence.” Yann LeCun

Lower bounds: The method of adversarial dynamical systems.

capture adaptive and probabilistic

randomized general
algorithms ‘ choice of training data, stochastic
gradient descent etc.

38



Data-driven dynamical systems

* Compact metric space (X, d) — the state space

| Dynamics (geometry)

e x € X —the state 19th century

cts F: X —» X —the dynamics: x,,.1 = F(x,)

39



Data-driven dynamical systems

* Compact metric space (X, d) — the state space

e x € X —the state

cts F: X —» X —the dynamics: x,,.1 = F(x,)

e Borel measure w on X

* Function space L* = L*(X, w) (elements g called “observables”)[”

» Koopman operator Kr: L? - L% |[Krg](x) = g(F(x))

NB: Pointwise definition of X needs F#w <« w — this will hold throughout.
NB: K bounded equivalent to dF#w/dw € L™ — this will hold throughout (can be dropped).

40

| Dynamics (geometry)
19th century

Analysis
20t century
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Data-driven dynamical systems

* Compact metric space (X, d) — the state space

| Dynamics (geometry)

e x € X —the state 19th century

* Unknown cts F: X — X —the dynamics: x,,.1 = F(x,)

e Borel measure w on X

Analysis
e Function space L* = L*(X, w) (elements g called “observables”)[” 20t century

» Koopman operator Kr: L? - L?; [Krg](x) = g(F(x))

—_—

 Available snapshot data: {(x(m),y(m) — F(x(m))) m=1, ..., M}} Data

215t century

NB: Pointwise definition of X needs F#w <« w — this will hold throughout.
NB: K bounded equivalent to dF#w/dw € L™ — this will hold throughout (can be dropped).



Why you should care about Koopman

Fundamental in ergodic theory

Peter Walters

An Introduction
to Ergodic Theory

E&l Springer

E.g., key to ergodic theorems of
Birkhoff and von Neumann.

Trades: Nonlinear, finite-dimensional = Linear, infinite-dimensional.

42



Why you should care about Koopman

Fundamental in ergodic theory Can provide a diagonalization of a nonlinear system.
continuous

spectrum
eigenfunction of X

J /
Peter Walters g(x) — z C)[ 90/1 (x) + ¢Q g(x) d@
An Introduction eigenvalues 4;
to Ergodic Theory

g(xy) = [K"g](x0)

Y afa e o) + j 9.9 (o) dO

B spin eigenvalues A;
£ Springer

Spectral properties encode: geometric features,
E.g., key to ergodic theorems of invariant measures, transient behavior, long-time
Birkhoff and von Neumann. behavior, coherent structures, quasiperiodicity, etc.

Trades: Nonlinear, finite-dimensional = Linear, infinite-dimensional.

43



Why you should care about Koopman

New Papers on
“Koopman Operators”
6000

+ HUGE recent interest in 000 A
their spectral properties! - /‘/\

1000

HHHHHHHHHHHH
NNNNNNNNNNNN

—number of papers

doubles every 5 yrs

Trades: Nonlinear, finite-dimensional = Linear, infinite-dimensional.

44



Extended Dynamic Mode Decomposition (EDMD)

Functionsy;: X - C,j=1,..,N ‘ {x(m),y(m) _ F(x(m))}M
quadrature points m=1
(Wi 5) = s Wit <_>)¢\(‘ m) (B D) Prx®) o Py
“ ' ! ‘ P (x®) o Yy (x M) wy ) \ P (x®) ooy (x D)

quadrature weights ¥x w Px DL
(@) e Py @™\ fwy YD) Yy D)

(Kpr, ;) = Tm_y winth; (x ) () = : : : :
[W) ¢1(x(M)) ¢N(x(M)) g Wm/ ¢1(Y(M)) l/JN(y(M)) g

! Yy w ¥, L

5

Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Extended Dynamic Mode Decomposition (EDMD)

Functionsy;: X - C,j=1,..,N ‘ {x(m),y(m) _ F(x(m))}M
m=1

(Wi ¥y) = Tpma Wit ) (x ) (@) D) P D) e ]
i) % Zmaa Wt (TP T = z ; ; 5
kr ¥j 1 J k 1/)1(X(M)) l/)N(X(M)) Wiy wl(x(M)) le(x(M))

Wx w Wy i

(K, ;) ~ TM G i (y) (P D) Py )\ [ wy D yD) ey (YD) \]
Vi) = Lm=1 WP (X yin) = : : : :
k ] 1 j k "

[ (M) ¢1(x(M)) I/JN(x(M))J g ¢1(Y(M)) I/JN(Y(M))J
Wy w Yy Ly

Galerkin

= (Wx~ ~ly,t = t NXN
Approximation K — K= P, WY)W WY, = N WP)TVIWWY, € cV*

6

e Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
* Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Example: EDMD does NOT converge

* Duffing oscillator: x =y, y = —ay + x(1 — x?), sampled At = 0.3.

* Gaussian radial basis functions, Monte Carlo integration (M = 50000)

Compute Sp,, local adaptive controlone | 0

Spe(Kr) = {z € C:||(Kp —zD7HI™H < €}

[ conservative system

spurious

dissipative system

EDMD
evals

]

|

® EDMD evals

a=03| (b)

N N
r\.% ,\.b ’

’Q. Q. )\.

(c)

EDMD does not converge

| e EDMD (m.p. system)

‘ Proposed (m.p. system)
--------- EDMD (dissipative system)
|sesssens Proposed (dissipative system)

.
LT
.
.
.
.

10° o 10*
Matrix size

47
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Residual DMD (ResDMD)

M
m=1 ]k

M

(Kipro ;) = Z Wy ) i (y™) =

=1 [KPg] (x(m))

C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

49

Residual DMD (ResDMD)

’ e e
What s theF missing  _ FX*WW&]
? L
- [ty
| ok

 C,Towns: ctral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
e C., Aytor , . iy - aposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Residual DMD (ResDMD)

(Vo ¥j) =

Wit (x ™) 1 (x ™) = [gj X ij&]
G jk

(K, ¥j) =

M= iDMs

Wi () P () = [gjx*wwg]
1 [%llik]v(x(m)) Ky

Wi (y(m) ‘Pk(y(m)) = FIJY*WLPKI
1 K> jk

jk

(Khw, Kpj) =

M=

3
I

C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Residual DMD (ResDMD)

(Vo ¥j) =

Wi (x ™) 1 (x ™)) = [HJX*WW&]
jk

M=M=

(Ktpw, ;) =

Wi (x (™) 9 (y)) = FPX*WWZ]

1 [ (™) ik

M=

(Khw, Kpj) =

Wml/) (y (m)) 1/Jk()’ (m)) [LIJY WLIJY]
1

3
I

jk

Residuals: g = Z _18Yj, 1Kg—2gll* =(Kg— 219, Kg — Ag)

* (., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Residual DMD (ResDMD)

(Vo ¥j) =

Wi (x ™) 1 (x ™)) = [HJX*WW&]
jk

M=M=

(Ktpw, ;) =

Wi (x (™) 9 (y)) = FPX*WWZ]

1 [ (™) ik

M=

(Khw, Kpj) =

Wml/) (y (m)) l/Jk()’ (m)) [LIJY WLIJY]
1

3
I

jk

Residuals: g = Y, 8¢, 1Kg — Agll* = ¥ ;=1 8k Bj (K — Ay, Kp; — 1))

* (., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Bound projection errors!

M
(i) = ) W () 3 (x ) = W]
m=1 'k
M ] Infinite-
(Kpy, ;) = Z Wi (M) gpk(y(m)l = FPX*W‘IJg] - dlmen5|onal
‘n;/1=1 (K] (™) jk residual
(7(¢k»7€¢j> ~ z Wmlpj(y(m)) 1/Jk(y(m)) — [EPY*I{V‘PK] % *
m=1 jk

Residuals: g = Z _18Y;, I1Kg —gll* = hmg[ — AK" — 1K, + |A*G]g

* (., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Practical Gains: Arctic Sea Ice Forecasting

1o Sea lce Extent
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Motivation: Arctic amplification, polar bears, local communities, effect
on extreme weather in Northern hemisphere,...

Problem: Very hard to predict more than two months in advance.
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Figure 4: Forecast error for entire sea ice concentration. The
relative mean squared error of forecasts over five years. The solid lines
show the moving 12-month mean. In each case, the model is built using
the data from the years 2005-2015, and then tested on 2016-2020. The
proposed method consistently outperforms DMD.
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Figure 5: Comparison with machine learning and statistical
prediction benchmarks. Mean binary accuracy over the test years
2012-2020, shown for IceNet, SEAS5, and our proposed method that
avoids spurious Koopman eigenvalues. Our proposed method achieves
better accuracy for lead times greater than one month, with very little
increase of errors at larger lead times.

Andersson et al, “Seasonal Arctic sea ice forecasting with probabilistic deep learning.” Nature Communications, 2021.
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Theorem (impossibility)

Implies K is unitary

— \

Class of systems: Qp = {F: D — D| F cts, measure preserving, invertible}.

Data an algorithm can use: T = {(x, y,)|x € D, ||F(x) — y,,,|| < 27™}.

Theorem: There does not exist any sequence of deterministic algorithms {I’, }
using 7 such that im I, (F) = Sp(Kr) VF € Qp.
Nn—>00

NB: Similarly, no random algorithms converging with probability > 1/2.

Double limit is necessary!




Proof idea: Constructing an adversary

F,: rotation by , Sp(?CFO) = {1+1}

Phase transition lemma: Let X = {xq,...,xx5},Y = {y4, ..., yn} be distinct
points in annulus A={x€D|0 <R <||x|| <r <1} with XnY = 0.

There exists a measure-preserving homeomorphism H such that H acts as
the identity on D\A and H(y;) = Fo(H(x;)),j =1, ..., N.

Conjugacy of data (x; — y;) with F

Idea: Use lemma to trick any algorithm into oscillating between spectra.
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* Brown and Halperin. “On certain area-preserving maps.” Annals of Mathematics, 1935.



Proof idea: Constructing an adversary
Suppose (for contradiction) {I’,,} uses T, 71i_r)1(}oI‘,,L(F) = Sp(Kr) VF € Qp.

Build an adversarial F...

58

Tp = {6 ym) | IIF(X) — ymll < 27™}
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Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

Tp = {6 ym) | IIF(X) — ymll < 27™}
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Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

lim [, (Fy) = Sp(Kx) = Iny st dist(i, I, (Fy)) < 1.

n—00

BUT [}, uses finite amount of info to output I3, (E)
Let X, Y correspond to these snapshots.

Tp = {6 ym) | IIF(X) — ymll < 27™}
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Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

lim I (Fl) = Sp(Kg;) = 3Any s.t. dist(i, [, (Fl)) < 1.

n—00

BUT [}, uses finite amount of info to output I3, (Fl).
Let X, Y correspond to these snapshots.

Rotation by i

i Mm\\\\\

Lemma: F; = H;! o Fy o H; on annulus A;.
Consistent data = I, (F;) = [}, (F7), dist(i, [, (F)) <1
BUT Sp(Kp,) = Sp(Kf,) = {£1} Sp(X) = {+1}
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, F;, = Hi* o Fy o Hy, on Ay. F = lim F,,
Consistent data = T, (F) = I, (Fy), dist(i, Iy (F)) < 1, nj, = o0

BUT Sp(KFr) = Sp(Kp,) = {£1}

CANNOT CONVERGE

k— o0

A

~

O

Cascade of disks
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, F;, = Hi* o Fy o Hy, on Ay. F = lim F,,

— k— oo
Consistent data = I3, (F) = I3, (F), dist(i, I}, (F)) < 1, ny » o
BUT Sp(KFr) = Sp(Xp,) = {£1} CANNOT CONVERGE Py
1
A,
s

Sp(K) = {z:1z| = 1} Sp(¥) = {1} Cascade of disks



Lower + upper bounds

SCI hierarchy of computing the spectrum )
Key ’l 1
| ]1scl=1[_|noexampleclass o 3
[]SCI=2 =»strictinclusion | . Qy: General systems |
\:I SCI = 3 - “ L H
? .-""’l AS k ....
3 ..... A
= 2k ; 4 I
o i Measure- [ %e i T 0% Uniform mod. of oty
C = | preservingsystems . : .
R ——— :
8 0:0
6 ‘,oﬂ Az T’ .....
E “““““ y LI
Zl k ...... D e ? Hl
. Q% N Q): Measure- A'
=« preserving and uniform 1
5 mod. of cty. :

Classification for Koopman _ 3iimits needed

in general!

Different classes:

Qy ={F: X - X | F cts}

Q¥ ={F:X - X | F cts,m.p.}
O ={F:X - X | F mod.cty.a}
[dx (F(x), F(¥)) < a(dx(x,y))]

Optimal algorithms and
classifications of
dynamical systems.
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Why study this hierarchy?

e Optimality: understand boundaries of what’s possible.
* Lower bounds = spot assumptions needed to lower SCI.
* Upper bounds = new algorithms and methods.

FOUNDATIONS «— METHODS

* X1 U II; = computer-assisted proofs.
* Much of computational literature not sharp!

Remarks:
e Can use any model of computation.
* Existing hierarchies (e.g., arithmetic, Baire etc.) included as particular cases.
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Summary

SCI hierarchy is a tool for discovering the foundations of computation.
Example 1: The zoo of spectral problems.

* Many spectral problems in infinite dimensions are impossible.
Some are more impossible than others!

* New suite of “infinite-dimensional” algorithms for spectral problems.
Rigorous, optimal, practical.

Example 2: Need for foundations in data-driven learning.
* Adversarial dynamical systems: Widespread and prevent learning of properties.

* New provably convergent and optimal algorithms for Koopman operators.

Examples not covered: foundations of Al, optimization, PDEs, resonances, computer-
assisted proofs, spectral measures,...

Could this framework be useful in your area?
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C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
Ben-Artzi, Marletta, Rosler, “Computing scattering resonances,” J. Eur. Math. Soc., 2022.
Bastounis, Hansen, Vlaci¢, “The extended Smale's 9th problem,” preprint.

Webb, Olver, “Spectra of Jacobi operators via connection coefficient matrices,” CIMP, 2021.

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.

C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.
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